Hyperthermia and the Therapy of Malignant Tumors pp 71-109

Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 104)

| Cite as

Physiological Effects of Hyperthermia

  • P. Vaupel
  • F. Kallinowski

Abstract

Hyperthermia as a modality for the treatment of malignant tumors, either alone or in combination with radiation or anticancer drugs, is rapidly becoming a clinical reality. Three different mechanisms of action have provided the rationale for considering the use of hyperthermia as an antitumor agent. At moderate hyperthermia (T=40˚ -42.5˚ C), heat can increase cell killing in a synergistic way following exposure of a tumor to ionizing radiation. This radiosensitization is probably based on, among other things, the inhibited repair of radiation-induced DNA lesions. Elevated tissue temperatures at 40˚ -42.5˚ C also sensitize tumor cells to certain chemotherapeutic drugs, particularly to alkylating agents (chemosensitization). In this context it has been shown that the action of bleomycin, Adriamycin, and cis-platinum is also enhanced by heat treatment (see detailed literature data in: Bicher and Bruley 1982; Dethlefsen and Dewey 1982; Dietzel 1975; Hahn 1982; Hornback 1984; Jain and Gullino 1980; Nussbaum 1982; Overgaard 1984/85; Storm 1983; Streffer et al. 1978).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers C, van den Kerckhoff W, Vaupel P, Müller-Klieser W (1981) Effect of CO2 and lactic acid on intracellular pH of ascites tumor cells. Respir Physiol 45: 273–285PubMedCrossRefGoogle Scholar
  2. Anghileri LT, Marcha C, Crone-Escanyé MC, Robert J (1985) Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells. Eur J Cancer Clin Oncol 21: 981–984PubMedCrossRefGoogle Scholar
  3. Arancia G, Malorni W, Mariutti G, Trovalusci P (1986) Effect of hyperthermia on the plasma membrane structure of Chinese hamster V79 fibroblasts: a quantitative freeze-fracture study. Radiat Res 106: 47–55PubMedCrossRefGoogle Scholar
  4. Bagshaw MA, Taylor MA, Knapp DS, Meyer JL, Samulski TV, Lee ER, Fessenden P (1984) Anatomical site-specific modalities for hyperthermia. Cancer Res (Suppl) 44: 4842s - 4852sGoogle Scholar
  5. Barnikol WKR, Burkhard O (1985) Die Abhängigkeit der Erythrozyten-Deformierbarkeit von der Osmolarität, dem pH-Wert, der Temperatur und der Proteinkonzentration. Funkt Biol Med 4: 55–60Google Scholar
  6. Bicher HI, Bruley DF (1982) Hyperthermia. Plenum, New YorkGoogle Scholar
  7. Bicher HI, Mitagvaria NP (1984) Changes in tumor tissue oxygenation during microwave hyperthermia-clinical relevance. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 169–172Google Scholar
  8. Bicher HI, Vaupel PW (1980) Physiological mechanisms of localized microwave hyperthermia. In: Arcangeli G, Mauro F (eds) Hyperthermia in radiation oncology. Masson, Milan, pp 95–99Google Scholar
  9. Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O’Hara MD, O’Brien T (1980) Effects of hyperthermia on normal and tumor microenvironment. Radiology 137: 523–530PubMedGoogle Scholar
  10. Bicher HI, Sandhu TS, Vaupel P, Hetzel FW (1982) Effect of localized microwave hyperthermia on physiological responses. Natl Cancer Inst Monogr 61: 217–219Google Scholar
  11. Bieri VG, Wallach DFH (1975) Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. Biochem Biophys Acta 406: 415–423PubMedCrossRefGoogle Scholar
  12. Blendstrup K, Kluge M, Vaupel P (1985) Dynamic temperature mapping of tumors. Strahlentherapie 161: 525Google Scholar
  13. Bowen JW, Levinson C (1984) H+ transport and the regulation of intracellular pH in Ehrlich ascites tumor cells. J Membrane Biol 79: 7–18CrossRefGoogle Scholar
  14. Cater DB, Silver IA (1960) Quantitative measurements of oxygen tension in normal tissues and in the tumours of patients before and after radiotherapy. Acta Radiol 53: 233–256PubMedCrossRefGoogle Scholar
  15. Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Margottini M, Mondovi B, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells. Cancer 20: 1351–1381PubMedCrossRefGoogle Scholar
  16. Copley AL (1980) Fibrinogen gel clotting, pH and cancer therapy. Thrombosis Res 18: 1–6CrossRefGoogle Scholar
