Gammopathy pp 49-64 | Cite as

Immunology of the gastrointestinal tract

  • János Jákó


The digested metabolized substrates provide energy required for the locomotion and the maintenance of the structure. Digestion is a sequel of the concomitant physical and chemical processes, due to which the nutrients are split and their antigenic properties are lost. Different mechanisms would transport these substrates promoting their absorption. The total skin surface of a normal adult is about 1.5–1.9 m2, while the surface of the gastrointestinal tract (GI), which is in contact with the “internal” milieu comprises about 140 m2. A system termed by Burnet as GALT regulates and controls the defense mechanisms of this enormous surface.


Mast Cell Lamina Propria Vasoactive Intestinal Peptide Mesenteric Lymph Node Thoracic Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allan, A. Structure and function of gastrointestinal mucus. In: Physiology of the Gastrointestinal Tract. Ed.: by Johnson, L. R.Raven Press, New York 21, 617. 1981.Google Scholar
  2. 2.
    André,C.,Hereman,J. F., Vaerman, J. P.,Cambiaso,C. L. A mechanism for the induction of immunological tolerance by antigen feeding: antigen-antibody |complexes. J.Exp.Med. 142,1509. 1975.PubMedGoogle Scholar
  3. 3.
    Asherson, G. L., Zembala, M., Perara, M., Mayhew, B., Thomas, W. R. Production of immunity and unresponsiveness in the mouse by feeding contact sensitizing agents and the role of suppressor cells in the Peyer’s patches, mesenteric lymph nodes and other lymphoid tissues. Cell. Immunol. 33, 145. 1977.PubMedGoogle Scholar
  4. 4.
    Barrett K. E., Metcalfe D. D. Mucosal mast cells and IgE. In: Immunology of the Gastrointestinal Tract and Liver. Ed. by Heywroth, M. F. and Jones, A. L. Raven Press, New York. 65. 1988.Google Scholar
  5. 5.
    Befus, D., Bienenstock, J. Factors involved in symbiosis and host resistance at the mucosa-parasite interface. Progr. Allergy. 31, 76. 1982.Google Scholar
  6. 6.
    Besredka, A. De l’anaphylaxie sixième mémoire de l’anaphylaxie lactique. An. Inst. Pasteur Gille. 23, 166. 1909.Google Scholar
  7. 7.
    Bienenstock, J., Befus, A. D. Mucosal immunology. Immunology. 41, 249. 1980.PubMedGoogle Scholar
  8. 8.
    Birbeck, M. S. C., Carrwright, P., Hall, J. G., Orlans, E., Pappard, J. The transport by hepatocytes of immunoglobulin A from blood to bile visualized by autoradigraphy and electron microscopy. Immunology. 37,477. 1979.PubMedGoogle Scholar
  9. 9.
    Brandtzaeg, P. Transport models for secretory IgA and secretory IgM. Clin. Exp. Immunol. 44, 221. 1981.PubMedGoogle Scholar
  10. 10.
    Brown, W. R. Relationships between immunoglobulins and the intestinal epithelium. Gastroenterology. 75, 129. 1978.PubMedGoogle Scholar
  11. 11.
    Buffa, R., Capella, C, Solcia, E., Frigerio, B., Said, S. I. Vasoactive intestinal peptide (VIP) cells in the pancreas and gastrointestinal mucosa: an immunochemical and ultrastructural study. Histochemistry. 50, 217. 1977.PubMedGoogle Scholar
  12. 12.
    Butcher, E. C. Lymphocyte migration and mucosal immunity. In: Immunology of the Gastrointestinal Tract and Liver. Ed. by Heyworth, M. F. and Jones, A. L. Raven Press, New York. 93. 1988.Google Scholar
  13. 13.
    Butterworth, A. E., Remold, G. H., Houba, V., David, J. R., Franks, D., David, P. H., Sturrock, R. F. Antibody-dependent eosinophil-mediated damage to 51Cr-labeled schistosomula of Schistosoma mansoni: Mediation by IgG, and inhibition by antigen-antibody complexes. J. Immunol. 6, 2230. 1977.Google Scholar
  14. 14.
    Butterworth, A. E., Taylor, D. W., Veith, M. C, Vadas, M. A., Dessein, A., Sturrock, R. F., Wells, E. Studies on the mechanisms of immunity in human schistosomiasis. Immunol. Rev. 61, 5. 1982.PubMedGoogle Scholar
  15. 15.
