Bacterial Endotoxin: Chemical Constitution, Biological Recognition, Host Response, and Immunological Detoxification

  • E. T. Rietschel
  • H. Brade
  • O. Holst
  • L. Brade
  • S. Müller-Loennies
  • U. Mamat
  • U. Zähringer
  • F. Beckmann
  • U. Seydel
  • K. Brandenburg
  • A. J. Ulmer
  • T. Mattern
  • H. Heine
  • J. Schletter
  • H. Loppnow
  • U. Schönbeck
  • H.-D. Flad
  • S. Hauschildt
  • U. F. Schade
  • F. Di Padova
  • S. Kusumoto
  • R. R. Schumann
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 216)


The discovery of endotoxin dates from the late nineteenth century when Richard Pfeiffer, then working in Berlin, characterized endotoxins as heat-stable and cell-associated molecules (Westphal et al. 1977), thus distinguishing them from the heat-labile and proteinous exotoxins which are actively secreted by bacteria (Bhakdi et al. 1994). They were first found to be produced by Vibrio cholerae bacteria and later by Salmonella and Serratia. Endotoxins, due to their various potent biological activities soon attracted worldwide scientific interest. Initial chemical analyses of purified endotoxin indicated that it consists essentially of polysaccharide and lipid, and it was therefore termed lipopolysaccharide (LPS). Today the terms endotoxin (Wolff 1904) and lipopolysaccharide (Shear and Turner 1943) are used synonymously for the same molecule.


Bacterial Endotoxin Bacterial Lipopolysaccharide Lipopolysaccharide Binding Protein Lipoxygenase Inhibitor Free Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J, Melchers F, Galanos C, Lüderitz O (1973) The mitogenic effect of LPS on bone marrow derived mouse lymphocytes. Lipid A as the mitogenic part of the molecule. J Exp Med 137: 943–953.Google Scholar
  2. Arditi M, Zhou J, Dorio R, Wie Rong GW, Goyert SM, Kim KS (1993) Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun 61: 3149–3156.PubMedGoogle Scholar
  3. Badger AM, Olivera D, Talmadge JE, Hanna N (1989) Protective effect of SK & F 86002, a novel dual inhibitor of arachidonic acid metabolism, in murine models of endotoxin shock: inhibition of tumor necrosis factor as a possible mechanism of action. Circ Shock 27: 51–61.PubMedGoogle Scholar
  4. Baker PJ (1993) Effect of endotoxin on suppressor T cell function. Immunobiology 187: 372–381.PubMedGoogle Scholar
  5. Bakouche V, Moreau JL, Lachman LB (1992) Secretion of IL-1: role of protein kinase C. J Immunol 148: 84–91.PubMedGoogle Scholar
  6. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15: 74–80.PubMedGoogle Scholar
  7. Baumgartner J-D, Glauser M-P (1993) Immunotherapy of endotoxemia and septicemia. Immunobiology 187:464–477.PubMedGoogle Scholar
  8. Baumgartner JD, McCutchan JA, van Melle G, Vogt M, Luethy R, Glauser MP, Ziegler EJ, Klamber MR, Muhlen E, Chiolero R, Geroulanos S (1983) Prevention of shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 2: 59–63.Google Scholar
  9. Baumgartner JD, Heumann D, Gerain J, Weinbreck P, Grau GE, Glauser MP (1990) Association between protective efficacy of anti-lipopolysaccharide (LPS) antibodies and suppression of LPS-induced tumor necrosis factor alfa and interleukin 6: comparison of O-side chain specific antibodies with core LPS antibodies. J Exp Med 171: 889–896.PubMedGoogle Scholar
  10. BaŽil V, Strominger JL (1991) Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol 147: 1567–1574.PubMedGoogle Scholar
  11. Beckmann F, Moll H, Jäger K-E, Zähringer U (1995) 7-O-Carbamoyl-L-glycero-D-manno-heptose: a new core constituent in lipopolysaccharide of Pseudomonas aeruginosa. Carbohydr Res 267: C3–C7.PubMedGoogle Scholar
  12. Beekhuizen H, Blokland I, Corsèl-van Tilburg AJ, van Furth R (1991) CD14 contributes to the adherence of human monocytes to cytokine-stimulated endothelial cells. J Immunol 147: 3761–3767.PubMedGoogle Scholar
  13. Beekhuizen H, Blokland, van Furth R (1993) Crosslinking of CD14 molecules on monocytes results in a J Immunol 150: 950–959.PubMedGoogle Scholar
  14. Bender A, Sprengler H, Gong J-H, Henke A, Bolte G, Sprengler H-P, Nain M, Gemsa D (1993) The potentiating effect of LPS on tumor necrosis factor-α production by influenza A virus-infected macrophages. Immunobiology 187: 357–371.PubMedGoogle Scholar
  15. Bernhagen J, Calandra T, Cerami A, Bucala R (1994) Macrophage migration inhibitory factor is a neuroendocrine mediator of endotoxaemia. Trends Microbiol 2: 198–201.PubMedGoogle Scholar
  16. Beutler B, Cerami A (1989) The biology of Cachectin/TNF. A primary mediator of the host response. Annu Rev Immunol 7: 625–655.PubMedGoogle Scholar
  17. Bhakdi S, Grimminger F, Suttorp N, Walmrath D, Seeger W (1994) Proteinaceous bacterial toxins and pathogenesis of sepsis syndrome and septic shock: the unknown connection. Med Microbiol Immunol 183: 119–144.PubMedGoogle Scholar
  18. Bhat NM, Bieber MM, Chapman CJ, Stevenson FK, Teng NNH (1993) Human antilipid A monoclonal antibodies bind to human B cells and the i antigen on cord red blood cells. J Immunol 151: 5011–5021.PubMedGoogle Scholar
  19. Bhat UR, Forsberg LS, Carlson RW (1994) Structure of the lipid A component of Rhizobium leguminosarum bv. phaseoli lipopolysaccharide. J Biol Chem 269: 14402–14410.PubMedGoogle Scholar
  20. Bogard WC Jr, Dunn DL, Abemethy K, Kilgariff C, Kung PC (1987) Isolation and characterization of murine monoclonal antibodies specific for gram-negative bacterial lipopolysaccharide: association of cross-genus reactivity with lipid A specificity. Infect Immun 55: 899–908.PubMedGoogle Scholar
  21. Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA, the Methyl-prednisolone Severe Sepsis Study Group (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 389–393.Google Scholar
  22. Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA, the Methyl-prednisolone Severe Sepsis Study Group (1989) Sepsis syndrome: a valid clinical entity. Crit Care Med 17: 389–393.PubMedGoogle Scholar
