Advertisement

Higher (Non-isospectral) Symmetries of the Kadomtsev-Petviashvili Equations and the Virasoro Action on Riemann Surfaces

  • P. G. Grinevich
  • A. Yu. Orlov
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

In this paper we study the connections between two objects: vector fields action on the Riemann surfaces and non-isospectral symmetries. This action and connected representations of the Virasoro algebra play important role in the string and conformal theories.

Keywords

Riemann Surface Riemann Problem Connected Representation Auxiliary Linear Operator Akhiezer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.H. Ibragimov, A.B. Shabat. Dokl.Akad.Nauk.USSR, 244, 1 (1979).MathSciNetGoogle Scholar
  2. 2.
    I.M. Krichever. Usp. Math. Nauk 1989. 55.Google Scholar
  3. 3.
    M. Schiffer, D.K. Spencer. Functionals of finite Riemann surfaces. Prinston, New Jersey, 1954.zbMATHGoogle Scholar
  4. 4.
    I.M. Krichever, S.P.Novikov. Funct.Anal. Pril., 21 N°2 (1987) 46; 21 N°4 (1987); 23 N°1 (1989) 24.Google Scholar
  5. 5.
    A.Yu. Orlov, E.I. Schulman, Lett. Math. Phys, 12 (1986), 171. A.Yu.Orlov, E.I.Schulman. Additional symmetries of (1+1)D systems and conformal algebra representations. Preprint IA and E No 217 Novosibirsk (1984).Google Scholar
  6. 6.
    M. Jimbo, T. Miwa, Phys.2D (1981) 407; H.Flaschka, A.Newell. Comm.Math.Phys. 76 (1980) 65; A.R.Its. Soviet Math.Dokl. 24 (1981).Google Scholar
  7. 7.
    G. Segal, G. Wilson. Publ. Math. IHES 61 (1985) 5.MathSciNetzbMATHGoogle Scholar
  8. 8.
    A.A.Beilinson, V.V.Schechtman. Determinant bundles and Virasoro algebras. Preprint N497, University Utrecht.Google Scholar
  9. 9.
    E. Date, M. Kashiwara, M. Jimbo, T. Miwa. in:Proc. RIMS Symposium, World Sci. (1983) 39.Google Scholar
  10. 10.
    P.G. Grinevich, A.Yu. Orlov. Lecture presented on the 3 school “Modern problems of the quantum field theory”, Alushta, May 1989, Springer-Verlag, 1989.Google Scholar
  11. 11.
    F.Calogero, A.Degasperis. Lett.Nuov.Cim. 22 (1978), 420; V.A.Belinskii, V.E.Zakharov. JETP, 12 (1978), 1953 (Russian); Maison, Phys Rev lett(1978), vHi, 521Google Scholar
  12. 12.
    W. Oevel, B. Fuchssteiner. Phys.Lett. 88A (1982), 323.MathSciNetCrossRefGoogle Scholar
  13. 13.
    H.H. Chen, Y.C. Lee, J.E. Lin. Phys. Lett 88A,7 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Barucchy, T. Regge. J. Math. Phys. 18 No 6 (1976) 1149.ADSCrossRefGoogle Scholar
  15. 15.
    A. Fokas, P. Santini. Bi-Hamiltonian formulation of the Kadomtsev-Petviashvily and Benjamin-Ono equations. Clarkson Univ. Preprint INS 79 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • P. G. Grinevich
    • 1
  • A. Yu. Orlov
    • 2
  1. 1.L.D. Landau Institute for Theoretical PhysicsMoscowUSSR
  2. 2.Oceanology InstituteMoscowUSSR

Personalised recommendations