    Cantor, H., Boyse, E. A. Regulation of cellular and humoral immune responses by T-cell subclasses. Cold Spring Harbor Symp. Quant. Biol. 41, 23. 1977.PubMedGoogle Scholar
  16. 16.
    Cantor, H., Gershon, R. K. Immunological circuits: cellular compositions. Fed. Proc. 38, 2051. 1979.Google Scholar
  17. 17.
    Capron, A., Dessaint, J. P., Capron, M., Joseph, M., Gorpier, G. Effector mechanisms of immunity to schistosomes and their regulation. Immunol. Rev. 61, 41. 1982.PubMedGoogle Scholar
  18. 18.
    Capron, M., Spiegelberg, H. L., Prin, L., Bennich, H., Butterworth, A. E., Pierce, R. J., Quaissi, M. A., Capron, A. Role of IgE receptors in effector function of human eosinophils. J. Immunol. 132, 462. 1984.PubMedGoogle Scholar
  19. 19.
    Carman, P. S., Ernst, P. B., Rosenthal, K. L., Clark, D. A., Befus, A. D., Bienenstock, J.: Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of GUT epithelium to enteric murine coronavirus. J. Immunol. 136, 1548. 1986.PubMedGoogle Scholar
  20. 20.
    Cebra, J. J., Gearthart, P. J., Kamat, R., Robertson, S. M., Tseng, J. Origin and differentation of lymphocytes involved in the secretory IgA responses. Cold Spring Harbor Symp. Quant. Biol. 41, 201. 1977.PubMedGoogle Scholar
  21. 21.
    Cerf-Bensussan, N., Guy-Grand, D., Griscelli, C. Intraepithelial lymphocytes of human gut: isolation, characterisation and study of natural killer activity. Gut. 26, 81. 1985.PubMedGoogle Scholar
  22. 22.
    Cerf-Bensussan, N., Guy-Grand, D., Lisowska-Grospierre, B., Griscelli, C., Bhan, A. K. A monoclonal antibody specific for rat intestinal lymphocytes. J. Immunol. 136, 76. 1986.PubMedGoogle Scholar
  23. 23.
    Cerf-Bensussan, N., Jarry, A., Brousse, N., Lisowska-Grospierre, B., Guy-Grand, D., Griscelli, C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur. J. Immunol. 17, 1279. 1987.PubMedGoogle Scholar
  24. 24.
    Cerf-Bensussan N., Schneeberger, E. E., Ghan, A. K. Immunohistologic and immunoelectron microscopic characterisation of the mucosal lymphocytes of human small intestine by the use of monoclonal antibodies. J. Immunol. 130, 2615. 1983.PubMedGoogle Scholar
  25. 25.
    Cerf-Bensussan, N., Quaroni, A., Kurnick, J. T., Bhan, A. K. Intraepithelial lymphocites modulate Ia expression by intestinal intraepithelial cells. J. Immunol. 132, 2244. 1984.PubMedGoogle Scholar
  26. 26.
    Chase, M. W. Inhibition of experimental drug allergy by prior feeding of sensitized agent. Proc. Soc. Exp. Biol. Med. 61, 257. 1946.PubMedGoogle Scholar
  27. 27.
    Cheng, H.,Leblond,C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537. 1974.PubMedGoogle Scholar
  28. 28.
    Chin, Y. H., Garey, G. D., Woodruff, J. J. Lymphocyte recognition of lymph node high endothelium. 1. Inhibition of in vitro binding by a component of thoracic duct lymph. J. Immunol. 125, 1764. 1980.PubMedGoogle Scholar
  29. 29.
    Crago, S. S., Tomasi, T. B. Immunoglobulin circulation and secretion. In: Immunology of the Gastrointestinal Tract and Liver. Ed.: by Heyworth, M. F. Jones, A. L. Raven Press, New York. 105. 1988.Google Scholar
  30. 30.
    Craig, S. W., Cebra, J. J. Peyer’s patches, an entiched source of precursors for IgA producing immunocytes in the rabbit. J. exp. Med. 134, 188. 1971.PubMedGoogle Scholar
  31. 31.
    Cutz, E., Chan, W., Track, N. S., Goth, A., Said, S. I. Release of vasoactive intestinal polypeptide in mast cells by histamine liberators. Nature. 275,661. 1978.PubMedGoogle Scholar
  32. 32.
    Donowitz, M., Asarkof, N., Pike, G. Calcium dependence of serotonin-induced changes in rabbit ileal electrolyte transport. J.Clin. Invest. 66, 341. 1980.PubMedGoogle Scholar
  33. 33.