  23. Brade H, Brade L, Rietschel ET, (1988) Structure-activity relationships of bacterial lipopolysaccharides (endotoxins). Zentralbl Bakteriol Mikrobiol Hyg [A] 268: 151–179.Google Scholar
  24. Brade L, Schramek S, Schade U, Brade H (1986) Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect Immun 54: 568–574.PubMedGoogle Scholar
  25. Brade L, Kosma P, Appelmelk BJ, Paulsen H, Brade H (1987a) Use of synthetic antigens to determine the epitope specificities of monoclonal antibodies against the 3-deoxy-D-manno-octulosonate region of bacterial lipopolysaccharide. Infect Immun 55: 462–466.PubMedGoogle Scholar
  26. Brade L, Brandenburg K, Kuhn H-M, Kusumoto S, Rietschel ET, Brade H (1987b) The immunogenicity and antigenicity of lipid A are influenced by its physicochemical state and environment. Infect Immun 55: 2636–2644.PubMedGoogle Scholar
  27. Brade L, Holst O, Brade H (1993) An artificial glycoconjugate containing the bisphosphorylated glucosamine disaccharide backbone of lipid A binds lipid A monoclonal antibodies. Infect Immun 61:4514–4517.PubMedGoogle Scholar
  28. Brandenburg K, Mayer H, Koch MHJ, Weckesser J, Rietschel ET, Seydel U (1993) Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem 218: 555–563.PubMedGoogle Scholar
  29. Brandwein SR (1986) Regulation of interleukin-1 production by mouse peritoneal macrophages. J Biol Chem 261: 8624–8632.PubMedGoogle Scholar
  30. Braquet P, Touqui L, Shen TY, Vargaftig BB (1987) Perspectives in platelet-activating factor research. Pharmacol Rev 39: 97–112.PubMedGoogle Scholar
  31. Braude AI, Douglas H (1972) Passive immunization against the local Schwartzman reaction. J Immunol 108: 505–512.PubMedGoogle Scholar
  32. Bruins SC, Stumacher R, Johns MA, McCabe WR (1977) Immunization with R mutants of Salmonella minnesota. II. Comparison of the protective effect of immunization with lipid A and the Re mutant. Infect Immun 17: 16–20.PubMedGoogle Scholar
  33. Carr BD, Vicky VM, Schnyder B, Ozmen L, Huang S, Galley P, Heumann D, Aguet M, Ryffel B (1994) Interferon y receptor deficient mice are resistant to endotoxic shock. J Exp Med 179: 1437–1444.Google Scholar
  34. Centers for Disease Control (1990) Increase in national hospital discharge survey cases for septicemia. MMWR 39: 31–34.Google Scholar
  35. Chang ZL, Novotney A, Suzuki T, (1990) Phospholipase C and A2 in tumoricidal activation of murine macrophage-like cell lines. FASEB J 4: A1753.Google Scholar
  36. Chen TY, Lei MG, Suzuki T, Morrison DC, (1986) Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. Curr Top Microbiol Immunol 181: 169–188.Google Scholar
  37. Chensue SW, Kunkel SL (1985) Induction of interleukin 1 release by leukotrienes. Fed Proc 44: 1270.Google Scholar
  38. Christ WJ, Asano O, Robidoux ALC, Perez M, Wang Y, Dubuc GR, Gavin WE, Hawkins LD, McGuinness PD, Mullarkey MA, Lewis MD, Kishi Y, Kawata T, Bristol JR, Rose JR, Rossignol DP, Kobayashi S, Hishinuma I, Kimura A, Asakawa A, Asakawa N, Katayama K, Yamatsu I (1995) E5531, a pure endotoxin antagonist of high potency. Science 268: 80–83.PubMedGoogle Scholar
  39. Chung J, Pelech SL, Blenis J (1991) Mitogen-activated Swiss mouse 3T3 RSK kinase I and II are related to pp44mpk from sea star oocytes and participate in the regulation of pp90rsk activity. Proc Natl Acad Sci USA 88: 4981–4985.PubMedGoogle Scholar
  40. Colwell DE, Michalek SM, Brilles DE, Jirillo E, McGhee JR (1984) Monoclonal antibodies to Salmonella lipopolysaccharide: anti-O-polysaccharide antibodies protect C3H mice against challenge with virulent Salmonella typhimurium. J Immunol 133: 950–957.PubMedGoogle Scholar
  41. Cordle SR, Donald R, Read MA, Hawiger J (1993) Lipopolysaccharide induces phosphorylation of MAD3 and activation of c-Rel and related NF-kB proteins in human monocytic THP-1 cells. J Biol Chem 268: 11803–11810.PubMedGoogle Scholar
  42. Couturier C, Jahns G, Kazatchkine MD, Haeffner-Cavaillon N (1992) Membrane molecules which trigger the production of interleukin-1 and tumor necrosis factor-α by lipopolysaccharide-stimulated human monocytes. Eur J Immunol 22: 1461–1466.PubMedGoogle Scholar
  43. Cryz SJ, Wedgwood J, Lang AB, Ruedeberg A Queju, Fürer E, Schaad UB (1994) Immunization of noncolonized cystic fibrosis patients against Pseudomonas aeruginosa. J Infect Dis 169: 1159–1162.PubMedGoogle Scholar
  44. Dérijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ, Davis R,(1994) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.Google Scholar
  45. Di Padova FE, Gram H, Barclay R, Kleuser B, Liehl E, Rietschel ET (1993a) New anticore LPS monoclonal antibodies with clinical potential. In: Levin J, Alving CR, Munford RS, Stuetz PL (eds) Bacterial endotoxin: recognition and effector mechanisms. Elsevier, Amsterdam, pp 325–335.Google Scholar
  46. Di Padova FE, Brade H, Barclay R, Poxton IR, Liehl E, Schuetze E, Kocker HP, Ramsay G, Schreier MH, McClelland DBL, Rietschel ET (1993b) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61: 3863–3872.PubMedGoogle Scholar
  47. Di Padova FE, Mikol V, Barclay GR, Poxton IR, Brade H, Rietschel ET (1994) Prog Clin Biol Res 388:85–94.PubMedGoogle Scholar
  48. Di Padova FE, Gram H, Barclay R, Poxton IR, Liehl E, Rietschel ET (1996) Monoclonal antibodies to endotoxin core as a new approach in endotoxemia therapy. In: Morrison DC, Ryan JL (eds) Novel therapeutic strategies in the treatment of sepsis. Dekker, New York pp 13–31.Google Scholar
  49. Dinarello CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8: 1314–1325.PubMedGoogle Scholar
  50. Dinarello CA, Bishai J, Rosenwasser LJ, Coceani F (1984) The influence of lipoxygenase inhibitors on the in vitro production of human leucocytic pyrogen and lymphocyte activating factor (interleukin 1). Int J Immunopharmacol 6: 43–50.PubMedGoogle Scholar