  17. Copley AL, King RG (1984) A survey of surface hemorrheological experiments on the inhibition of fibrinogenin formation employing surface layers of fibrinogen systems with heparins and other substances. A contribution on antithrombogenic action. Thrombosis Res 35: 237–256Google Scholar
  18. Dave S, Vaupel P, Mueller-Klieser W, Blendstrup K (1984) Temperature distribution in peripheral s.c. tumors in rats. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 503–506Google Scholar
  19. Dethlefsen LA, Dewey WC (1982) Cancer therapy by hyperthermia, drugs, and radiation. National Cancer Institute Monograph 61Google Scholar
  20. Dewhirst M, Gross JF, Sim D, Arnold P, Boyer D (1984a) The effect of rate of heating or cooling prior to heating on tumor and normal tissue microcirculatory blood flow. Biorheology 21: 539–558PubMedGoogle Scholar
  21. Dewhirst M, Sim DA, Gross JF, Kundrat MA (1984b) Effect of heating rate on tumour and normal tissue microcirculatory function. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 177–180Google Scholar
  22. Dickson JA, Calderwood SK (1979) Effects of hyperglycemia and hyperthermia on the pH, glycolysis, and respiration of the Yoshida sarcoma in vivo. J Natl Cancer Inst 63: 1371–1381PubMedGoogle Scholar
  23. Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 335: 180–205PubMedCrossRefGoogle Scholar
  24. Dickson JA, Muckle DS (1972) Total-body hyperthermia versus primary tumor hyperthermia in the treatment of the rabbit VX-2 carcinoma. Cancer Res 32: 1916–1923PubMedGoogle Scholar
  25. Dickson JA, Oswald BE (1976) The sensitivity of a malignant cell line to hyperthermia (42° C) at low intracellular pH. Br J Cancer 34: 262–271PubMedCrossRefGoogle Scholar
  26. Dickson JA, Shah DM (1972) The effects of hyperthermia (42° C) on the biochemistry and growth of a malignant cell line. Eur J Cancer 8: 561–571PubMedCrossRefGoogle Scholar
  27. Dickson JA, Suzangar M (1974) In vitro–in vivo studies on the susceptibility of the solid Yoshida sarcoma to drugs and hyperthermia (42° C). Cancer Res 34: 1263–1274PubMedGoogle Scholar
  28. Dietzel F (1975) Tumor and Temperatur. Urban and Schwarzenberg, MunichGoogle Scholar
  29. Dikomey E, Eickhoff J, Jung H (1981) The effect of extracellular pH on heat-sensitivity and thermotolerance of CHO and R1H cells. Strahlentherapie 157: 617Google Scholar
  30. Dudar TE (1982) Flow modifications in normal and neoplastic tissues during growth and hyperthermia. PhD thesis, Faculty of Carnegie Institute of Technology, Carnegie - Mellon University, Pittsburgh, PAGoogle Scholar
  31. Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44: 605–612PubMedGoogle Scholar
  32. Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree, and duration of heating. Int J Radiat Oncol Biol Phys 4: 401–405PubMedGoogle Scholar
  33. Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137: 515–521PubMedGoogle Scholar
  34. Eddy HA, Chmielewski G (1982) Effect of hyperthermia, radiation and adriamycin combinations on tumor vascular function. Int J Radiat Oncol Biol Phys 8: 1167–1175PubMedGoogle Scholar
  35. Eddy HA, Sutherland RM, Chmielewski G (1982) Tumor microvascular response: hyperthermia and radiation combinations. Natl Cancer Inst Monogr 61: 225–229Google Scholar
  36. Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives on carbohydrate metabolism in tumor cells. In: Beitner R (ed) Regulation of carbohydrate metabolism, vol II. CRC, Boca Raton, pp 141–179Google Scholar
  37. Emami B, Song CW (1984) Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys 10: 289–295PubMedCrossRefGoogle Scholar
  38. Emami B, Nussbaum GH, Ten Haken RK, Hughes WL (1980) Physiological effects of hyperthermia: response of capillary blood flow and structure to local tumor heating. Radiology 137: 805–809PubMedGoogle Scholar
  39. Emami B, Nussbaum GH, Hahn N, Piro A, Dritschilo A, Quimby F (1981) Histopathological study on the effects of hyperthermia on microvasculature. Int J Radiat Oncol Biol Phys 7: 343–348PubMedCrossRefGoogle Scholar
  40. Endrich B, Zweifach BW, Reinhold HS, Intaglietta M (1979) Quantitative studies of microcirculatory function in malignant tissue: influence of temperature on microvascular hemodynamics during the early growth of the BA1112 rat sarcoma. Int J Radiat Oncol Biol Phys 5: 2021–2030PubMedCrossRefGoogle Scholar