    Donowitz, M., Charney, A. N., Heffernan, J. M. Effect of serotonin treatment on intestinal transport in the rabbit. Am. J. Physiol. 232/Endocrinol Metab. Gastrointest. Physiol. 1./:E 85.–E 94. 1977.Google Scholar
  34. 34.
    Eardley, D. D., Murphy, D. B., Kemp, J. D., Shen, F. W., Cantor, H., Gershon, R. K. Ly-1 inducer and Ly 1,2 acceptor T-cells in the feedback suppression, circuit bear an I-J subregion controlled determinant. Immunogenetics. 11, 549. 1980.PubMedGoogle Scholar
  35. 35.
    Ebert, E. C., Roberts, A. K., Brolin, R. E., Raska, K. Examination of the low proliferative capacity of human jejunal intraepithelial lymphocytes. Clin. Exp. Immunol. 65, 148. 1986.PubMedGoogle Scholar
  36. 36.
    Elson, C. O., Heck, J. A., Strober, W. T-cell regulation of murine IgA synthesis. J. Exp. Med. 149, 632. 1979.PubMedGoogle Scholar
  37. 37.
    Ernst, P. B., Clark, D. A., Rosenthal, K. L., Befus, A. D., Bienenstock, J. Detection and characterisation of cytotoxic T lymphocyte precursor in the murine intestinal intraepithelial leukocyte population. J. Immunol. 136, 2121. 1986.PubMedGoogle Scholar
  38. 38.
    Ernst, P. B., Scicchitano, R., Underdown, B. J., Bienestock, J. Oral immunization and tolerance. Immunology of the Gastrointestinal Tract and Liver. Ed.: by Heyworth, M. F. Jones A. L. Raven Press, New York. 125. 1988.Google Scholar
  39. 39.
    Field, M. Regulation of small intestinal ion transport by cyclic nucleotides and calcium. In Secretory Diarrhea. Ed.: by Fiel, M., Fordtran, J. S. Schultz, S. G. Bethesda, MD. Am. Physiol. Soc. 3, 21. 1980.Google Scholar
  40. 40.
    Flexman, J. P., Shellam, G. R., Mayrhofer, G. Natural cytotoxicity, responsiveness to interferon and morphology of intra-epithelial lymphocytes from the small intestine of the rat. Immunology. 48, 733. 1983.PubMedGoogle Scholar
  41. 41.
    Fox, R. A. Membrane glycoproteins in defense of the cells of the gastrointestinal tract. Med. Hypotheses. 5, 669. 1979.PubMedGoogle Scholar
  42. 42.
    Frizzell, R. A., Heintze, K., Stewart, C. P. Mechanism of intestinal chloride secretion. In: Secretory Diarrhea. Ed.: by Fiels, M., Fordtran, J. S., Schultz, S. G. Bethesda MD. Am. Physiol. Soc. 2, 11. 1980.Google Scholar
  43. 43.
    Fubura, E. S., Freter, R. Protection against enteric bacterial diarrheas. N. Engl. J. Med. 285, 831. 1973.Google Scholar
  44. 44.
    Furth, R. van, Hirsh, J. G., Fedorko, M. E. Morphology and peroxidase cytochemistry of mouse promo-nocytes, monocytes and macrophages.J. Exp. Med. 132, 794. 1970.PubMedGoogle Scholar
  45. 45.
    Gaginella, T. A., O’Dorisio, T. M. Vasoactive intestinal polypeptide: neuromodulator of intestinal secretion? In: Mechanisms of Intestinal Secretion. Ed.: by Binder, H. J. New York: Liss. 18,231. 1979.Google Scholar
  46. 46.
    Galli, S. J., Dvorak, A. M., Dvorak, H. F. Basophils and mast cells: Morphologic insights into their biology, secretory patterns, and function. Prog. Allergy. 34, 1. 1984.PubMedGoogle Scholar
  47. 47.
    Germain, R., Benacerraf, B. Helper and suppressor T-cell factors. Springer-Sem. Immunopathol. 3, 92. 1980.Google Scholar
  48. 48.
    Gershon, R. K., Eardley, D. D., Durum, S., Green, D. R., Shen, F. W., Yamauchi, K., Cantor, H., Murphy, D. B. Contra suppression. A novel immunoregulatory activity. J.Exp. Med. 153, 1533. 1981.PubMedGoogle Scholar
  49. 49.