  51. Doherty DE, Zagarello L, Henson PM, Worthen GS (1989) Lipopolysaccharide stimulates monocyte adherence by effects on both the monocyte and the endothelial cell. J Immunol 143: 3673–3679.PubMedGoogle Scholar
  52. Dominioni L, Dionigi R, Zanello M, Chiaranda M, Dionigi R, Acquarolo A, Ballabio A, Sguotti C (1991) Effects of high-dose IgG on survival of surgical patients with sepsis scores of 20 or greater. Arch Surg 126: 236–240.PubMedGoogle Scholar
  53. Drysdale PE, Yapundich RA, Shin ML, Shin HS (1987) Lipopolysaccharide-mediated macropahge activation: the role of calcium in the generation of tumoricidal activity. J Immunol 139: 951–956.Google Scholar
  54. Dunn DI, Ewald DC, Chandan N, Cerra FB (1986) Immunotherapy of gram-negative bacterial sepsis. A single murine monoclonal antibody provides cross-genera protection. Arch Surg 121: 58–62.PubMedGoogle Scholar
  55. Durieux JJ, Vita N, Popescu O, Guette F, Calzadawack J, Munker R, Schmidt RE, Lupker J, Ferrara P, Ziegler-Heitbrock HWL, Labeta MO (1994) The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur J Immunol 24: 2006–2012.PubMedGoogle Scholar
  56. Dziarski R (1989) Corrrelation between ribosylation of pertussis toxin substrates and inhibition of peptidoglycan-muramyl dipeptide-and lipopolysaccharide induced mitogenic stimulation in B lymphocytes. Eur J Immunol 19: 125–130.PubMedGoogle Scholar
  57. Dziarski R (1994) Cell-bound albumin is the 70 kDa peptidoglycan-, lipopolysaccharide-and lipoteichoic acid-binding protein on lymphocytes and macrophages. J Biol Chem 269: 20431–20436.PubMedGoogle Scholar
  58. Echtemacher B, Falk W, Männet DN, Krammer PH (1990) Requirement of endogenous tumor necrosis factor cachectin for recovery from experimental peritonitis. J Immunol 145: 3762–3766.Google Scholar
  59. Elekes E, Jakobs D, Schade FU (1993) Suppression of endotoxin mitogenicity of spleen cells by lipoxygenase inhibitors and its reversal by 13-hydroxyoctadecadienoic acid. FEMS Immunol Med Microbiol 6: 13–20.PubMedGoogle Scholar
  60. Elsbach P, Weiss J (1993) The bactericidal/permeability-increasing protein (BPI), a potent element in host-defense against gram-negative bacteria and lipopolysaccharide. Immunobiology 187:417–429.PubMedGoogle Scholar
  61. Erwin AL, Munford RS (1992) Processing of LPS by phagocytes. In: Morrison DC, Ryan JL (eds) Molecular biochemistry and cellular biology. CRC Press, Boca Raton, pp 405–430 (Bacterial endotoxic lipopolysaccharide, vol 1)Google Scholar
  62. Flad H-D, Loppnow H, Rietschel ET, Ulmer AJ (1993) Agonists and antagonists for lipopolysaccharide-induced cytokines. Immunobiology 187: 303–316.PubMedGoogle Scholar
  63. Flegel WA, Wölpl A, Männel DN, Northoff H (1989) Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins. Infect Immun 57: 2237–2245.PubMedGoogle Scholar
  64. Freudenberg MA, Bog-Hansen TC, Back U, Galanos C (1980) Interaction of lipopolysaccharides with plasma high-density lipoprotein in rats. Infect Immun 28: 373–380.PubMedGoogle Scholar
  65. Freudenberg MA, Meier-Dieter U, Staehelin T, Galanos C (1991) Analysis of LPS released from Salmonella abortus equi in human serum. Microb Pathogen 10: 93–104.Google Scholar
  66. Frey EA, Miller DS, Jahr TG, Sundan A, BaŽil V, Espevik T, Finlay BB, Wright SD (1992) Soluble CD14 participates in the response of cell to lipopolysaccharide. J Exp Med 176: 1665–1671.PubMedGoogle Scholar
  67. Fujihara Y, Lei M-G, Morrison DC (1993) Characterization of specific binding of a human immunoglobulin M monoclonal antibody to lipopolysaccharide and its lipid A domain. Infect Immun 61: 910–918.PubMedGoogle Scholar
  68. Galanos C, Freudenberg MA (1993) Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 187: 346–356.PubMedGoogle Scholar
  69. Galanos C, Freudenberg MA, Jay F, Nerkar D, Veleva K, Brade H, Strittmatter W (1984) Immunogenic properties of lipid A. Rev Infect Dis 6: 546–552.PubMedGoogle Scholar
  70. Galanos C, Lüderitz O, Rietschel ET, Westphal O, Brade H, Brade L, Freudenberg MA, Schade FU, Imoto M, Yoshimura S, Kusumoto S, Shiba T (1985) Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 148: 1–5.PubMedGoogle Scholar
  71. Galanos C, Freudenberg MA, Katschinski T, Salomao R, Mossmann H, Kumazawa Y (1992) Tumor necrosis factor and host response to endotoxin. In: Ryan JL, Morrison DC (eds) Immunopharmacology and pathophysiology. CRC Press, Boca Raton, pp 75–102 (Bacterial endotoxic lipopolysaccharides, vol 2)Google Scholar
  72. Gallay P, Carrel S, Glauser MP, Barras C, Ulevitch RJ, Tobias PS, Baumgartner J-D, Heumann D (1993a) Purification and characterization of murine lipopolysaccharide-binding protein. Infect Immun 61: 378–383.PubMedGoogle Scholar
  73. Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP (1993b) Lipolysaccharide-binding a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci USA 90: 9935–9938.PubMedGoogle Scholar
  74. Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP (1994a) Mode of action of antilipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci USA 91: 7922–7926.PubMedGoogle Scholar
  75. Gallay P, Barras C, Tobias PS, Calaudra T, Glauser MP, Heumann D, (1994b) Lipopolysaccharide (LPS)-binding protein in human serum determines the tumor necrosis factor response of monocytes to LPS. J Infect Dis 170: 1319–1322.PubMedGoogle Scholar
  76. Gazzano-Santoro H, Mészáros K, Birr C, Carroll SF, Theofan G, Horwitz AH, Lim E, Aberle S, Kasler H, Parent JB (1994) Competition between rBPI23, a recombinant fragment of bactericidal/ permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gram-negative bacteria. Infect Immun 62: 1185–1191.PubMedGoogle Scholar
  77. Glauser MP, Zanetti G, Baumgartner J-D, Cohen J (1991) Septic shock: pathogenesis. Lancet 338:732–736.PubMedGoogle Scholar
  78. Greenman RL, Schein RMH, Martin MA, Wenzel RP, Mclntyre NR, Emmanuel G (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102.PubMedGoogle Scholar