  41. Endrich B, Voges J, Lehmann A (1984) The microcirculation of the amelanotic melanoma A-Mel-3 during hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 137–140Google Scholar
  42. Evanochko WT, Ng TC, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1983) In vivo P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia. Proc Natl Acad Sci USA 80: 334–338PubMedCrossRefGoogle Scholar
  43. Fessenden P, Lee ER, Samulski TV (1984) Direct temperature measurements. Cancer Res (Suppl) 44: 4799s - 4804sGoogle Scholar
  44. Field SB, Morris CC (1984) Application of the relationship between heating time and temperature for use as a measure of thermal dose. In: Overgaard J (ed) Hyperthermie oncology 1984. Taylor and Francis, London, pp 183–186Google Scholar
  45. Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J Natl Cancer Inst 58: 1837–1839PubMedGoogle Scholar
  46. Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41: 845–849PubMedGoogle Scholar
  47. Gerweck LE, Gillette EL, Dewey WC (1974) Killing of Chinese hamster cells in vitro by heating under hypoxie and aerobic conditions. Eur J Cancer 10: 691–693PubMedCrossRefGoogle Scholar
  48. Gerweck LE, Dahlberg WK, Epstein LF, Shimm DS (1984) Influence of nutrient and energy depri- vation on cellular response to single and fractionated heat treatments. Radiat Res 99: 573–581PubMedCrossRefGoogle Scholar
  49. Gibbs FA, Peck JW, Dethlefsen LA (1981) The importance of intratumor temperature uniformity in the study of radiosensitizing effects of hyperthermia in vivo. Radiat Res 87: 187–197PubMedCrossRefGoogle Scholar
  50. Gillies RJ, Ogino T, Shulman RG, Ward DC (1982) 31P Nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells. J Cell Biol 95: 24–28Google Scholar
  51. Goldin EM, Leeper DB (1981) The effect of reduced pH on the induction of thermotolerance. Radiology 141: 505–508PubMedGoogle Scholar
  52. Gullino PM (1980) Influence of blood supply on thermal properties and metabolism of mammary carcinomas. Ann NY Acad Sci 335: 1–21PubMedCrossRefGoogle Scholar
  53. Gullino PM, Yi PN, Grantham FH (1978) Relationship between temperature and blood supply or consumption of oxygen and glucose by rat mammary carcinomas. J Natl Cancer Inst 60: 835–847PubMedGoogle Scholar
  54. Gullino PM, Jain RK, Grantham FH (1982) Temperature gradients and local perfusion in a mammary carcinoma. J Natl Cancer Inst 68: 519–533PubMedGoogle Scholar
  55. Hahn GM (1982) Hyperthermia and cancer. Plenum, New YorkGoogle Scholar
  56. Harrison DK, Walker WF (1979) Micro-electrode measurement of skin pH in humans during ischemia, hypoxia and local hypothermia. J Physiol 291: 339–350PubMedGoogle Scholar
  57. Hetzel FW, O’Hara MD, Frinak S (1984) Comparison of temperature distributions between microwave and waterbath heated murine tumors. In: Overgaard J (ed) Hyperthermic oncology. Taylor and Francis, London, pp 565–567Google Scholar
  58. Hill SA, Denekamp J (1979) The response of six mouse tumours to combined heat and X rays: implications for therapy. Br J Radiol 52: 209–218PubMedCrossRefGoogle Scholar
  59. Hill SA, Denekamp J (1982) Site dependent response of tumours to combined heat and radiation. Br J Radiol 55: 905–912PubMedCrossRefGoogle Scholar
  60. Hill SA, Denekamp J, Travis EL (1980) Temperature nonuniformity in waterbath-heated tumours.In: Arcangeli G, Mauro F(eds) Hyperthermia in radiation oncology. Masson, Milan, pp 45–51Google Scholar
  61. Hofer KG, Mivechi NF (1980) Tumor cell sensitivity to hyperthermia as a function of extracellular and intracellular pH. J Natl Cancer Inst 65: 621–625Google Scholar
  62. Hornback NB (1984) Hyperthermia and cancer: human clinical trial experience. Vol I I I. CRC, Boca RatonGoogle Scholar
  63. Jain RK (1980) Temperature distributions in normal and neoplastic tissues during normothermia and hyperthermia. Ann NY Acad Sci 335: 48–66PubMedCrossRefGoogle Scholar
  64. Jain RK, Gullino PM (1980) Thermal characteristics of tumors: applications in detection and treatment. NY Academy Sciences, New YorkGoogle Scholar
