KNOME: Modeling What the User Knows in UC

  • David N. Chin
Conference paper
Part of the Symbolic Computation book series (SYMBOLIC)


KNOME is the user modeling component of UC, a natural language consultation system for the UNIX operating system. During the course of an interactive session with a user, KNOME infers the user’s level of expertise from the dialog and maintains a model of the user’s knowledge of the UNIX domain. KNOME’s model of the user makes use of a double-stereotype system in which one set of stereotypes represents the user’s expertise and another represents the difficulty level of the information. KNOME is used in UC to help disambiguate the user’s statements, avoid telling the user something that the user already knows, take advantage of prior user knowledge in presenting new information, and detect situations where the user lacks pertinent facts or where the user has a misconception. UC also models its own knowledge of UNIX with meta-knowledge (explicit facts about the limitations of the system’s own knowledge base), which is used to help in correcting user misconceptions.


Difficulty Level Likelihood Rating Simple Command UNIX Command Intermediate User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ALLE80]
    Allen, J. F. and C. R. Perrault (1980): Analyzing Intention in Utterances. Artificial Intelligence 15, 143–178. [WAHL*: 12, 32; KOBS*: 57, 60; CHIN*: 78; CARB*: 135ff., 153; FINI*: 414]Google Scholar
  2. [ANDJ85b]
    Anderson, J. R., C. F. Boyle and G. Yost (1985): The Geometry Tutor. In: Proc. IJCAI-85, 1–7. [CHIN*: 77, 100; QUIL*: 116, 125; KASS*: 393]Google Scholar
  3. [BARR77]
    Barr, A. (1977): Meta-Knowledge and Memory. Working Paper HPP-77–37, Heuristic Programming Project, Stanford Univ., Stanford, CA. [CHIN*: 98]Google Scholar
  4. [BROW78]
    Brown, J. S. and R. R. Burton (1978): Diagnostic Models for Procedural Bugs in Basic Mathematical Skills. Cognitive Science 2, 155–192. [CHIN*: 77, 100; QUIL*: 116, 125; MCCO*: 237; KASS*: 392, 394; FINI*: 414]Google Scholar
  5. [BURT76]
    Burton, R. R. and J. S. Brown (1976): A Tutoring and Student Modelling Paradigm for Gaming Environments. In: Proc. of the 1st Symposium on Computer Science and Education, Anaheim, CA, 236–246. [CHIN*: 77]Google Scholar
  6. [CARB83]
    Carberry, S. (1983): Tracking User Goals in an Information-Seeking Environment. In: Proc. AAAI-83, 59–63. [WAHL*: 12; KOBS*: 59f.; CHIN*: 78; GARB*: 155; PARI*: 201, 203; FINI*: 413f.]Google Scholar
  7. [CARB*]
    Carberry, S.: Plan Recognition and its Use in Understanding Dialog. In this volume. [WAHL*: 12; RICH*: 39; KOBS*: 59; CHIN*: 78; QUIL*: 129; PARI*: 201; MCCO*: 251; JAME*: 256, 260, 278f.; SPAR*: 361f.; MORI*: 375f.; FINI*: 414]Google Scholar
  8. [CARR77]
    Carr, B. and I. Goldstein (1977): Overlays: A Theory of Modelling for Computer Aided Instruction. AI Memo 406, MIT, Cambridge, MA. [WAHL*: 7; CHIN*: 77; KASS*: 388, 390, 400]Google Scholar
  9. [CHIN83]
    Chin, D. N. (1983): A Case Study of Knowledge Representation in UC. In: Proc. IJCAI-83, 388–390. [CHIN*: 82]Google Scholar
  10. [CHIN86]
    Chin, D. N. (1986): User Modelling in UC, the UNIX Consultant. In: Proc. of the CHI’86, Boston, MA, 24–28. [KOBS*: 57, 65; CHIN*: 74; PARI*: 202, 229; COHE*: 325, 330; FINI*: 414]Google Scholar
  11. [CHIN87]
    Chin, D. N. (1987): Intelligent Agents as a Basis for Natural Language Interfaces. Ph.D. Thesis, Dept. of Computer Science, Univ. of California, Berkeley, CA. Also Available as Technical Report UCB/CSD 88/396, Division of Computer Science, Univ. of California, Berkeley, CA. [CHIN*: 75, 91, 104]Google Scholar
