Detection of Coronaviruses by the Polymerase Chain Reaction

  • Janet N. Stewart
  • Samir Mounir
  • Pierre J. Talbot
Part of the Frontiers of Virology book series (FRVIROLOGY, volume 1)


A simple and reliable method for the amplification and specific detection of human coronavirus nucleotide sequences was developed, based on the synthesis of cDNA, the polymerase chain reaction, and the use of oligonucleotide probes in Southern blots. Regions from several genes of the two prototype strains of human coronavirus (229E and OC43) could be specifically amplified. This powerful technique was applied to clinical specimens, with appropriate controls, to study the tissue tropism of coronaviruses and their possible involvement in diseases other than the common cold. We have obtained preliminary evidence for the detection of the genome of a human coronavirus in central nervous system autopsy tissue from some multiple sclerosis patients.


Multiple Sclerosis Patient Myelin Basic Protein Infectious Bronchitis Virus Rubella Virus Equine Arteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Battaglia M, Passarani N, DiMatteo A, Gerna G (1987) Human enteric coronaviruses: further characterization and immunoblotting of viral proteins. J Infect Dis 155:140–143PubMedCrossRefGoogle Scholar
  2. Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomley FM, Binns MM (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68:57–77PubMedCrossRefGoogle Scholar
  3. Burks JS, DeVald BL, Jankovsky LD, Gerdes JC (1980) Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209:933–934PubMedCrossRefGoogle Scholar
  4. Byrne BC, Li JJ, Sninsky J, Poiesz BJ (1988) Detection of HIV-1 RNA sequences by in vitro DNA amplification. Nucleic Acids Res 16:4165PubMedCrossRefGoogle Scholar
  5. Carman WF, Williamson C, Cunliffe BA, Kidd AH (1989) Reverse transcription and subsequent DNA amplification of rubella virus. J Virol Methods 25:21–30PubMedCrossRefGoogle Scholar
  6. Cavanagh D, Brian DA, Enjuanes L, Holmes KV, Lai MMC, Laude H, Siddell SG, Spaan W, Taguchi T, Talbot PJ (1990) Recommendations of the Coronavirus Study Group for the nomenclature of the structural proteins, mRNAs and genes of coronaviruses. Virology 176:306–307PubMedCrossRefGoogle Scholar
  7. Chirnside ED, Spaan WJM (1990) Reverse transcription and cDNA amplification by the polymerase reaction of equine arteritis virus (EAV). J Virol Methods 30:133–140PubMedCrossRefGoogle Scholar
  8. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299PubMedCrossRefGoogle Scholar
  9. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  10. Erba HP, Eddy R, Shows T, Kedes L, Gunning P (1988) Structure, chromosome location, and expression of the human y-actin gene: differential evolution, location and expression of the cytoskeletal β- and y-actin genes. Mol Cell Biol 8:1775–1789PubMedGoogle Scholar
  11. Gama RE, Hughes PJ, Bruce CB, Stanway G (1988) Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material. Nucleic Acids Res 16:9346PubMedCrossRefGoogle Scholar
  12. Hohnes KV (1990) Coronaviridae and their replication. In: Fields BN, Knipe DM et al. (eds) Raven, Virology, 2nd edn. New York, pp 841–856Google Scholar
  13. Hyypia T, Auvinen P, Maaronen M (1989) Polymerase chain reaction for human picornaviruses. J Gen Virol 70:3261–3268PubMedCrossRefGoogle Scholar
  14. Jouvenne P, Mounir S, Stewart JN, Richardson CD, Talbot PJ (1992) Sequence analysis of human coronavirus 229E mRNAs 4 and 5: evidence for polymorphism and homology with myelin basic protein. Virus Res 22:125–141PubMedCrossRefGoogle Scholar
  15. Kamahora T, Soe LH, Lai MMC (1989) Sequence analysis of nucleocapsid gene and leader RNA of human coronavirus OC43. Virus Res 12:1–10PubMedCrossRefGoogle Scholar
  16. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238PubMedCrossRefGoogle Scholar
  17. Lai MMC (1990) Coronavirus: organization, replication, and expression of genome. Annu Rev Microbiol 44:303–333PubMedCrossRefGoogle Scholar
  18. Lai MMC, Stohlman SA (1978) The RNA of mouse hepatitis virus. J Virol 26:236–242PubMedGoogle Scholar
  19. Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MMC (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerases. Virology 180:567–582PubMedCrossRefGoogle Scholar
  20. Lin Z, Kato A, Kudou Y, Ueda S (1991) A new typing method for the avian infectious bronchitis virus using polymerase chain reaction and restriction enzyme fragment length polymorphism. Arch Virol 116:19–31PubMedCrossRefGoogle Scholar
  21. Lomniczi B, Kennedy I (1977) The genome of infectious bronchitis virus. J Virol 24:99–107PubMedGoogle Scholar
  22. Mclntosh K (1990) Coronaviruses. In: Fields BN, Knipe DM et al. (eds) Virology, 2nd edn. Raven, New York, pp 857–864Google Scholar
  23. Murakawa GJ, Zaia JA, Spallone PA, Stephens DA, Kaplan BE, Wallace RB, Rossi JJ (1988) Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA 7:287–295PubMedCrossRefGoogle Scholar
  24. Murray RS, Brown B, Brian D, Cabirac GF (1997) Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann Neurol 31:525–533CrossRefGoogle Scholar
  25. Persing DH (1991) Polymerase chain reaction. Trenches to benches. J Clin Microbiol 29:1281–1285Google Scholar
  26. Raabe T, Siddell S (1989) Nucleotide sequence of the human coronavirus HCV-229E mRNA 4 and mRNA 5 unique regions. Nucleic Acids Res 17:6387PubMedCrossRefGoogle Scholar
  27. Resta S, Luby JP, Rosenfeld CR, Siegel JD (1985) Isolation and propagation of a human enteric coronavirus. Science 229:978–981PubMedCrossRefGoogle Scholar
  28. Riski N, Hovi T (1980) Coronavirus infections of man associated with diseases other than the common cold. J Med Virol 6:259–265PubMedCrossRefGoogle Scholar
  29. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  30. Salmi A, Ziola B, Hovi T, Reunanen M (1982) Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology 32:292–295PubMedGoogle Scholar
  31. Schreiber SS, Kamahora T, Lai MMC (1989) Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E. Virology 169:142–151PubMedCrossRefGoogle Scholar
  32. Southern E (1979) Gel electrophoresis of restriction fragments. Methods Enzymol 68:152–176PubMedCrossRefGoogle Scholar
  33. Streicher R, Stoffel W (1989) The organization of the human myelin basic protein gene. Biol Chem Hoppe Seyler 370:503–510PubMedCrossRefGoogle Scholar
  34. Tanaka R, Iwasaki Y, Koprowski HJ (1976) Intracisternal virus-like particles in the brain of a multiple sclerosis patient. J Neurol Sci 28:121–126PubMedCrossRefGoogle Scholar
  35. ter Meulen V, Massa PT, Dörries R (1990) Coronaviruses. In: McKendall H, (ed) Viral disease. Handbook of clinical neurology, vol 12. Elsevier, Amsterdam, pp 439–451Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Janet N. Stewart
    • 1
  • Samir Mounir
    • 1
  • Pierre J. Talbot
    • 1
  1. 1.Virology Research Center, Institut Annand-FrappierUniversité du QuébecLavalCanada

Personalised recommendations