  65. Jain RK, Ward-Hartley K (1984) Tumor blood flow-characterization, modifications, and role in hyperthermia. IEEE Trans Sonics Ultrasonics SU-31: 504–526Google Scholar
  66. Johnson RJR (1978) Radiation and hyperthermia. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KR (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 89–95Google Scholar
  67. Kallinowski F, Vaupel P, Schaefer C, Benzing H, Mueller-Schauenburg W, Fortmeyer HP (1984) Hyperthermia-induced blood flow changes in human mammary carcinomas transplanted into nude (rnu/rnu) rats. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 133–136Google Scholar
  68. Karino T, Koga S, Maeta M, Hamazoe R, Yamane T, Oda M (1984) Experimental and clinical studies on effects of hyperthermia on tumor blood flow. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 173–176Google Scholar
  69. Kim JH, Hahn EW (1979) Clinical and biological studies of localized hyperthermia. Cancer Res 39: 2258–2261PubMedGoogle Scholar
  70. Manz R, Otte J, Thews G, Vaupel P (1983) Relationship between size and oxygenation status of malignant tumors. Adv Exp Med Biol 159: 391–398PubMedGoogle Scholar
  71. Marmor JB, Pounds D, Hahn N, Hahn GM (1978) Treating spontaneous tumors in dogs and cats by ultrasound-induced hyperthermia. Int Radiat Oncol Biol Phys 4: 967–973Google Scholar
  72. Marmor JB, Hilerio FJ, Hahn GM (1979) Tumor eradication and cell survival after localized hyperthermia induced by ultrasound. Cancer Res 39: 2166–2171PubMedGoogle Scholar
  73. Milligan AJ, Panjehpour M (1983) Canine normal and tumor tissue blood flow during fractionated hyperthermia. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ (eds) Proc. 7th ICRR. Martinus Nijhoff Publ., Boston, The Hague, Nr D6–35Google Scholar
  74. Milligan AJ, Conran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9: 1335–1343PubMedCrossRefGoogle Scholar
  75. Mondovi B, Strom R, Rotilio G, Agro AF, Cavaliere R, Fanelli AR (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5: 129–136Google Scholar
  76. Mueller-Klieser W, Vaupel P (1983a) Oxygen availability as the main determainant of O consumption in tumors during hyperthermia. Proc 3rd ann Meeting North American Hyperthermia Group, San Antonio,pp 38–39Google Scholar
  77. Mueller-Klieser W, Vaupel P (1983b) Tumor oxygenation under normobaric and hyperbaric conditions. Br J Radiol 56: 559–564PubMedCrossRefGoogle Scholar
  78. Mueller-Klieser W, Vaupel P (1984) Effect of hyperthermia on tumor blood flow. Biorheology 21: 529–538Google Scholar
  79. Mueller-Klieser W, Vaupel P, Manz R, Grunewald WA (1980) Intracapillary oxyhemoglobin saturation in malignant tumors with central or peripheral blood supply. Eur J Cancer 16: 195–201CrossRefGoogle Scholar
  80. Mueller-Klieser W, Vaupel P, Manz R, Schmidseder R (1981) Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int J Radiat Oncol Biol Phys 7: 1397–1404PubMedCrossRefGoogle Scholar
  81. Mueller-Klieser W, Vaupel P, Sutherland RM (1983) Impact of hyperthermia on the oxygen consumption of single tumor cells, of multicellular tumor spheroids, and of solid tumors. Strahlentherapie 159: 380–381Google Scholar
  82. Mueller-Klieser W, Manz R, Otte J, Vaupel P (1984) Effect of localized hyperthermia on tumor blood flow and oxygenation. In: Francis E, Ring J, Phillips B (eds) Recent advances in medical thermology. Plenum, New York, pp 669–676Google Scholar
  83. Nakajima T, Tsumura M, Onoyama Y (1984) Clinical experience with hyperthermia in cancer radiotherapy: special reference to in vivo thermometry. In: Modification of radiosensitivity in cancer treatment. Academic, TokyoGoogle Scholar
  84. Nakajima T, Tsumura M, Onoyama Y (1984) Clinical experience with hyperthermia in cancer radiotherapy: special reference to in vivo thermometry. In: Modification of radiosensitivity in cancer treatment. Academic, TokyoGoogle Scholar
  85. Nussbaum GH (1982) Physical aspects of hyperthermia. Medical physics Monogr No 8 Google Scholar
  86. O’Hara M, Hetzel FW, Avery K (1985a) Mild (40?? C) microwave hyperthermia and tumor oxygenation. 33rd Annual Meeting Radiat Res Soc, Los Angeles, Abstr No. Fa-35 Google Scholar