  79. Greisman SE, Johnston CA (1988) Failure of antisera to J5 and R595 rough mutants to reduce endotoxemic lethality. J Infect Dis 157: 54–64.PubMedGoogle Scholar
  80. Greisman SE, Dubuy JB, Woodward CL (1978) Experimental gram-negative bacterial sepsis: reevaluation of the ability of rough mutant antisera to protect mice. Proc Soc Exp Biol Med 158:482–490.PubMedGoogle Scholar
  81. Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179: 269–277.PubMedGoogle Scholar
  82. Han J, Lee JD, Tobias PS, Ulevitch RJ (1993) Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem 268: 25009–25014.PubMedGoogle Scholar
  83. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811.PubMedGoogle Scholar
  84. Hauschildt SH, Scheipers P, Bessler WG (1994) Lipopolysaccharide-induced change of ADP-ribosylation of a cytosolic protein in bone-marrow-derived macrophages. Biochem J 297: 17–20.PubMedGoogle Scholar
  85. Havell EA (1989) Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 143: 2894–2899.PubMedGoogle Scholar
  86. Haziot A, Chan S, Ferrero E, Low MG, Silber R, Goyer SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 141: 547–552.PubMedGoogle Scholar
  87. Haziot A, Rong GW, BaŽil V, Silver J, Goyert SM (1994) Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-production by cells in whole blood. J Immunol 152: 5868–5876.PubMedGoogle Scholar
  88. Heine H, Brade H, Kusumoto S, Kusama T, Rietschel ET, Flad H-D, Ulmer AJ (1994) Inhibition of LPS binding on human monocytes by phosphonooxyethyl analogs of lipid A. J Endotox Res 1: 14–20.Google Scholar
  89. Heine H, Ulmer AJ, Flad H-D, Hauschildt S (1995) LPS-induced change of phosphorylation of two cytosolic proteins in human monocytes is prevented by inhibitors of ADP-ribosylation. J Immunol 155:4899–4908.PubMedGoogle Scholar
  90. Heumann D, Barras C, Severin A, Glauser MP, Tomasz A (1994) Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun 62:2715–2721.PubMedGoogle Scholar
  91. Hirata M, Shimomura Y, Yoshida M, Morgan JG, Palings I, Wilson D, Yen MH, Wright SC, Larrick JW (1994) Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity. Infect Immun 62: 1421–1426.PubMedGoogle Scholar
  92. Hoess A, Watson S, Siber GR, Liddington R (1993) Crystal structure of an endotoxin-neutralizing protein from horseshoe crab, Limulus anti-LPS factor, at 1.5 Å resolution. EMBO J 12: 3351–3356.PubMedGoogle Scholar
  93. Hollingsworth Rl, Lill-Elghanian DA (1989) Isolation and characterization of the unusual lipopolysaccharide component, 2-amino-2-deoxy-2-N-(27-hydroxyoctacosanoyl)-3-O-(3-hydroxytetradecanoy)-gluco-hexuronic acid, and its de-O-acylation product from the free lipid A of Rhizobium trifolii ANU 843. J Biol Chem 264: 14039–14042.PubMedGoogle Scholar
  94. Holst O, Brade H (1992) Chemical structure of the core region of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Molecular biochemistry and cellular biology. CRC Press, Boca Raton, pp 135–170 (Bacterial endotoxic lipopolysaccharides, vol 1)Google Scholar
  95. Hurme M, Serkkola F (1991) Differential activation signals are required for the expression of interleukin-1-α and-β-genes in human moncytes. Scand J Immunol 33: 713–718.PubMedGoogle Scholar
  96. Hurme M, Viherluoto J, Nordstrom T (1992) The effect of calcium mobilization on LPS-induced IL-1β production depends on the differentiation stage of the monocytes/macrophages. Scand J Immunol 36: 507–511.PubMedGoogle Scholar
  97. Ingalls RR, Golenbock DT (1995) CD11c/CD18, a transmembrane signalling receptor for lipopolysaccharide. J Exp Med 181: 1473–1479.PubMedGoogle Scholar
  98. Introna M, Hamilton TA, Kaufmann RE, Adams DO, Bast RCJ (1986) Treatment of murine peritoneal macrophages with bacterial lipopolysaccharide alters expression of c-fos and c-myc oncogenes. J Immunol 137: 2711–2715.PubMedGoogle Scholar
  99. Jackway JP, De Franco AL (1986) Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science 234: 743–746.Google Scholar
  100. Jakobs DM, Schade FU (1994) Regulation of endotoxin mitogenicity in murine spleen cells by tumor necrosis factor. J Endotox Res 1: 175–180.Google Scholar
  101. Jochum M, Machleidt, Fritz H (1992) Proteolysis-induced pathomechanisms in acute inflammation and related therapeutic approaches In: Sies H, Flohe L, Zimmer G (eds) Molecular aspects of inflammation. Springer Berlin Heidelberg New York, pp 73–92 (42th Mosbach colloquium)Google Scholar
  102. Johnston CA, Greisman SE (1984) Endotoxemia induced by antibiotic therapy: a mechanism for adrenal corticosteroid protection in gram-negative sepsis. Trans Assoc Am Physicians 97:172–181.PubMedGoogle Scholar
  103. Juan TS-C, Hailman E, Kelley MJ, Busse LA, Davy E, Empig CJM Narhi LO, Wright SD, Lichenstein HS (1995) Identification of a lipopolysaccharide binding domain in CD14 between amino acids 57 and 64. J Biol Chem 270: 5219–5224.PubMedGoogle Scholar
  104. Kabir S, Rosenstreich DL, Mergenhagen SE (1978) Bacterial endotoxin and cell membranes. In: Jeljaszewic J, Wadstrom T (eds) Bacteria toxins and cell membranes. Academic, London, pp 59–87.Google Scholar
  105. Kawahara K, Seydel U, Motohiro M, Hirofumi D, Rietschel ET, Zähringer U (1991) Chemical structure of glycosphingolipids isolated form Sphingomonas paucimobilis. FEBS Lett 292: 107–110.PubMedGoogle Scholar
  106. Keppler D, Hagmann W, Rapp S (1987) Role of leukotrienes in endotoxin action in vivo. Rev Infect Dis 5: 580–584.Google Scholar
  107. Kirikae T, Kirikae F, Schade FU, Yoshida M, Kondo S, Hisatsune K, Nishikawa S-I, Rietschel ET (1991) Detection of lipopolysaccharide-binding proteins on membranes of murine lymphocyte and macrophage-like cell lines. FEMS Microbiol Immunol 76: 327–336.Google Scholar