    Green, D. R., Eardly, D. D., Kimura, A., Murphy, D. B., Yamauchi, K., Gershon, R. K. Immunoregulatory circuits which modulate responsiveness to suppressor cell signals: characterization of an effector cell. Eur. J. Immunol. 11, 973. 1981.PubMedGoogle Scholar
  50. 50.
    Green, D. R., Gold, J. St., Martin, S., Gershon, R., Gershon, R. K. Microenvironmental immunoregulation: possible role of contrasuppressor cells in maintaining immune responses in gut-associated lymphoid tissue. Proc. Natl. Acad. Sci. 79, 889. 1982.PubMedGoogle Scholar
  51. 51.
    Greenwood, J. H., Austin, L. L., Dobbins, W. O. In vitro characterisation of human intestinal intraepithelial lymphocytes. Gastroenterology. 85, 1023. 1983.PubMedGoogle Scholar
  52. 52.
    Grzych, J. M., Capron, M., Dissous, C., Capron, A. Blocking activity of rat monoclonal antibodies in experimental schistosomiasis. J. Immunol. 133, 998. 1984.PubMedGoogle Scholar
  53. 53.
    Guy-Grand, D., Cerf-Bensussan, N., Griscelli,C., Vassalli, P. International symposium on the immunology of the Gastrointestinal Tract and the Liver. Jerusalem 1987.Google Scholar
  54. 54.
    Guy-Grand, D., Griscelli, C., Vassalli, P. The GUT associated lymphoid system: nature and properties of the large dividing cells. Europ. J. Immunol. 4, 435. 1974.Google Scholar
  55. 55.
    Hanson, W. R., Henninger, D. L., Fry, R. J. F., Sallese, A. R. In: Cellproliteration in the Gastrointestinal Tract. Ed.: by Appleton, D. R., Sunter, J. P., Watson, A. J. Tunbridge Wells Pitman Medical. 198, 1980.Google Scholar
  56. 56.
    Hardcastle, P. T., Eggerton, J. The effect of acetylcholine on the electrical activity of intestinal epithelial cells. Biochim. Biophys. Acta. 298, 95. 1973.PubMedGoogle Scholar
  57. 57.
    Heyworth, M. F. T Cells and other non-B lymphocytes. In: Immunology of the Gastrointestinal Tract and Liver. Ed.: by Heyworth, M. F., Jones, A. L. Raven Press, New York. 1. 1988.Google Scholar
  58. 58.
    Hume D.A., William, F. D. Role of Macrophages in Cellular Defense. In: Immunology of the Gastrointestinal Tract and Liver. Ed.: by Heyworth, M. F. and Jones, A. L. Raven Press, New York. 23. 1988.Google Scholar
  59. 59.
    Ishizaka, T., Dvorak, A. M., Conrad, D. H., Niebyl, J. R., Marquette, J. P. and Ishizaka, K. Morphologic and immunologic characterization of human basophils developed in cultures of cord blood mononuclear cells. J. Immunol. 134,532. 1985.PubMedGoogle Scholar
  60. 60.
    Jahnke, G. D., Lazarus, L. H., DiAugustine, P. P., Soldato, C. M.,Erisman,M. D. Peptide hormone degradation by a rat mast cell chymase-heparin complex. Life Sci. 29, 397. 1981.PubMedGoogle Scholar
  61. 61.
    Kagnoff, M. F. Effects of antigenfeeding on intestinal and systemic immune response. III. Antigen-specific serum mediated suppression of humoral antibody responses after antigen feeding. Cell. Immunol. 40, 186. 1978.PubMedGoogle Scholar
  62. 62.
    Keren, D. F., Elliott, H. L., Brown, C. D., Jardley, J. H. Atrophy of villi hypertrophy and hyperplasia of Paneth cells in isolated (Thiry-Vella) ileal loops in rabits. Light microscopic studies. Gastroenterology. 68, 83. 1975.PubMedGoogle Scholar
  63. 63.
    Kisloff, B., Moore E. W. Effect of serotonin on water and electrolyte transport in the in vivo rabbit small intestine. Gastroenterology. 71, 1033. 1976.PubMedGoogle Scholar
  64. 64.
    Klein, J. R., Lefrancois, L., Kagnoff, M. F. A murine cytotoxic T lymphocyte clone from the intestinal mucosa that is antigen specific for proliferation and displays broadly reactive inducible cytotoxic activity. J. Immunol. 135,3697. 1985.PubMedGoogle Scholar
  65. 65.