  87. Nielsen OS, Overgaard J (1979) Effect of extracellular pH on thermotolerance and recovery of hyperthermic damage in vitro. Cancer Res 39: 2772–2778PubMedGoogle Scholar
  88. Olch M, Kaiser LR, Silberman AW, Storm FK, Graham LS, Morton DL (1983) Blood flow in human tumors during hyperthermia therapy: demonstration of vasoregulation and an applicable physiological model. J Surg Oncol 23: 125–132Google Scholar
  89. O’Hara M, Hetzel FW, Avery K (1985a) Mild (40° C) microwave hyperthermia and tumor oxygenation. 33rd Annual Meeting Radiat Res Soc, Los Angeles, Abstr No. Fa-35Google Scholar
  90. O’Hara M, Hetzel FW, Frinak S (1985b) Thermal distributions in a water bath heated mouse tumor. Int J Radiat Oncol Biol Phys 11: 817–822PubMedCrossRefGoogle Scholar
  91. Olch M, Kaiser LR, Silberman AW, Storm FK, Graham LS, Morton DL (1983) Blood flow in human tumors during hyperthermia therapy: demonstration of vasoregulation and an applicable physiological model. J Surg Oncol 23: 125–132PubMedCrossRefGoogle Scholar
  92. Overgaard J (1976) Influence of extracellular pH on the viability and morphology of tumor cells exposed to hyperthermia. J Natl Cancer Inst 56: 1243–1250PubMedGoogle Scholar
  93. Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys 6: 1507–1517PubMedGoogle Scholar
  94. Overgaard J (1983) Histopathologic effects of hyperthermia. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall Medical, Boston, pp 163–185Google Scholar
  95. Overgaard J (1984/85) Hyperthermic oncology 1984, Vol I II, Francis and Taylor, London Overgaard J, Bichel P (1977) The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 123: 511–514Google Scholar
  96. Peck JW, Gibbs FA (1983) Capillary blood flow in murine tumors, feet, and intestines during localized hyperthermia. Radiat Res 96: 65–81PubMedCrossRefGoogle Scholar
  97. Peterson HI (1979) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC, Boca RatonGoogle Scholar
  98. Poole DT, Butler TC, Waddell WJ (1964) Intracellular pH of the Ehrlich ascites tumor cell. J Natl Cancer Inst 32: 939–946Google Scholar
  99. Rahn H, Reeves RB, Howell BJ (1974) Intra-and extracellular pH as a function of body temperature. Proc Internat Union Physiol Sci 10: 56–57Google Scholar
  100. Rapoport S, Nieradt-Hiebsch C, Thamm R (1971) Über den Einfluß der Hyperthermie auf die Verwertung von Substraten in Ehrlich-Aszites-Tumorzellen und Kaninchenretikulozyten. Acta Biol Med Germ 26: 483–500PubMedGoogle Scholar
  101. Rappaport DS, Song CW (1983) Blood flow and intravascular volume of mammary adenocarcinoma 13726A and normal tissues of rat during and following hyperthermia. Int J Radiat Oncol Biol Phys 9: 539–547PubMedCrossRefGoogle Scholar
  102. Reinhold HS, van den Berg-Blok A (1980) Enhancement of thermal damage to “sandwich” tumours by additional treatment. In: Arcangeli G, Mauro F (eds) Hyperthermia in radiation oncology. Masson, Milan, pp 179–183Google Scholar
  103. Reinhold HS, van den Berg-Blok A (1981) Enhancement of thermal damage to the microcirculation of „sandwich“ tumours by additional treatment. Eur J Cancer Clin Oncol 17: 781–795Google Scholar
  104. Reinhold HS, van den Berg-Blok AE (1983) Hyperthermia-induced alteration in erythrocyte velocity in tumors. Int J Microcirc Clin Exp 2: 285–295Google Scholar
  105. Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1984) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermie oncology 1984, vol II, Taylor and Francis, LondonGoogle Scholar
  106. Rhee JG, Kim TH, Levitt SH, Song CW (1984) Changes in acidity of mouse tumor by hyperthermia. Int J Radiat Oncol Biol Phys 10: 393–399PubMedCrossRefGoogle Scholar
  107. Robert J, Escanye JM, Marchal C, Thouvenot P (1982) Blood flow and temperature evolution of rhabdomyosarcoma-bearing mice during normal growth and during sequential hyperthermia treatment. In: Gautherie M, Albert E (eds) Biomedical thermology. AR Liss, New York, pp 85–95Google Scholar
  108. Robinson JE, Harrison GH, McCready WA, Samarar GM (1978) Good thermal dosimetry is essential to good hyperthermia research. Br J Radiol 51: 532–534PubMedCrossRefGoogle Scholar