  108. Kirikae T, Schade FU, Zähringer U, Kirikae F, Brade H, Kusumoto S, Kusama T, Rietschel ET (1993a) The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A on macrophage binding and cytokine induction. FEMS Immunol Med Microbiol 8: 13–26.Google Scholar
  109. Kirikae T, Schade FU, Kirikae F, Rietschel ET, Morrison DC (1993b) Isolation of a macrophage-like cell line defective in binding of lipopolysaccharide (LPS). J Immunol 151: 2742–2752.PubMedGoogle Scholar
  110. Kirikae T, Schade FU, Kirikae F, Qureshi N, Takayama K, Rietschel ET (1994) Diphosphoryl lipid A derived from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 is a potent competitive LPS inhibitor in murine macrophage-like J774.1 cells. FEMS Immunol Med Microbiol 9: 237–244.PubMedGoogle Scholar
  111. Kirkland TN, Ziegler EJ (1984) An immunoprotective monoclonal antibody to lipopolysaccharide. J Immunol 132: 2590–2592.PubMedGoogle Scholar
  112. Kirkland TN, Finley F, Leturcq D, Moriarty A, Lee J-D, Ulevitch RJ, Tobias PS (1993) Analysis of lipopolysaccharide binding by CD14. J Biol Chem 268: 24818–24823.PubMedGoogle Scholar
  113. Kitchens RL, Munford RS (1995) Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem 270: 9904–9910.PubMedGoogle Scholar
  114. Kitchens RL, Ulevitch RJ Munford RS (1992) Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 176: 485–494.PubMedGoogle Scholar
  115. Knirel YA, Rietschel ET, Marre R, Zähringer U (1994) The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem 221: 239–245.PubMedGoogle Scholar
  116. Kovach NL, Yee E, Munford RS, Raetz CRH, Harlan JM (1990) Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. J Exp Med 172:77–84.PubMedGoogle Scholar
  117. Kovacs EJ, Radzioch D, Young HA, Varesio L (1988) Differential inhibition of IL-1 and TNF-β mRNA expression by agents which block second messenger pathways in murine macrophages. J Immunol 141:3101–3105.PubMedGoogle Scholar
  118. Krziwon C, Zähringer U, Kawahara K, Weidemann B, Kusumoto S, Rietschel ET, Flad H-D, Ulmer AJ (1995) Glycosphingolipids from Sphingomonas paucimobilis induce monokine production in human mononuclear cells. Infect Immun 63: 2899–2905.PubMedGoogle Scholar
  119. Kuhn H-M, Brade L, Appelmelk BJ, Kusumoto S, Rietschel ET, Brade H (1992) Characterization of the epitope specificity of murine monoclonal antibodies directed against lipid A. Infect Immun 60:2201–2210.PubMedGoogle Scholar
  120. Kusumoto S (1992) Chemical synthesis of lipid A. In: Morrison DC, Ryan JL (eds) Molecular biochemistry and cellular biology. CRC Press, Boca Raton, pp 81–106 (Bacterial endotoxic lipopolysaccharides, vol 1)Google Scholar
  121. Larrick JW, Morgan JG, Palings I, Hirata M, Yen MH (1991) Complementary DNA sequence of rabbit CAP18, a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 179:170–175.PubMedGoogle Scholar
  122. Lauener RP, Geha RS, Vercelli D (1990) Engagement of the monocyte surface antigen CD14 induces lymphocytic function-associated antigen-1/intercellular adhesion molecule 1-dependent homotypic adhesion. J Immunol 145: 1390–1398.PubMedGoogle Scholar
  123. Lee J-D, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ (1992) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med 175: 1697–1705.PubMedGoogle Scholar
  124. Lee J-D, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.PubMedGoogle Scholar
  125. Lei M-G, Morrison DC (1988a) Specific endotoxic lipopolysaccharide-binding receptors on murine splenocytes I. Detection of LPS binding sites on splenocytes and splenocyte subpopulation. J Immunol 141: 996–1005.PubMedGoogle Scholar
  126. Lei M-G, Morrison DC (1988b) Specific endotoxic lipopolysaccharide binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol 141: 1006–1011.PubMedGoogle Scholar
  127. Levy O, Weiss J, Zarember K, Ooi CE, Elsbach P (1993) Antibacterial 15-kDa protein isoforms (p15s) are members of a novel family of leukocyte proteins. J Biol Chem 268: 6058–6063.PubMedGoogle Scholar
  128. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, Towne E, Tracey D, Wardwell S, Wei F-Y, Wong W, Kamen R, Seshadri T (1995) Mice deficient in IL-1α-converting enzyme are defective in production of mature IL-1α and resistant to endotoxic shock. Cell 80: 401–411.PubMedGoogle Scholar
  129. Libby P, Loppnow H, Fleet JC, Palmer H, Li HM, Warner SJC, Salomon RN, Clinton SK (1991) Production of cytokines by vascular cells—an update and implications for atherogenesis. In: Gottlieb AI, Langille BL, Federoff S (eds) Arteriosclerosis-cellular and molecular interactions in the artery wall. Pleunum, New York, pp 161–169 (1st Albsclul symposium)Google Scholar
  130. Little RG, Keiner DN, Lim E, Burke DJ, Conlon PJ (1994) Functional domains of recombinant bactericidal/permeability increasing protein (rBPI23). J Biol Chem 269: 1865–1872.PubMedGoogle Scholar
  131. Liu MK, Velit PH, Brownsey RW, Reiner NE (1994) CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide. J Immunol 153: 2642–2652.PubMedGoogle Scholar
  132. Loppnow H, Libby P (1989) Adult human vascular endothelial cells express the IL-6 gene differently in response to LPS and IL-1. Cell Immunol 122: 493–503.PubMedGoogle Scholar
  133. Loppnow H, Libby P (1990) Proliferating or IL-1 activated human vascular smooth muscle cells secrete copious IL-6. J Clin Invest 85: 731–738.PubMedGoogle Scholar
  134. Loppnow H, Libby P (1992) Functional significance of human vascular smooth muscle cell-derived interleukin 1 in paracrine and autocrine regulation pathways. Exp Cell Res 198: 283–290.PubMedGoogle Scholar
  135. Loppnow H, Brade H, Dürrbaum I, Dinarello CA, Kusumoto S, Rietschel ET, Flad H-D (1989) Interleukin 1 induction-capacity of defined lipopolysaccharide partial structures. J Immunol 142: 3229–3238.PubMedGoogle Scholar
  136. Loppnow H, Libby P, Freudenberg MA, Kraus JH, Weckesser J, Mayer H (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to the lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun 58: 3743–3750.PubMedGoogle Scholar