    Klein, J. R. Ontogeny of the Thy-1, Lyt-2 + murine intestinal intraepithelial lymphocytes. Characterisation of an unique population of thymus independent cytotoxic effector cells in the intestinal mucosa. J. Exp. Med. 164, 309. 1986.PubMedGoogle Scholar
  66. 66.
    Kohler, P. F., Brown, W. R. Immunologic aspects of hepatic and gastrointestinal tract disease. JAMA, 248, 2704,1982.PubMedGoogle Scholar
  67. 67.
    Kubagawa, H., Bertoli, L. F., Barton, J. C, Koopman, W. J., Mestecky,J., Cooper, M. D. Analysis of paraprotein transport into the saliva by using an-idiotype antibodies. J. Immunol. 138,435. 1987.PubMedGoogle Scholar
  68. 68.
    L’Age-Stehr, J., Teichmann, H., Gershon, R. K., Cantor, H. Stimulation of regulatory T-cell circuits by immunoglobulin dependent structures on activated B-cells. Eur. J. Immunol. 10, 21. 1980.PubMedGoogle Scholar
  69. 69.
    Lamm, M. E. Cellular aspects of immunoglobulin A. In: Advances in Immunology. Ed.: by Dixon, F. J., Kunkel, H. G. Academic Press, New York-London-Toronto-Sidney-San Francisco. 22,223. 1976.Google Scholar
  70. 70.
    Larsh, J. E., Ottolenghi, J. R. A., Weatherly, N. F. Trichinella spiralis: phospholipase in challenged mice and rats. Exp. Parasitol. 36, 299. 1974.PubMedGoogle Scholar
  71. 71.
    Lee,J.S.,Silverberg,J.W. Effect of histamine on intestinal fluid secretion in the dog. Am. J.Physiol. 231, 793. 1976.PubMedGoogle Scholar
  72. 72.
    Lemaitre-Coelho, J., Jackson, G. D. F., Vaerman, J. P. Rat bile as a convenuent source of secretory IgA and free secretory component. Eur. J. Immunol. 8, 588. 1977.Google Scholar
  73. 73.
    Lipkin, M. Proliferation and differentiation of gastrointestinal cells in normal and disease states. In: Physiology of the Gastrointestinal Tract. Ed.: by Johnson, L. R. Raven Press, New York, 4, 146,1981.Google Scholar
  74. 74.
    Lipkin, M. Proliferation and differentiation of gastrointestinal cells in normal and disease states. In: Physiology of the Gastrointestinal Tract. Ed.: by Johnson, L. R. Raven Press, New York, 4,145. 1981Google Scholar
  75. 75.
    Lyscom, N., Brueton, M. J. Intraepithelial lamina propria and Peyer’s patch lymphocytes of the rat small intestine: isolation and characterisation in terms of immune globuline markers and receptors for monoclonal antibodies. J. Immunology. 45, 775. 1982.Google Scholar
  76. 76.
    MacDonald, T. T., Dillon, B. S. Chemica mediators of Cellular Communication. In: Immunology of the Gastrointestinal Tract and Liver. Ed.: by Heyworth, M. F. and Jones, A. I. Raven Press, New York. 47. 1988.Google Scholar
  77. 77.
    Mathew, G. D., Qualtierre, L. F., Neel, H. B., Pearson, G. R. IgA antibody, antibody-dependent cellular cytotoxicity and prognosis in patients with nasopharyngeal carcinoma. Int. J. Cancer. 27, 175. 1980.Google Scholar
  78. 78.
    Mattingly, J. A., Waksman, B. H. Immunologic suppression after oral administration of antigen. I. Specific supressor cells formed in rat Peyer’s patches after oral administration of sheep erythrocytes and their systemic migration. J.Immunol. 121, 1878. 1978.PubMedGoogle Scholar
  79. 79.
    Mattingly, J. A., Waksman, B. H. Immunologic suppression after oral administration of antigen. II. Antigen specific helper and suppressor factors produced by spleen cells of rats fed sheep erythrocytes.J. Immunol. 125, 1044. 1980.PubMedGoogle Scholar
  80. 80.
    Mayrhofer, G., Whately, R. J. Granular intraepithelial lymphocytes of the rat small intestine. I. Isolation, presence in T-lymphocyte-deficient rats and bone marrow origine. Int. Arch. Allergy Appl. Immunol. 71, 317. 1983.PubMedGoogle Scholar
  81. 81.
    McDermott, M. R., Bienenstock, J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory and genital tissues. J. Immunol. 122,1892. 1979.PubMedGoogle Scholar
  82. 82.