  109. Robinson JE, McCulloch D, McCready WA (1982) Blood perfusion of murine tumors at normal and hyperthermal temperatures. Natl Cancer Inst Monogr 61: 211–215Google Scholar
  110. Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173: 25–30PubMedGoogle Scholar
  111. Ruifrock ACC, Kanon B, Konings AWT (1985) Correlation between cellular survival and potassium loss in mouse fibroblasts after hyperthermia alone and after a combined treatment with X rays. Radiat Res 101: 326–331CrossRefGoogle Scholar
  112. Ryu HL, Song CW, Kang MS, Levitt SH (1982) Changes in lactic acid content in tumors by hyper-thermia. Proc 2nd Ann Meeting North American Hyperthermia Group, Salt Lake CityGoogle Scholar
  113. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10: 787–800PubMedCrossRefGoogle Scholar
  114. Scheid P (1961) Funktionale Besonderheiten der Mikrozirkulation im Karzinom. Bibl Anat 1: 327–335Google Scholar
  115. Schloerb PR, Blackburn GL, Grantham JJ, Mallard DS, Cage GK (1965) Intracellular pH and buffering capacity of the Walker-256 carcinoma. Surgery 58: 5–11PubMedGoogle Scholar
  116. Schmid-Schönbein H, Singh M, Malotta H, Leschke D, Teitel P, Driessen G, Scheidt-Bleichert H (1984) Subpopulations of rigid red cells in hyperthermia and acidosis: effect on filterability in vitro and on nutritive capillary perfusion in the mesenteric microcirculation. Int J Microcirc Clin Exp 3: 497Google Scholar
  117. Sekins M, Dundore D, Emery A, Lehmann J, McGrath P, Nelp W (1980) Muscle blood flow changes in response to 915 MHz diathermy with surface cooling as measured by Xe133 clearance. Arch Phys Med Rehabil 61: 105–113PubMedGoogle Scholar
  118. Shapot VS (1980) Biochemical aspects of tumour growth. MIR, MoscowGoogle Scholar
  119. Shrivastav S, Kaelin WG, Joines WT, Jirtle RL (1983) Microwave hyperthermia and its effect on tumor blood flow in rats. Cancer Res 43: 4665–4669PubMedGoogle Scholar
  120. Song CW (1978) Effect of hyperthermia on vascular functions of normal tissues and experimental tumors. J Natl Cancer Inst 60: 711–713PubMedGoogle Scholar
  121. Song CW (1982) Physiological factors in hyperthermia of tumors. In: Nussbaum GH (ed) Physical aspects of hyperthermia. Med Phys Monogr 8: 43–62 Google Scholar
  122. Song CW (1984) Effect of local hyperthermia on blood flow and microenvironment. Cancer Res (Suppl) 44: 4721s - 4730sGoogle Scholar
  123. Song CW, Rhee JG, Levitt SH (1980a) Blood flow in normal tissues and tumors during hyperthermia. J Natl Cancer Inst 64: 119–124PubMedGoogle Scholar
  124. Song CW, Kang MS, Rhee JG, Levitt SH (1980b) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 335: 35–47PubMedCrossRefGoogle Scholar
  125. Song CW, Kang MS, Rhee JG, Levitt SH (1980c) The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137: 795–803PubMedGoogle Scholar
  126. Song CW, Kang MS, Rhee JG, Levitt SH (1980d) Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 41: 309–312PubMedCrossRefGoogle Scholar
  127. Song CW, Pattan MS, Rhee JG, Schuman VL, Levitt SH (1984) Role of blood flow in the response of RIF-1 tumors to combined treatment of hyperthermia and radiotherapy. In: Overgaard J (ed) Hyperthermic oncology 1984, Taylor and Francis, London, pp 293–296Google Scholar
  128. Stadie WC, Martin KA (1924) The thermodynamic relations of the oxygen and base combining properties of blood. J Biol Chem 60: 191–235Google Scholar
  129. Stewart F, Begg A (1983) Blood flow changes in transplanted mouse tumours and skin after mild hyperthermia. Br J Radiol 56: 477–482PubMedCrossRefGoogle Scholar
  130. Stewart FA, Denekamp J (1978) The therapeutic advantage of combined heat and X rays on a mouse fibrosarcoma. Br J Radiol 51: 307–316PubMedCrossRefGoogle Scholar
  131. Storm FK (1983) Hyperthermia in cancer therapy. Hall, BostonGoogle Scholar
  132. Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61: 11–17PubMedGoogle Scholar
  133. Streffer C (1984) Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984, vol II, Taylor and Francis, London, pp 213–222Google Scholar
  134. Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KH (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore Suit HD, Gerweck LE (1979) Potential for hyperthermia and radiation therapy. Cancer Res 39: 2290–2298Google Scholar