  137. Loppnow H, Rietschel ET, Brade H, Feist W, Wang M-H, Heine H, Kirikae T, Schönbeck U, Dürrbaum-Landmann I, Grage-Griebenow E, Brandt E, Schade FU, Ulmer AJ, Campos-Portuguez S, Krauss J, Mayer H, Flad H-D (1993) Lipid A precursor la and Rhodobacter capsulatus LPS: potent endotoxin antagonists. In: Levin J (ed) Endotoxin research series, vol 2. Excerpta Medica Elsevier, Amsterdam, pp 337–348.Google Scholar
  138. Loppnow H, Stelter F, Schönbeck U, Schlüter C, Ernst M, Schütt C, Flad H-D (1995) Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infect Immun 63: 1020–1026.PubMedGoogle Scholar
  139. Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ET, Shaw D (1982) Lipopolysaccharides of gram-negative bacteria. In: Razin S, Rottem S (eds) Current topics in membranes and transport, vol 17. Academic, New York, pp 79–151.Google Scholar
  140. Lüderitz T, Brandenburg K, Seydel U, Roth A, Galanos C, Rietschel ET (1989) Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in mouse peritoneal macrophages in vitro. Eur J Biochem 179: 11–16.PubMedGoogle Scholar
  141. Lynn WA, Golenbock DT (1992) Lipopolysaccharide antagonists. Immunol Today 13: 271–276.PubMedGoogle Scholar
  142. Mamat U, Grimmecke H-D, Schmidt G (1991) Phage-encoded inhibition of O-antigen biosynthesis (Abstr). Immunobiology 183: 251.Google Scholar
  143. Mamat U, Rietschel ET, Schmidt G (1995) Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acm 1. Mol Microbiol 15: 1115–1125.PubMedGoogle Scholar
  144. Mantovani A, Bussolino F (1991) Endothelium-derived modulators of leukocyte function. In: Gordon JL (eds) Vascular endothelium: interactions with circulating cells. Elsevier, New York, pp 129–140.Google Scholar
  145. Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW (1990) Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. J Immunol 144: 662–666.PubMedGoogle Scholar
  146. Marra MN, Wilde CG, Collins MS, Snable JL, Thornton MB, Scott RW (1992) The role of bactericidal/ permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol 148: 532–537.PubMedGoogle Scholar
  147. Mastroeni P, Jannello D, Mastroeni PI (1993) TNFα as a modulator of the interaction between macrophages and intracellular parasites. Eur Bull Drug Res 2: 163–174.Google Scholar
  148. Mattern T, Thanhäuser A, Reiling N, Toellner K-M, Duchrow M, Kusumoto S, Rietschel ET, Ernst M, Brade H, Flad H-D, Ulmer AJ (1994) Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes. J Immunol 153: 2996–3004.PubMedGoogle Scholar
  149. Mayer H, Campos-Portuguez SA, Busch M, Urbanik-Sypniewska T, Bhat RU (1990) Lipid A variants-or, how constant are the constant regions in lipopolysaccharides? Excerpta Med Int Congr Ser 923:111–120.Google Scholar
  150. McCabe WR (1972) Immunization with R mutants of Salmonella minnesota. I. Protection against challenge with heterologous Gram-negative bacilli. J Immunol 108: 601–610.PubMedGoogle Scholar
  151. Mohri M, Spriggs DR, Kufe D (1990) Effects of lipopolysaccharide on phospholipase A2 activity and tumor necrosis factor expression in HL-60 cells. J Immunol 144: 2678–2682.PubMedGoogle Scholar
  152. Moll H, Sonesson A, Jantzen E, Marre R, Zähringer U (1992) Identification of 27-oxooctacosanoic acid and heptocosane-1, 27-dioic acid in Legionella pneumophilia. FEMS Microbiol Lett 97: 1–6.Google Scholar
  153. Morrison DC (1989) The case for specific lipopolysaccharide receptors expressed on mammalian cells. Microb Pathogen 7: 389–398.Google Scholar
  154. Morrison DC (1990) Diversity of mammalian macromolecules which bind to bacterial lipopolysaccharides. Excerpta Med Int Congr Ser 923: 183–189.Google Scholar
  155. Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38: 417–432.PubMedGoogle Scholar
  156. Morrison DC, Lei M-G, Kirikae T, Chen T-Y (1993) Endotoxin receptors on mammalian cells. Immunobiology 187: 212–226.PubMedGoogle Scholar
  157. Müller JM, Ziegler-Heitbrock HWL, Baeuerle PA (1993) Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 187: 233–256.PubMedGoogle Scholar
  158. Müller-Loennies S, Holst O, Brade H (1994) Chemical structure of the core region of Escherichia coli J-5 lipopolysaccharide. Eur J Biochem 224: 751–760.PubMedGoogle Scholar
  159. Munford RS, Hall CL (1989) Purification of acyloxyacyl hydrolase, a leukocyte enzyme that removes secondary acyl chains from bacterial lipopolysaccharides. J Biol Chem 264: 15613–15619.PubMedGoogle Scholar
  160. Munford RS, Hall CL, lipton JM, Dietschy JM (1982) Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J Clin Invest 80: 877–888.Google Scholar
  161. Natanson C, Hoffman WD, Suffredini AF, Eichacker PQ, Danner RL (1994) Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med 120:771–783.PubMedGoogle Scholar
  162. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–323.PubMedGoogle Scholar
  163. Nikaido H (1970) Lipopolysaccharide in the taxonomy of gram-negative bacteria. Int J Syst Bacteriol 20: 383–406.Google Scholar
  164. Nnalue NA, Lind SM, Lindberg AA (1992) The disacharide L-α-D-heptose-1 → 7-L-α-D-heptose1→ of the inner core domain of Salmonella lipopolysaccharide is accessible to antibody and is the epitope of a broadly reactive monoclonal antibody. J Immunol 149: 2722–2728.PubMedGoogle Scholar
  165. Novotney M, Chang ZL, Uchiyama H, Suzuki T (1991) Protein kinase C in tumoricidal activation of murine macrophage-like cell lines. Biochemistry 30: 5597–5604.PubMedGoogle Scholar
  166. Nurminen M, Rietschel ET, Brade H (1985) Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect Immun 48: 573–575.PubMedGoogle Scholar
  167. Parkar BA, McCormick ME, Foster SJ (1990) Leukotrienes do not regulate interleukin 1 production by activated macrophages. Biochem Biophys Res Commun 169: 422–429.PubMedGoogle Scholar
  168. Parillo JE (1993) Pathogenic mechanisms of septic shock. N Engl J Med 328: 1471–1477.Google Scholar