    McDermott, M. R., Clark, D. A., Bienenstock, J. Evidence for a common mucosal immunologic system. II. Influence of the estrous cycle on B immunoblast migration into genital and intestinal tissues. J.Immunol. 124,2536. 1980.PubMedGoogle Scholar
  83. 83.
    McDougal, J. S., Shen, F. W., Cort, S. A., Bard, J. Feedback suppression: phenotypes of T-cell subsets involved in the Ly-1 T-cell-induced immunoregulatory circuit. J. Immunol. 125, 1157. 1980.PubMedGoogle Scholar
  84. 84.
    McWilliams, M., Philips-Quagliata, J. M., Lamm, M. E. Mesenteric lymphnode B lymphoblasts which home to the small intestine are precommitted to IgA synthesis. J. Exp. Med. 145, 866. 1977.PubMedGoogle Scholar
  85. 85.
    Miller, H. R. P., Huntley, J. F., Wallace, G. Immune exclusion and mucus-trapping during the rapid expulsion of Nippostrongylus brasiliensis from primed rats. Immunology. 44, 419. 1981.PubMedGoogle Scholar
  86. 86.
    Miller, H. R. P., Nawa, Y. Nippostrongylus brasiliensis: Intestinal goblet-cell response in adoptively immunized rats. Exp. Parasitol.47,81. 1979.PubMedGoogle Scholar
  87. 87.
    Miller, S. D., Hanson, D. G. Inhibition of specific immune responses by feeding protein antigens. IV. Evidence for tolerance and specific active suppression of cell mediated immune responses to ovalbumin. J. Immunol. 123, 2344. 1979.PubMedGoogle Scholar
  88. 88.
    Moore, A. R., Hall, J. G. Evidence for a primary association between immunoblasts and small gut. Nature. 239, 161. 1972.PubMedGoogle Scholar
  89. 89.
    Murphy, D. B., Herzenberg, L. A., Okumura, K., McDevitt, H. O. A new I subregion (I-J) marked by a locus (Ia-4) controlling surface determinants on suppressor T-lymphocytes. J. Exp. Med. 144, 699. 1976.PubMedGoogle Scholar
  90. 90.
    Murray, M., Miller, H. R. P., Sanford, J. Jarrett, W. F. H. 5-Hydroxytryptamine in intestinal immunological reactions. Int. Arch. Allergy Appl. Immunol. 40, 236. 1971.PubMedGoogle Scholar
  91. 91.
    Nagwa, H., Nakane, P. K., Brown, W. R. Translocation of dimeric IgA throug neoplastic colon cells in vitro. J. Immunol. 123,2359. 1979.Google Scholar
  92. 92.
    Nauss, K. M., Pavlina, T. M., Kumar, V., Newborne, P.M. Functional characteristics of lymphocytes isolated from the rat large intestine. Response to T-cell mitogens and natural killer cell activity. Gastroenterology. 86, 468. 1984.PubMedGoogle Scholar
  93. 93.
    Ngan, J., Kind, L. S. Suppressor T-cells for IgE and IgG in Peyer’s patches of mice made tolerant by the administration of ovalbumin. J. Immunol. 120,861. 1978.PubMedGoogle Scholar
  94. 94.
    Orlans, E., Pappard, J., Reynolds, J., Hall, G. J. Rapid active transport of immunoglobulin A from blood to bile. J. exp. Med. 147, 588. 1978.PubMedGoogle Scholar
  95. 95.
    Owen, R. L. Sequential uptake of horse radish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal, unobstructed mouse intestine. An ultrastuctural study. Gastroenterology. 72, 440. 1977.PubMedGoogle Scholar
  96. 96.
    Owen, R. L., Nemanic, P. Antigen processing structures of the mammalian intestinal tract: an SEM study of lymphoepithelial organs. Scanning Electron Microsc. 11, 367. 1978.Google Scholar
  97. 97.
    Parrott, D. M. V., Ferguson, A. Selective migration of lymphocytes within the mouse small intestine. Immunology. 26, 571. 1974.PubMedGoogle Scholar
  98. 98.
    Parrott, D. M. V., Tait, C., MacKensie, S., McI. Mowat, A., Davies, M. D. J., Micklem, H. S. Analysis of the effective functions of different populations of mucosal lymphocytes. Ann. N. Y. Acad. Sci. 409, 307. 1983.PubMedGoogle Scholar
  99. 99.