  135. Sutton CH (1980) Discussion. Ann NY Acad Sci 335: 35–47CrossRefGoogle Scholar
  136. Tanaka Y, Hasegawa T, Murata T (1984) Effect of irradiation and hyperthermia on vascular function in normal and tumor tissue. In: Overgaard J (ed) Hyperthermic oncology 1984, Taylor and Francis, London, pp 145–148Google Scholar
  137. Thews G, Vaupel P (1985) Autonomic functions in human physiology. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  138. Thistlethwaite AJ, Leeper DB, Moylan DJ, Nerlinger RE (1984) pH distribution in human tumors. Proc 4th Ann Meeting North American Hyperthermia Group, Orlando van den Berg-Blok AE, Reinhold HS (1984) Time-temperature relationship for hyperthermia induced stoppage of the microcirculation in tumors. Int J Radiat Oncol Biol Phys 10: 737–740 Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren ( DS-Carci-nosarkom) in vivo. Funktionsanalyse Biolog Systeme 1: 1–138Google Scholar
  139. Vaupel P (1977) Hypoxia in neoplastic tissue. Microvasc Res 13: 399–408PubMedCrossRefGoogle Scholar
  140. Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology, and blood flow of experimental and human tumors. CRC, Boca Raton, pp 143–168Google Scholar
  141. Vaupel P (1982a) Einfluß einer lokalisierten Mikrowellenhyperthermie auf die pH-Verteilung in bösartigen Tumoren. Strahlentherapie 158: 168–173PubMedGoogle Scholar
  142. Vaupel P (1982b) Pathophysiologie der Durchblutung maligner. Tumoren. Funktionsanalyse Biolog Systeme 8: 155–170Google Scholar
  143. Vaupel P (1986) Durchblutung, Oxygenierung und pH-Verteilung in malignen Tumoren: biologische und therapeutische Aspekte. In: Bromm B, Lübbers DW (eds) Physiologie Aktuell I. Fischer, Stuttgart, pp 53–67Google Scholar
  144. Vaupel P, Hammersen F (1983) Mikrozirkulation in malignen Tumoren. Karger, BaselGoogle Scholar
  145. Vaupel P, Gabbert H (1986) Evidence for and against a tumor type-specific vascularity. Strahlentherapie Onkol 162: 633–638Google Scholar
  146. Vaupel P, Mueller-Klieser W (1983a) Heat susceptibility of tumor blood flow. Proc 31st Ann Meeting Radiat Res Soc, San Antonio, pp 68–69 Google Scholar
  147. Vaupel P, Mueller-Klieser W (1983b) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2: 78–90Google Scholar
  148. Vaupel P, Ostheimer K, Thomé H (1976) Blood flow, vascular resistance, and oxygen consumption of malignant tumors during normothermia and hyperthermia. Ann Meeting Gesellschaft für Mikrozirkulation, Aachen, FRG (Microvasc Res 13: 272, 1977 )Google Scholar
  149. Vaupel P, Manz R, Mueller-Klieser W, Grunewald WA (1979) Intracapillary Hb02 saturation in malignant tumors during normoxia and hyperoxia. Microvasc Res 17: 181–191PubMedCrossRefGoogle Scholar
  150. Vaupel P, Ostheimer K, Mueller-Klieser W (1980) Circulatory and metabolic responses of malignant tumors during localized hyperthermia. J Cancer Res Clin Oncol 98: 15–29PubMedCrossRefGoogle Scholar
  151. Vaupel P, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41: 2008–2013PubMedGoogle Scholar
  152. Vaupel P, Frinak S, Mueller-Klieser W, Bicher HI (1982a) Impact of localized hyperthermia on the cellular microenvironment in solid tumors. Natl Cancer Inst Monogr 61: 207–209Google Scholar
  153. Vaupel P, Otte J, Manz R (1982b) Changes in tumor oxygenation after localized microwave hyper-thermia. In: Gautherie M, Albert E (eds) Biomedical thermology, Liss, New York, pp 65–74Google Scholar
  154. Vaupel P, Otte J, Manz R (1982c) Oxygenation of malignant tumors after localized microwave hy-perthermia. Radiat Environment Biophys 20: 289–300CrossRefGoogle Scholar
  155. Vaupel P, Benzing H, Egelhof E, Mueller-Klieser W, Mueller-Schauenburg W (1983a) The effect of various thermal doses on the regional tumor blood flow measured by heat clearance. Strahlentherapie 159: 384Google Scholar
  156. Vaupel P, Mueller-Klieser W, Gabbert H (1983b) Experimental evidence for a hyperthermia-induced breakdown of tumor blood flow during normoglycemia. J Cancer Res Clin Oncol 105: 303–304PubMedCrossRefGoogle Scholar
  157. Vaupel P, Mueller-Klieser W, Manz R, Wendling P, Strube HD, Schmidseder R (1983c) Heterogeneous oxygenation of malignant tumors in humans. Verhdlg Dt Krebsges 4: 153Google Scholar
  158. Vaupel P, Mueller-Klieser W, Otte J, Manz R, Kallinowski F (1983d) Blood flow, tissue oxygenation, and pH-distribution in malignant tumors upon localized hyperthermia. Strahlentherapie 159: 73–81PubMedGoogle Scholar
  159. Vaupel P, Kallinowski F, Kluge M (1986) Pathophysiologische Aspekte der Hyperthermiewirkung in malignen Tumoren: Durchblutungsänderungen in Xenotransplantaten menschlicher Mamma-carcinome. In: Streffer C, Herbst M, Schwabe HW (eds) Lokale Hyperthermie, Deutscher Ärzte-Verlag, Cologne, pp 39–46Google Scholar
  160. Verma SP, Wallach DFA (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73: 3558–3561PubMedCrossRefGoogle Scholar
  161. Vogel AW (1965) Intratumoral vascular changes with increased size of a mammary adenocarcinoma. New method and results. J Natl Cancer Inst 34: 571–578PubMedGoogle Scholar
  162. von Ardenne M, Krüger W (1966) Messungen zur irreversiblen Schädigung der Atmung von Krebszellen durch Extremhyperthermie. Zschr Naturforsch 21b: 836–840Google Scholar
  163. von Ardenne M, Reitnauer PG (1968) Selektive Krebszellenschädigung durch Proteindenaturation. Dtsch Gesundheitswesen 23: 1681–1685Google Scholar
  164. von Ardenne M, Reitnauer PG (1978) Amplification of the selective tumor acidification by local hyperthermia. Naturwissenschaften 65: 159CrossRefGoogle Scholar
  165. von Ardenne M, Reitnauer PG (1979) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung durch lokale Hyperthermie. Res Exp Med (Berl) 175: 7–18CrossRefGoogle Scholar
  166. von Ardenne M, Reitnauer PG (1980) Selective occlusion of cancer tissue capillaries as the central mechanism of the cancer multistep therapy. Jpn J Clin Oncol 10: 31–48Google Scholar
  167. von Ardenne M, Reitnauer PG (1982) Die manipulierte selektive Hemmung der Mikrozirkulation im Krebsgewebe. J Cancer Res Clin Oncol 103: 269–279CrossRefGoogle Scholar
  168. Voorhees WD, Babbs CF (1982) Hydralazine-enhanced selective heating of transmissible venereal tumor implants in dogs. Eur J Cancer Clin Oncol 18: 1027–1033PubMedCrossRefGoogle Scholar
  169. Waterman FM, Fazekas J, Nerlinger RE, Leeper DB (1982) Blood flow rates in human tumors during hyperthermia treatments as indicated by thermal washout. Proc 2nd Ann Meeting North American Hyperthermia Group, Salt Lake City, p E-6Google Scholar
  170. Wendling P, Manz R, Thews G, Vaupel P (1984) Inhomogeneous oxygenation of rectal carcinomas in humans. A critical parameter for perioperative irradiation? Adv Exp Med Bio1180: 293–300 Westermark N (1927) The effect of heat upon rat-tumors. Scand Arch 52: 257–318Google Scholar
  171. Wike-Hooley JL, Haveman J, Reinhold HS (1984a) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2: 343–366PubMedCrossRefGoogle Scholar
  172. Wike-Hooley JL, van der Zee J, van Rhoon GC, van den Berg AP, Reinhold HS (1984b) Human tumour pH changes following hyperthermia and radiation therapy. Eur J Cancer Clin Oncol 20: 619–623PubMedCrossRefGoogle Scholar
  173. Yi PN (1979) Cellular ion content changes during and after hyperthermia. Biochem Biophys Res Comm 91: 177–181PubMedCrossRefGoogle Scholar
  174. Yi PN, Chang CS, Tallen M, Bayer W, Ball S (1983) Hyperthermia-induced intracellular ionic level changes in tumor cells. Radiat Res 93: 534–544PubMedCrossRefGoogle Scholar
  175. Yi PN, Fenn JO, Jarrett JH (1985) Hyperthermia and osmoregulation. Proc 33rd Ann Meeting Radi-at Res Soc, Los Angeles, Abstr Ac-20Google Scholar
  176. Young MA, Gerlowski LE, Jain RK (1985) Effects of hyperthermia, glucose and galactose on normal and tumor microvascular permeability. Microvasc Res 29: 262Google Scholar
  177. Zywietz F, Knöchel R, Kordts J (1986) Heating of a rhabdomyosarcoma of the rat by 2450 MHz mi- crowaves–technical aspects and temperature distributions. Rec Res Cancer Res 101: 36–46Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1987

Authors and Affiliations

  • P. Vaupel
    • 1
  • F. Kallinowski
    • 1
  1. 1.Abteilung für Angewandte PhysiologieUniversität MainzMainzGermany

Personalised recommendations