  12. [DAVI77]
    Davis, R. and B. G. Buchanan (1977): Meta-Level Knowledge: Overview and Applications. In: Proc. IJCAI-77, 920–927. [CHIN*: 98]Google Scholar
  13. [FINI*]
    Finin, T. W.: GUMS: A General User Modeling Shell. In this volume. [WAHL*: 28, 33; KOBS*: 57, 65; CHIN*: 106; MCCO*: 235; JAME*: 256, 294]Google Scholar
  14. [HOEP84b]
    Hoeppner, W., K. Morik and H. Marburger (1984): Talking it Over: The Natural Language Dialog System HAM-ANS. Technical Report ANS-26, Research Unit for Information Science and Artificial Intelligence, Univ. of Hamburg, Fed. Rep. of Germany. [CHIN*: 78; PARI*: 202]Google Scholar
  15. [JOHN84]
    Johnson, W. L. and E. Soloway (1984): Intention-Based Diagnostics of Programming Errors. In: Proc. AAAI-84, 162–168. [CHIN*: 77f., 100; KASS*: 393, 403; FINI*: 414]Google Scholar
  16. [JOSH84a]
    Joshi, A. K., B. Webber and R. M. Weischedel (1984): Living up to Expectations: Computing Expert Responses. In: Proc. AAAI-84, 169–175. [CHIN*: 104; QUIZ*: 126; JAME*: 256; COHE*: 329; FINI*: 414]Google Scholar
  17. [JOSH84b]
    Joshi, A. K., B. Webber and R. M. Weischedel (1984): Preventing False Inferences. In: Proc. of the 10 International Conference on Computational Linguistics, Stanford, CA, 134–138. [CHIN*: 104; FINI*: 414]Google Scholar
  18. [KAPS83]
    Kaplan, S. J. (1983): Cooperative Responses from a Portable Natural Language Database Query System. In: M. Brady and R. C. Berwick, eds.: Computational Models of Discourse. Cambridge, MA: MIT Press. [WAHL*: 19, 26; KOBS*: 58; CHIN*: 100]Google Scholar
  19. [KASS*]
    Kass, R.: Student Modeling in Intelligent Tutoring Systems: Implications for User Modeling. In this volume. [WAHL*: 7, 15; CHIN*: 77; FINI*: 412, 414]Google Scholar
  20. [KAYD85]
    Kay, D. S. and J. B. Black (1985): The Evolution of Knowledge Representations with Increasing Expertise in Using Systems. In: Proc. of the 7th Annual Conference of the Cognitive Science Society, Irvine, CA, 140–149. [CHIN*: 77]Google Scholar
  21. [KOBS85b]
    Kobsa, A. (1985): User Modelling in Dialogue Systems: Potentials and Hazards. Report 85–01, Dept. of Medical Cybernetics and Artificial Intelligence, Univ. of Vienna, Austria. [CHIN*: 85]Google Scholar
  22. [KOBS85d]
    Kobsa, A. (1985): VIE-DPM: A User Model in a Natural-Language Dialogue System. In: J. Laubsch, ed.: GWAI-84, 8th German Workshop on Artificial Intelligence. Berlin: Springer. [WAHL*: 11, 18; KOBS*: 53; CHIN*: 85]Google Scholar
  23. [KOBS86a]
    Kobsa, A. (1986): Generating a User Model from Wh-Questions in the VIE-LANG System. In: P. Hellwig und H. Lehmann, eds.: Trends in der Linguistischen Datenverarbeitung. Hildesheim, Fed. Rep. of Germany etc.: Olms. [WAHL*: 11; KOBS*: 60; CHIN*: 85]Google Scholar
  24. [LEHM*]
    Lehman, J. F. and J. G. Carbonell: Learning the User’s Language: A Step Towards Automated Creation of User Models. In this volume. [CHIN*: 107; CARB*: 160; SPAR*: 363; MORI*: 365]Google Scholar
  25. [LITM84]
    Litman, D. J. and J. F. Allen (1984): A Plan Recognition Model for Clarification Subdialogues. In: Proc. of the 10th International Conference on Computational Linguistics and 22nd Annual Meeting of the Association for Computational Linguistics, Stanford Univ., Stanford, CA, 302–311. [CHIN*: 78]Google Scholar
  26. [MACM83]
    Macmillan, S. A. (1983): User Models to Personalize an Intelligent Agent. Ph.D. Thesis, School of Education, Stanford Univ., Stanford, CA. [CHIN*: 84, 106]Google Scholar
  27. [MARB87]