  169. Pierce L, (1993) HA-1A has a checkered past. Biol World Financial Watch 25: 1–2.Google Scholar
  170. Pohlmann TH, Munford RS, Harlan JM (1987) Deacylated lipopolysaccharide inhibits neutrophil adherence to endothelium induced by lipopolysaccharide in vitro. J Exp Med 165: 1393–1402.Google Scholar
  171. Pollack M (1990) New therapeutic strategies in gram-negative sepsis and septic shock based on molecular mechanisms of pathogenesis. In: Mandell GL, Douglas RG, Bennet JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1–18.Google Scholar
  172. Price NP, Kelly TM, Raetz CRH, Carlson RW (1994) Biosynthesis of a structurally novel lipid A in Rhizobium leguminosarum: identification and characterization of six metabolic steps leading from UDP-GlcNAc to 3-deoxy-D-manno-2-octulosonic acid2-lipid IVA. J Bacteriol 176: 4646–4655.PubMedGoogle Scholar
  173. Prpic V, Wciel JE, Somers SD, Diguiseppi J, Gomas SL, Pizzo SV, Hamilton TA, Herman B, Adams DO (1987) Effect of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol 139: 526–533.PubMedGoogle Scholar
  174. Pugin J, Schurer-Maly C-C, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide binding protein and soluble CD14. Proc Natl Acad Sci USA 90: 2744–2748.PubMedGoogle Scholar
  175. Pugin J, Heumann D, Tomasz A, Kravchenko W, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ (1994) CD14 is a pattern recognition receptor. Immunity 1: 509–516.PubMedGoogle Scholar
  176. Pulverer BJ, Avruch J, Kyriakis JM, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674.PubMedGoogle Scholar
  177. Quezado ZMN, Natanson C, Ailing DW, Banks SM, Koev CA, Elin RJ, Hosseini JM, Bacher JD, Danner RL, Hoffman WD (1993) A controlled trial of HA-1A in a canine model of gram-negative septic shock. JAMA 269: 2221–2227.PubMedGoogle Scholar
  178. Qureshi N, Takayama K, Kurtz R (1991) Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides is an endotoxin antagonist in mice. Infect Immun 59: 441–444.PubMedGoogle Scholar
  179. Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Mayer H (1990) Terminal and chain-linked residues of D-galacturonic acid: characteristic constituents of the R-core regions of Proteeae and of Serratia marcescens. Sys Appl Microbiol 13: 214–219.Google Scholar
  180. Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59: 129–170.PubMedGoogle Scholar
  181. Raetz CRH, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J5: 2652–2660.Google Scholar
  182. Rietschel ET, Brade H (1992) Bacterial endotoxins. Sci Am 267: 26–33.Google Scholar
  183. Rietschel ET, Galanos C (1977) Lipid A antiserum-mediated protection against lipopolysaccharide and lipid A-induced fever and skin necrosis. Infect Immun 15: 34–49.PubMedGoogle Scholar
  184. Rietschel ET, Brade H, Brade L, Brandenburg K, Schade U, Seydel U, Zähringer U, Galonos C, Lüderitz O, Westphal O, Labischinski H, Kusumoto S, Shiba T (1987) Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res 231:25–53.PubMedGoogle Scholar
  185. Rietschel ET, Kirikae T, Schade FU, Ulmer AJ, Holst O, Brade H, Schmidt G, Mamat U, Grimmecke H-D, Kusumoto S, Zähringer U (1993) The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 187: 169–190.PubMedGoogle Scholar
  186. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F, Schreier M, Brade H (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 218: 217–225.Google Scholar
  187. Robinson PJ (1991) Phosphatidylinositol membrane anchors and T-cell activation. Immunol Today 12:35–41.PubMedGoogle Scholar
  188. Rola-Plesczcynski M, Lemaire I (1985) Leukotrienes augment interleukin 1 production by human monocytes. J Immunol 135: 3985–3961.Google Scholar
  189. Rola-Plesczcynski M, Gagnon L, Chavaillaz PA (1988) Immune regulation by leukotriene B4. Ann N Y Acad Sci 524: 218–226.Google Scholar
  190. Rozalski A, Brade L, Kuhn H-M, Brade H, Kosma P, Appelmelk BJ, Kusumoto S, Paulsen H (1989) Determination of the epitope specificity of monoclonal antibodies against the inner core region of bacterial lipopolysaccharides by use of 3-deoxy-D-manno-octulosonate-containing synthetic antigens. Carbohydr Res 193: 257–270.PubMedGoogle Scholar
  191. Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwège V, Hedman H, Freyssinet J-M (1994) Monocyte vesiculation is a possible mechanismen for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153:3245–3255.PubMedGoogle Scholar
  192. Saxen H, Nurminen M, Kuusi N, Svenson SB, Mäkelä PH (1986) Evidence for the importance of O antigen specific antibodies in mouse-protective Salmonella outer membrane protein (porin) antisera. Microb Pathog 1: 433–441.PubMedGoogle Scholar
  193. Schade FU, Burmeister I, Engel R (1987) Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide-stimulated macrophages. Biochem Biophys Res Commun 147: 695–700.PubMedGoogle Scholar
  194. Schade FU, Burmeister I, Elekes E, Engel R, Wolter DT (1989a) Mononuclear phagocytes and eicosanoids: aspects of their synthesis and biological activities. Blut 59: 475–485.PubMedGoogle Scholar
  195. Schade FU, Ernst M, Reinke M, Wolter DT (1989b) Lipoxygenase inhibitors suppress formation of tumor necrosis factor in vitro and in vivo. Biochem Biophys Res Commun 159: 748–754.PubMedGoogle Scholar
  196. Schade FU, Engel R, Jakobs D (1991) Differential protective activities of site specific lipoxygenase inhibitors in endotoxic shock and production of tumor necrosis factor. Int J Immunopharmacol 13:565–571.PubMedGoogle Scholar
  197. Schedel I, Dreikhausen U, Nentwig B, Höckenschnieder M, Rauthmann D, Balikcioglu S, Coldewey R, Diecher H (1991) Treatment of gram-negative septic shock with an immunoglobulin preparation: a prospective, randomized clinical trial. Crit Care Med 19: 1104–1113.PubMedGoogle Scholar
