Abstract
Photoreceptors are specialised cells evolved for high sensitivity to light. The light absorbing molecule is a dipole embedded in a protein molecule. This chromophore-protein complex, the rhodopsin molecule, is part of the cell membrane, where it is free to undergo lateral and rotational diffusion. The high quantum capture property of highly evolved photoreceptors is the result of several molecular, fine and gross structural mechanisms: (1) The concentration of rhodopsin molecules within the membrane is extremely high; (2) The membranes holding the rhodopsin molecules are organised in closely packed stacks of discs (vertebrate photoreceptors) or dense packages of tubes (rhabdomeric invertebrate photoreceptors); (3) Light is contained within the light absorbing structure as the result of the high optical density of these membrane stacks (light guide).
Keywords
Lipid Matrix Polarisation Sensitivity Disc Membrane Retinula Cell Unpolarised LightPreview
Unable to display preview. Download preview PDF.
References
- ABRAHAMSON, E.W., FAGER, R.S.: The chemistry of vertebrate and invertebrate visual photoreceptors. Curr, Topics Bioenergetics 5, 125–196 (1973).Google Scholar
- BLASIE, J.K.: The location of photopigment molecules in the cross-section of frog retinal receptor disc membranes. Biophysic. J. 12, 191–209 (1972).ADSCrossRefGoogle Scholar
- BORN, M., WOLF, E.L.: Principles of Optics. Oxford: Pergamon Press 1965.Google Scholar
- BROWN, P.K.: Rhodopsin rotates in the visual receptor membrane. Nature New Biol. 236, 35–38 (1972).ADSGoogle Scholar
- CONE, R.A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236, 39–43 (1972)Google Scholar
- DARTNALL, H.J.A,: Photosensitivity. In: Handbook of Sensory Physiology (ed. H.J.A. DARTNALL ) pp. 122–145. Berlin-Heidelberg-New York: Springer 1972Google Scholar
- DENTON, E.J,: The contribution of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc. Lond. B 150, 78–89 (1959).ADSCrossRefGoogle Scholar
- EAKIN, R.M., BRANDENBURGER, J.L,: cited after EAKIN, R,M.: In: Handbook of Sensory Physiology (ed. H.J.A. DARTNALL) Vol., VII/1. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
- EDIDIN, M.: Rotational and translational diffusion in membranes. Ann. Rev. Biophys. Bioeng. 3, 179–204 (1974).CrossRefGoogle Scholar
- GOLDSMITH, T.H.: The polarisation sensitivity - dichroic absorption paradox in arthropod photoreceptors. This volume, pp. 392–409.Google Scholar
- GRIP, DE W.J., BONTING,S.L., DAEMEN, F.J,M.: The binding site of retinaldehyde in native rhodopsin. In: Biochemistry and Physiology of Visual Pigments (ed. H. LANGER) pp. 29–38. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
- HAMDORF, K., PAULSEN, R., SCHWEMER, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and Physiology of Visual Pigments (ed. H. LANGER ) pp. 155–166. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
- HAMDORF,’ K., SCHWEMER, J.: Photoregeneration and the adaptation process in insect photoreceptors. This volume, pp. 263–289.Google Scholar
- HAROSI, F.I., MACNICHOL, Jr., E.F.: Dichroic microspectrophotometer: a computer assisted, rapid, wavelength-scanning photometer for measuring the linear dichroism of single cells. J.Opt. Soc. Amer. 64, 903–918 (1974).ADSCrossRefGoogle Scholar
- ISRAELACHVILLI, J., SAMMUT, R., SNYDER, A.W.: Birefringence and dichroism in invertebrate photoreceptors. J. Opt. Soc. Amer. Submitted.Google Scholar
- ISRAELACHVILLI, J., SAMMUT, R., SNYDER, A.W.: Birefringence and dichroism of photoreceptors. Vision Res. Submitted.Google Scholar
- KIRSCHFELD, K., SNYDER, A.W.: Waveguide mode effects, birefringence and dichroism in fly photoreceptors. This volume, pp. 56–77.Google Scholar
- LANGER, H., THORELL, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41, 673–677 (1966).CrossRefGoogle Scholar
- LAUGHLIN, S.B.: Receptor function in the apposition eye. An electrophysiological approach. This volume, pp. 479–498.Google Scholar
- LIEBMAN, P.A.: In situ microspectrophotometric studies on the pigments of single retinal rods, Biophys. J. 2, 161–178 (1962).CrossRefGoogle Scholar
- LIEBMAN, P.A.: Microspectrophotometry of photoreceptors. In: Handbook of Sensory Physiology (ed. H.J.A. DARTNALL) Vol. VII/1, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
- LIEBMAN, P.A., ENTINE, G.: Lateral diffusion of visual pigment in photoreceptor disc membrane. Science 185, 457–459 (1974).ADSCrossRefGoogle Scholar
- MASON, W.T., FAGER, R.S., ABRAHAMSON, E.W.: Structural response of vertebrate photoreceptor membranes to light. Nature 247, 188–191 (1974).ADSCrossRefGoogle Scholar
- MENZEL, R.: Polarisation sensitivity in insect eyes with fused rhabdoms. This volume, pp. 372–387.Google Scholar
- MOODY, M.F.: Photoreceptor organelles in animals. Biol. Rev. 39, 43–86 (1964).CrossRefGoogle Scholar
- MOODY, M.F., PARRISS, J.R.: The discrimination of polarised light by Octopus: a behavioural and morphological study. Z. vergl. Physiol. 44, 268–291 (1961).CrossRefGoogle Scholar
- MOTE, M.I.: Polarization sensitivity. A phenomenon independent of stimulus intensity or state of adaptation in the retinula cells of the crabs Carcinus and Callinectes. J. comp. Physiol. 90, 389–403 (1974)CrossRefGoogle Scholar
- POO, M., CONE, R,A.: Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247, 438–441 (1974).ADSCrossRefGoogle Scholar
- RAUBACH, R.A., NEMES, P.P., DRATZ, E.A.: Molecular organisation of rod disc membrane. Exp. Eye Res. 18, 1–19 (1974)CrossRefGoogle Scholar
- SCHLECHT, P., TAUBER, U.: The photochemical equilibrium in rhabdomeres of Eledone and its effect on dichroic absorption. This volume, pp. 316–335.Google Scholar
- SCHMIDT, W.J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid Z. 85, 137–148 (1938).CrossRefGoogle Scholar
- SHICHI, M,: Biochemistry of visual pigments II. Phospholipid requirement and opsin conformation for regeneration of bovine rhodopsin. J. Biol. Chem. 246, 6178–6182 (1971).Google Scholar
- SINGER, S.J., NICHOLSON, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).ADSCrossRefGoogle Scholar
- SNYDER, A.W.: Polarisation sensitivity of individual retinula cells. J. comp. Physiol. 83, 331–360 (1973).CrossRefGoogle Scholar
- SNYDER, A.W., LAUGHLIN, S.B.: Dichroism and absorption by photoreceptors. J. comp. Physiol. In press (1975).Google Scholar
- SNYDER, A.W., MENZEL, R., LAUGHLIN, S,B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973).CrossRefGoogle Scholar
- WALD, G.: Visual Pigment and Photoreceptor Physiology, In: Biochemistry and Physiology of Visual Pigments (ed. H. LANGER) pp. 1–16, Berlin-Heidelberg-New York: Springer 1973Google Scholar
- WALD, G., BROWN, P.K., GIBBONS, J.R.: The problem of visual excitation. J. opt. Soc. Amer. 53, 20–35 (1963).ADSCrossRefGoogle Scholar
- WATERMAN, T.H., FERNANDEZ, H.R.: E-vector and wavelength discrimination by retinula cells of the crayfish Procambarus. Z. vergl. Physiol. 68, 154–174 (1970).CrossRefGoogle Scholar
- WATERMAN, T.H., FERNANDEZ, H.R., GOLDSMITH, T.H,: Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J. gen. Physiol, 54, 415–432 (1969).CrossRefGoogle Scholar
- WORTHINGTON, C.R.: Structure of photoreceptor membranes. Ann. Rev. Biophys. Bioeng. 3, 53–109 (1974).CrossRefGoogle Scholar
- WRIGHT, W.E.:. Orientation of intermediates in the bleaching of sheer-oriented rhodopsin. J. gen. Physiol. 62, 509–523 (1973)CrossRefGoogle Scholar
- ZINKLER, D.: Zum Lipidmuster der Photorezeptoren von Insekten. Bericht Zool. Ges. Bochum (in press).Google Scholar