    Marburger, H. (1987): A Strategy for Producing Cooperative NL Reactions in a Database Interface. In: P. Jorrand and V. Sgurev, eds.: Artificial Intelligence II: Methodology, Systems, Applications. Amsterdam etc.: North-Holland. [WAHL*: 26; CHIN*: 101; MORI*: 370]Google Scholar
  28. [MARB88]
    Marburger, H. (1988): Generierung kooperativer natürlichsprachlicher Antworten in einem Dialogsystem mit Zugang zu relationalen Datenbanken. Ph. D. Thesis, Dept. of Computer Science, Univ. of Saarbrücken, Fed. Rep. of Germany. [WAHL*: 26; CHIN*: 101]Google Scholar
  29. [MARJ85]
    Martin, J. H. (1985): Knowledge Acquisition through Natural Language Dialogue. In: Proc. of the 2nd IEEE Conference on Artificial Intelligence Applications, Miami, FL, 582–586. [CHIN*: 88]Google Scholar
  30. [MATT86]
    Matthews, M. and G. Biswas (1986): USCSH: An Active Assistance Interface for UNIX. Technical Report USC-CS 86–003, Dept. of Computer Science, Univ. of South Carolina, Columbia, SC. [CHIN*: 78]Google Scholar
  31. [MAYS80b]
    Mays, E. (1980): Failures in Natural Language Systems: Applications to Data Base Query Systems. In: Proc. AAAI-80, 327–330. [WAHL*: 26; CHIN*: 101; CARB*: 146]Google Scholar
  32. [MCCO85a]
    McCoy, K. F. (1985): Correcting Object-Related Misconceptions. Ph.D. Thesis, MS-CIS-85–57, Dept. of Computer and Information Science, Univ. of Pennsylvania, Philadelphia, PA. [WAHL*: 27; CHIN*: 101; MCCO*: 245; FINI*: 416]Google Scholar
  33. [MCCO85a]
    McCoy, K. F. (1985): Correcting Object-Related Misconceptions. Ph.D. Thesis, MS-CIS-85–57, Dept. of Computer and Information Science, Univ. of Pennsylvania, Philadelphia, PA. [WAHL*: 27; CHIN*: 101; MCCO*: 245; FINI*: 416]Google Scholar
  34. [MCCO*]
    McCoy, K. F.: Highlighting a User Model to Respond to Misconceptions. In this volume. [WAHL*: 7, 27; CHIN*: 101; QUIL*: 126; CARB*: 152, 161; PARI*: 201; JAME*: 260; MORI*: 375; FINI*: 416]Google Scholar
  35. [MORI85b]
    Morik, K. and C.-R. Rollinger (1985): The Real Estate Agent: Modeling Users by Uncertain Reasoning. AI Magazine 6, 44–52. [WAHL*: 13, 21; KOBS*: 53; CHIN*: 78, 83; CARB*: 161; FINI*: 414ff.]Google Scholar
  36. [MORI*]
    Morik, K.: User Models and Conversational Settings: Modeling the User’s Wants. In this volume. [WAHL*: 19; RICH*: 36; KOBS*: 53, 59; CHIN*: 78; MCCO*: 251; JAME*: 256, 278, 294; SPAR*: 343, 360, 362; FINI*: 415]Google Scholar
  37. [NESS87]
    Nessen, E. (1987): SC-UM: User Modeling in the SINIX Consultant. Memo No. 18, Dept. of Computer Science, Univ. of Saarbrücken, Fed. Rep. of Germany. [WAHL*: 5; CHIN*: 92; QUIL*: 128]Google Scholar
  38. [PARI*]
    Paris, C. L.: The Use of Explicit User Models in a Generation System for Tailoring Answers to the User’s Level of Expertise. In this volume. [CHIN*: 107; QUIL*: 130; CARB*: 161; JAME*: 256, 260]Google Scholar
  39. [QUIL*]
    Quilici, A.: Detecting and Responding to Plan-Oriented Misconceptions. In this volume. [WAHL*: 7, 27; RICH*: 39; CHIN*: 101; CARB*: 152, 161; PARI*: 201; MCCO*: 238; JAME*: 260, 307]Google Scholar
  40. [REIS85]
    Reiser, B. J., J. R. Anderson and R. G. Farrell (1985): Dynamic Student Modelling in an Intelligent Tutor for LISP Programming In• Proc. IJCAI-85, 8–14. [KOBS*: 56; CHIN*: 77, 100; KASS*: 388f., 393]Google Scholar
  41. [REIT78]
    Reiter, R. (1978): On Closed World Data Bases. In: H. Gallaire and J. Minker, eds.: Logic and Data Bases. New York and London: Plenum Press. [CHIN*: 97; CARE*: 151; FINI*: 424]Google Scholar
  42. [RICH79b]
    Rich, E. (1979): User Modelling Via Stereotypes. Cognitive Science 3, 329–354. [WAHL*: 5, 11, 13f.; RICH*: 36; KOBS*: 53, 67; CHIN*: 78f., 83; PARI*: 201, 229; SPAR*: 342, 362; FINI*: 414ff.]Google Scholar
  43. [RICH83]