  198. Schletter J, Brade H, Krüger C, Loppnow H, Rietschel ET, Flad H-D, Ulmer AJ (1994) Binding of lipopolysaccharide to an 80 kDa membrane protein of human cells is mediated by serum factors. Immunobiology 191: 273.Google Scholar
  199. Schletter J, Brade H, Brade L, Krüger C, Loppnow H, Kusumoto S, Rietschel ET, Flad H-D, Ulmer AJ (1995) Binding of lipopolysaccharide (LPS) to an 80 kD membrane protein of human cells is mediated by soluble CD14 and LPS-binding protein. Infect Immun 63: 2576–2580.PubMedGoogle Scholar
  200. Schönbeck U, Brandt E, Flad H-D, Rietschel ET, Loppnow H (1994) S-form lipopolysaccharide induces leukocyte adhesion to human vascular endothelial cells as potent as IL-1: lipid A precursor la antagonizes induction of adhesion by LPS. J Endotox Res 1: 4–13.Google Scholar
  201. Schönbeck U, Brandt E, Petersen F, Flad H-D, Loppnow H (1995) Interleukin 8 specifically binds to endothelial but not to smooth muscle cells. J Immunol 154: 2375–2883.PubMedGoogle Scholar
  202. Schromm AB, Brandenburg K, Rietschel ET, Seydel U (1995) Do endotoxin aggregates intercalate into phospholipid membranes in a nonspecific, hydrophobic manner? J Endotox Res 2: 313–323.Google Scholar
  203. Schumann RR (1992) Function of lipopolysaccharide binding protein and CD14, the receptor for LPS/ LBP complexes: a short review. Res Immunol 143: 11–15.PubMedGoogle Scholar
  204. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249: 1429–1431.PubMedGoogle Scholar
  205. Schütt C, Schumann RR (1993) Der Endotoxinrezeptor CD14. Immun Infekt 21: 36–40.PubMedGoogle Scholar
  206. Schütt C, Ringel B, Nausch M, BaŽil V, Horejsi V, Neels P, Alzel H, Jonas L, Siegl E, Friemel H, Plantikow A (1988) Human monocyte activation induced by an anti-CD14 monoclonal antibody. Immunol Lett 19: 321–328.PubMedGoogle Scholar
  207. Schütt C, Schilling T, Grünwald U, Schoenfeld W, Krüger C (1992) Endotoxin-neutralizing capacity of soluble CD14. Res Immunol 143: 71–78.PubMedGoogle Scholar
  208. Seydel U, Labischinski H, Kastowsky M, Brandenburg K (1993) Phase behaviour, supramolecular structure, and molecular conformation of lipopolysaccharide. Immunobiology 187: 191–211.PubMedGoogle Scholar
  209. Shear MJ, Turner FC (1943) Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrates. J Natl Cancer inst 4: 81–97.Google Scholar
  210. Shinomiya H, Hirata H, Nakano M (1991) Purification and characterization of the 65-kDa protein phosphorylated in murine macrophages by stimulation with bacterial lipopolysaccharide. J Immunol 146: 3617–3625.PubMedGoogle Scholar
  211. Shnyra A, Hultenby K, Lindberg AA (1993) Role of the physical state of Salmonella lipopolysaccharide in expression of biological and endotoxic properties. Infect Immun 61: 5351–5360.PubMedGoogle Scholar
  212. Sonesson A, Moll H, Jantzen E, Zähringer U (1993) Long-chain α-hydroxy-(w-1)-oxo fatty acids and α-hydroxy-1, w-dioic fatty acids are cell wall constituents of Legionella (L. jordanis, L maceachernii and L. micdadei). FEMS Microbiol Lett 106: 315–320.PubMedGoogle Scholar
  213. Steel DM, Whitehead AS (1994) The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 15: 81–88.PubMedGoogle Scholar
  214. Stefanova I, Corcoran ML, Horak EM, Wahl LM, Bolen JB, Horak ID (1994) Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem 268: 20725–20728.Google Scholar
  215. Sturgill TW, Ray LB, Erikson E, Mailer JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334: 713–718.Google Scholar
  216. Süsskind M, Müller-Loennies S, Nimmich W, Brade H, Holst O (1995) Structural investigation on the carbohydrate backbone of the lipopolysaccharide from Klebsiella pneumoniae rough mutant R20/ Or. Carbohydr Res 269: C1–C7.PubMedGoogle Scholar
  217. Swierzko A, Brade L, Höffgen E, Paulsen H, Brade H (1993) Specificity of rabbit antisera against the lipopolysaccharide of Salmonella minnesota strain R7 (chemotype Rd-1P). FEMS Med Microbiol Immunol 7: 265–270.Google Scholar
  218. Swierzko A, Brade I, Brabetz W, Zych K, Paulsen H, Brade H (1994) Monoclonal antibodies against the heptose region of enterobacterial lipopolysaccharides. J Endotox Res 1: 38–44.Google Scholar
  219. Takayama K, Qureshi N (1992) Chemical structure of lipid A. In: Molecular biochemistry and cellular biology. Morrison DC, Ryan JL (eds) CRC Press, Boca Raton, pp 43–60 (Bacterial endotoxin lipopolysaccharides, vol 1)Google Scholar
  220. Takayama K, Mitchell DH, Din ZZ, Mukerjee P, Li C, Coleman DL (1994) Monomeric Re lipopolysaccharide from Escherichia coli is more active than the aggregated form in the Limulus amoebocyte lysate assay and in inducing Egr-1 mRNA in murine peritoneal macrophages. J Biol Chem 269: 2241–2244.PubMedGoogle Scholar
  221. Teng NNH, Kaplan HS, Herbert JM, Moore C, Douglas H, Wunerlich A, Braude A (1985) Protection against gram-negative bacteremia and endotoxemia with human monoclonal IgM antibodies. Proc Natl Acad Sci USA 82: 1790–1794.PubMedGoogle Scholar
  222. Theofan G, Horwitz AH, Williams RE, Liu P-S, Chan I, Birr C, Carroll SF, Mészäros K, Parent JB, Kasler H, Aberle S, Trown PW, Gazzano-Santoro H (1994) An aminoterminal fragment of human lipopolysaccharide-binding protein retains lipid A binding but not CD14-stimulatory activity. J Immunol 152:3623–3629.PubMedGoogle Scholar
  223. Tiegs G, Wendel A (1988) Leukotriene-mediated liver injury. Biochem Pharmacol 37: 2569–2573.PubMedGoogle Scholar
  224. Tiegs G, Barsig J, Matiba B, Uhlig S, Wendel A (1994) Potentiation by granulocyte macrophage colony-stimulating factor of lipopolysaccharide toxicity in mice. J Clin Invest 93: 2616–2622.PubMedGoogle Scholar
  225. Tobias PS, Ulevitch RJ (1993) Lipopolysaccharide binding protein and CD14 in LPS-dependent macrophage activation. Immunobiol 187: 227–232.Google Scholar
  226. Tobias PS, Soldau K, Ulevitch RJ (1986) Isolation of a lipopolysaccharide binding acute phase reactant from rabbit serum. J Exp med 164: 777–793.PubMedGoogle Scholar
  227. Tobias PS, Mathison JC, