Advertisement

Virasoro Action on Riemann Surfaces, Grassmannians, det \( {\overline \partial _J} \) and Segal-Wilson τ-Function

  • P. G. Grinevich
  • A. Yu. Orlov
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

The development of the string theory and the conformal theories on Riemann surfaces results in interest to the objects of the soliton theory (see for example [1]). There is a number of papers using the Segal-Wilson Grassmannians as a model of universal moduli space — the space containing all the Riemann surfaces of finite genus. In the case of superstrings which appears to be simpler the measure was calculated in [2]. Another soliton object — τ-function introduced by the Kyoto mathematicians (see [28], [3] and references therein) may be defined as some vacuum expectation of fermionic fields [4]. Monodromy properties of τ-function [5] were used for calculations of det \( \overline \partial \) for hyperelliptic curves [6].

Keywords

Vector Field Modulus Space Riemann Surface Meromorphic Function Vertex Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alvarez-Gaume, C. Gomez, C. Reina, Phys.Lett.B 190(1987)Google Scholar
  2. T. Eguchi, H. Ooguri, Phis.Lett.B 187(1987) 93CrossRefMathSciNetGoogle Scholar
  3. C. Vafa Phys. Lett.B 190(1987) 47.CrossRefADSMathSciNetGoogle Scholar
  4. 2.
    A.S Schwarz. JETP Lett. 46, N.9(1987) 340.MathSciNetGoogle Scholar
  5. 3.
    E. Date, M. Kashiwara, M. Jimbo, T. Miwa, in:Proc. RIMS Symposium, World Sci. (1983) 39.Google Scholar
  6. 4.
    N. Ishibashi, Y. Matsuo, H.Ooguri, Soliton equations and free fermions on Riemann surfaces, Preprint UT-499(1986).Google Scholar
  7. S. Saito, String amplitude as solutions of soliton equations, Preprint TMUP-HEL-8701 (1987).Google Scholar
  8. A.V. Zabrodin, Teor.Mat. Fiz. 78,N.2(1989) 234MathSciNetGoogle Scholar
  9. A.M. Semikhatov. Preprint 197,Moscow,FIAN, 1988.Google Scholar
  10. 5.
    M. Jimbo, T.Miva, Phis.2D (1981)407.Google Scholar
  11. 6.
    M.A. Bersadski, A.O. Radul, Inter.J. Modern Phys. 2A(1984) 165.ADSGoogle Scholar
  12. 7.
    I.M. Krichever, S.P. Novikov. Funct.Anal. Pril., 21(1987),N.2,46.MathSciNetGoogle Scholar
  13. 8.
    I.M. Krichever, S.P. Novikov. Funct. Anal. Pril., 21 (1987) N.4,47.MathSciNetGoogle Scholar
  14. 9.
    I.M. Krichever, S.P. Novikov. Funct. Anal.Pril., 23 (1989),N°1, 24.Google Scholar
  15. 10.
    A.Yu. Orlov, E.I.Schulman, Lett.Math.Phys, 12(1986), 171CrossRefzbMATHADSGoogle Scholar
  16. A. Yu. Orlov, in:Proceed. Int.Work.Plasma Theory and…in Kiev,1987, World Scietific (1988) 116.Google Scholar
  17. 11.
    B.L. Feigin, D.B. Fuchs. Funct.Anal.Pri1.16 (1982),N°2, 47.Google Scholar
  18. 12.
    A.A. Beilinson, V.V. Schechtman. Determinant bundles and Virasoro algebras. Preprint N°497, University Utrecht, M.L.Kontsevich. Funct.Anal.Pril. 21 (1987),N°2,78–79. (Russian).Google Scholar
  19. 13.
    E.I. Zverovich. Usp.Math.Nauk. 26 (1971) 113.zbMATHGoogle Scholar
  20. 14.
    D. Mumford. Tata Lectures on Theta 1,2. Birkhauser 1983,1984.Google Scholar
  21. 15.
    B.A. Dubrovin. Usp. Mat. Nauk. (1981).Google Scholar
  22. 16.
    I.M. Krichever. Usp.Math.Nauk 1989. 55.Google Scholar
  23. 17.
    M. Schiffer, D.K. Spencer. Functionals of finite Riemann surfaces. Prinston, New Jersey, 1954.zbMATHGoogle Scholar
  24. 18.
    S.P. Novikov, S.V. Manakov, L.P. Pitaevsky, V.E. Zakharov. “Theory of solitons. The inverse scattering method”, Plenum, New York,1984.Google Scholar
  25. 19.
    N.H. Ibragimov, A.B. Shabat. Dokl.Akad.Nauk.USSR, 244,1 (1979).MathSciNetGoogle Scholar
  26. H.H. Chen, Y.C. Lee, J.E. Lin., Phys.Lett 88A,7 (1982)MathSciNetGoogle Scholar
  27. A.Yu. Orlov, E.I. Schulman. Additional symmetries of the integrable one-dimensional equations and the conformal algebra representations. Preprint IA and E (1984).Google Scholar
  28. 20.
    F. Calogero, A. Degasperis “Spectral transform and solitons”.Google Scholar
  29. 21.
    I.M. Krichever. Funct.Anal.Pril. 18(1984),N°3, 43Google Scholar
  30. 22.
    G. Segal, G. Wilson. Publ. Math. IHES 61 (1985) 5.zbMATHMathSciNetGoogle Scholar
  31. 23.
    G. Segal, G. Wilson. Publ. Math. IHES 63 (1985) 1.Google Scholar
  32. 24.
    T. Shiota. Inv.Math. 83 (1986) 333.CrossRefzbMATHADSMathSciNetGoogle Scholar
  33. 25.
    D. Quillen. Funk. Anal.i Pril. 19 (1985) 37.MathSciNetGoogle Scholar
  34. 26.
    I.M. Gelfand, L.A. Dikii. Funk. Anal.i Pril. 10 (1976) 13.MathSciNetGoogle Scholar
  35. 27.
    K. Ueno, K. Takasaki. Adv.Stud.Pure Math. 4 (1984) 1.MathSciNetGoogle Scholar
  36. 28.
    M. Sato, Y. Sato. Lect.Notes in Num. Appl.Anal. 5 (1982) 259.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. G. Grinevich
    • 1
  • A. Yu. Orlov
    • 2
  1. 1.Landau Institute for Theoretical PhysicsSU-MoscowUSSR
  2. 2.Oceanology InstituteMoscowUSSR

Personalised recommendations