    Rich, E. (1983): Users are Individuals: Individualizing User Models. In: International Journal of Man-Machine Studies 18, 199–214. [WAHL*: 5, 20; RICH*: 38; CHIN*: 78f., 89; SPAR*: 360; FINI*: 414]Google Scholar
  44. [RICH*]
    Rich, E.: Stereotypes and User Modeling. In this volume. [WAHL*: 13; CHIN*: 78f.; PARI*: 201; MCCO*: 235; JAME*: 256, 294; COHE*: 329; MORI*: 376; FINI*: 416, 422]Google Scholar
  45. [ROSC77]
    Rosch, E. (1977): Human Categorization. In: N. Warren, ed.: Studies in Cross Cultural Psychology I. London: Academic Press. [CHIN*: 79, 105]Google Scholar
  46. [ROSC78]
    Rosch, E. (1978): Principles of Categorization In E Rosch and B. B. Lloyd, eds.: Cognition and Categorization. Hillsdale, NJ: Lawrence Erlbaum. [CHIN*: 79, 105]Google Scholar
  47. [ROSC83]
    Rosch, E. (1983): Prototype Classification and Logical Classification: The Two Systems. In: E. Scholnick, ed.: New Trends in Cognitive Representation: Challenges to Piaget’s Theory. Hillsdale, NJ: Erlbaum. [CHIN*: 79, 105]Google Scholar
  48. [SEAR69]
    Searle, J. R. (1969): Speech Acts: An Essay in the Philosophy of Language. Cambridge, England: Cambridge Univ. Press. [KOBS*: 61; CHIN*: 85]Google Scholar
  49. [SLEE81]
    Sleeman, D. H. and M. J. Smith (1981): Modeling Student’s Problem Solving. Artificial Intelligence 16, 171–187. [CHIN*: 77, 100; KASS*: 392, 396]Google Scholar
  50. [SLEE82c]
    Sleeman, D. H. and J. S. Brown (1982): Intelligent Tutoring Systems. New York: Academic Press. [WAHL*: 7; KOBS*: 54; CHIN*: 77; COHE*: 329; SPAR*: 360; KASS*: 387]Google Scholar
  51. [SMID83]
    Smith, D. E. and M. R. Genesereth (1983): Finding All of the Solutions to a Problem: Serious Applications of Meta-Level Reasoning II. Memo HPP-83–21, Stanford Univ. Heuristic Programming Project, Stanford, CA. [CHIN*: 98]Google Scholar
  52. [STEV79]
    Stevens, A., A. Collins and S. E. Goldin (1982): Misconceptions in Student’s Understanding. International Journal of Man-Machine Studies 11, 145–156. [CHIN*: 77, 100; MCCO*: 237]Google Scholar
  53. [WAHL*]
    Wahlster, W. and A. Kobsa: User Models in Dialog Systems. In this volume. [KOBS*: 52, 61, 67; CHIN*: 78; COHE*: 330; SPAR*: 360, 362; KASS*: 407]Google Scholar
  54. [WEBB83]
    Webber, B. L. and E. Mays (1983): Varieties of User Misconceptions: Detection and Correction. In: Proc. IJCAI-83, 650–652. [WAHL*: 26; CHIN*: 101]Google Scholar
  55. [WILE84]
    Wilensky, R., Y. Arens and D. N. Chin (1984): Talking to UNIX in English: An Overview of UC. In: Communications of the ACM 27, 574–593. [WAHL*: 5, 19, 32; CHIN*: 74; QUIL*: 128]Google Scholar
  56. [WILE86]
    Wilensky, R., J. Mayfield, A. Albert, D. N. Chin, C. Cox, M. Luria, J. Martin and D. Wu (1986): UC: A Progress Report. Technical Report UCB/CSD 87/303, Division of Computer Science, Univ. of California, Berkeley, CA. [WAHL*: 5, 19, 32; KOBS*: 60, 65; CHIN*: 74, 78, 82, 87f., 103; QUIL*: 128f.; SPAR*: 362; FINI*: 414f.]Google Scholar
  57. [WILE87]
    Wilensky, R. (1987): Some Problems and Proposals for Knowledge Representation. Report No. UCB/CSD 87/351, Division of Computer Science, Univ. of California, Berkeley, CA. [CHIN*: 79, 105]Google Scholar
  58. [ZADE65]
    Zadeh, L. A. (1965): Fuzzy Sets. Information and Control 8, 338–353. [CHIN*: 83]Google Scholar
  59. [ZADE82]
    Zadeh, L. A. (1982): A Computational Approach to Fuzzy Quantifiers in Natural Language. Memorandum UCB/ERL M82/36 (Revised), Division of Computer Science, Univ. of California, Berkeley, CA. [CHIN*: 83]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • David N. Chin

There are no affiliations available

Personalised recommendations