    Patterson, S., Roebuck, Pamela, Plats-Mill, T. A. E., Shiner, Margot, Kingston, D., Pearson, Joyr. IgE plasma cells in human jejunum demonstrated by immune electron microscopy. Clin. exp. Immunol. 46, 301. 1981.PubMedGoogle Scholar
  100. 100.
    Peppard, J., Orlans, E., Payne, W. R., Andrew, E. The elimination of circulating complexes containing polymeric IgA excretion in the bile. Immunology. 42, 83. 1981.PubMedGoogle Scholar
  101. 101.
    Petit, A., Ernst, P. B., Befus, A. D., Clark, D. A., Rosenthai, K. R., Ishizaka, T., Bienenstock, J. Murine intestinal intraepithelial lymphocytes I. Relationship of anoveltThy-1,Lyt-1,Lyt-2 +, granulated subpopulation to natural killer cells and mast cells. Europ. J. Immunol. 15, 211. 1985.Google Scholar
  102. 102.
    Pierce, N. F., Gowans, J. L.: Cellular kinetics of the intestinal immun response to cholera toxoid in rats. J. Exp. Med. 142, 1550. 1975.PubMedGoogle Scholar
  103. 103.
    Porter, P., Noakes, D. E., Allen, D. W. Intestinal secretion of immunoglobulins in the preruminant calf. Immunology. 23, 299. 1972.PubMedGoogle Scholar
  104. 104.
    Potten, C. S., Chwalinski, S., Swindell, R., Palmer, M. The spatial organization of the hierarchical proliferative cells of the crypts of the small intestine into clusters of „synchronized” cells. Cell and Tissue Kinet. 15, 351. 1982.Google Scholar
  105. 105.
    Potten, C. S., Hendry, J. H., Moore, J. V., Chwalinski, S. Cytotoxic Insult to Tissues: Effects on Cell Lineages. Ed.: by Potten, C. S. Churchill-Livingstone, Edinburg, 105, 1983.Google Scholar
  106. 106.
    Potten, C. S., Hendry, J. H. Stem Cells: Identification and Characterisation Ed.: by Potten, C. S. Churchill-Livingstone, Edinburg, 155, 1983.Google Scholar
  107. 107.
    Ptak, W., Green, D. R., Durum, S. K., Kimura, A., Murphy, D. B., Gershon, R. K. Immunoregulatory circuits which modulate responsiveness to suppressor cell signals: contrasuppressor cells can convert an in vivo tolerance signal into an immunogenic one. Eur. J. Immunol. 11, 980. 1981.PubMedGoogle Scholar
  108. 108.
    Quastler, H., Sherman, F. G. Cell population, kinetics in the intestinal epithelium of the mouse. Exp. Cell. Res. 17, 420. 1959.PubMedGoogle Scholar
  109. 109.
    Richman, L., Graeff, A. S., Strober, W. Antigen presentation by macrophage-enriched cells from the mouse Peyer’s patch. Cell Immunol. 62, 110. 1981.PubMedGoogle Scholar
  110. 110.
    Said, S. I., Mutt, V. Polypeptide with broad biological activity isolated from small intestine. Science. 169,1217. 1970.PubMedGoogle Scholar
  111. 111.
    Schmiegel, W. H., Hamann, A., Thiele, H. G. Das Darm-Assoziierte-Immunsystem. Lokale Immun-antvort-systemische Toleranz. DMW. 107, 67. 1982.Google Scholar
  112. 112.
    Schrader, J. W., Scollay, R., Battye, F. J. Intramucosal lymphocytes of the GUT: Lyt-2 and thy-1 phenotype of the granulated cells and evidence for the presence of both Tails and mast cell precursors. J. Immunol. 130, 558. 1983.PubMedGoogle Scholar
  113. 113.
    Schrank, G. D., Verwey, W. F. Distribution of cholera organisms in exerimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infect. Immun. 13, 195. 1976.PubMedGoogle Scholar
  114. 114.
    Selby, W. S., Jánossy, G., Bofill, M., Jewell, D. P. Lymphocyte subpopulations in the human small intestine. The findings in normal mucosa and the mucosa of patients with adult coeliac disease. Clin. Exp. Immunol. 52, 219. 1983.PubMedGoogle Scholar
  115. 115.
    Selby, W. S., Janossy, G., Goldstein, G., Jewell, D. P. T lymphocyte subsets in human intestinal mucosa: the distribution and relationship to MHC-derived antigens. Clin. Exp. Immunol. 44, 453. 1981.PubMedGoogle Scholar
  116. 116.
    Sprent, J. Fate of H-2 activited T lymphocytes in syngenyc hosts. I. Fate in Lymphoid tissues and intestines traced with 3H-thymidine, 1251-deoxyuridin and SI chromium. Cell. Immunol. 21, 278. 1976.PubMedGoogle Scholar
  117. 117.
    Stamper, H. B., Woodruff, J. J. Lymphocyte homing into lymph nodes. In vitro demonstration of the selective affinity of recirculating lymphocytes for highendothelial venules. J. exp. Med. 144, 828. 1976.PubMedGoogle Scholar
  118. 118.
    Steele, J. R., Amkerst, J., Sjögren, H. O., Vang, H., Lannerstad, O. Absorption of blocking activity from human tumor-bearer sera by staphylococcus aureus cowan I. Int. J. Cancer. 15, 180. 1975.PubMedGoogle Scholar
  119. 119.
    Strober, W., Richman, L. K., Elson, C. O. The regulation of gastrointestinal immune responses. Immunology today. 14, 156. 1981.Google Scholar
  120. 120.
    Tada, T., Taniguchi, M., Okumura, K. Multiple MHC loci controlling lymphocyte interactions. J. Supramol. Struct. Cell. Biochem. (Suppl.) 3, 236. 1979.Google Scholar
  121. 121.
    Tadokoro, K., Stadler, B. M., De Weck, A. L. Factordependent in vitro growth of human normal bone marrow-derived basophil-like cells. J. Exp. Med. 158, 857. 1983.PubMedGoogle Scholar
  122. 122.
    Tagliabue, A., Befus, A. D., Clark, D. A., Bienenstock, J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J. Exp. Med. 155,1785. 1982.PubMedGoogle Scholar
  123. 123.
    Toner, P. G., Carr, K. E., Wyburn, G. M. Intraepithelial cells in gastrointestinal mucosa. In: The Digestive System. An Ultrastructural Atlas and Riview. Appleton-Century-Crofts, New York, 13, 166. 1971.Google Scholar
  124. 124.
    Tutton, P. J. M. The influence of serotonin on crypt cell proliferation in the jejunum of the rat. J. Anat. 118, 389. 1974.Google Scholar
  125. 125.
    Unanue,E. R. Macrophages as regulators of lymphocyte function, In: The biology of immunologic disease Ed.: by Dixon, F. J., Fisher, D. W. Sinauer Associates, Inc. 87,1983.Google Scholar
  126. 126.
    Uvnäs, B. Mechanism of histamine release in mast cells. Ann. NY Acad. Sci. 103, 278. 1963.PubMedGoogle Scholar
  127. 127.
    Uvnäs, B. The mechanism of histamine release from mast cells. In: Histamine II and Antihistaminics; Chemistry, Metabolism and Physiological and Pharmacological Actions. Handbook of Experimental Pharmacology. Ed.: by Roche Silva, M. Springer-Verlag, New York, 18, 75. 1978.Google Scholar
  128. 128.
    Weigle, W. O. Cyclical production of antibody as a regulatory mechanism in the immune response. Adv. Immunol. 21, 87. 1975.PubMedGoogle Scholar
  129. 129.
    Wells, H. G., Osborne, T. B. The biological reactions of the vegetable proteins. J. Infect. Dis. 8, 66. 1911.Google Scholar
  130. 130.
    Wright, R. D., Jenning, M. A., Florey H. W., Lium, R. The influence of nerves and drugs on secretion by the small intestine and an investigation of the enzymes in the intestinal juices. Quant. J. Exp. Physiol. 30, 73. 1940.Google Scholar
  131. 131.
    Woods, J.D. Physiology of the enteric nervous system. In: Physiology of the Gastrointestinal Tract. Ed.: by Johnson, L. R. Raven Press, New York, 1, 1. 1981.Google Scholar
  132. 132.
    Yamauchi, K., Green, D. R., Eardley, D. D., Murphy, D. B.,Gershon, R. K. Immunoregulatory circuits that modulate responsiveness to suppressor cell signals. J. Exp. Med. 153, 1547. 1981.PubMedGoogle Scholar
  133. 133.
    Zubler, R. H., Benacerraf, B., Germain, B. Feedback suppression of the immune response in vitro: II. IgVH-restricted antibody dependent suppression. J. Exp. Med. 151, 681. 1980.PubMedGoogle Scholar

Copyright information

© Jákó János, Budapest 1991

Authors and Affiliations

  • János Jákó
    • 1
  1. 1.1st Department of MedicinePostgraduate Medical SchoolBudapestHungary

Personalised recommendations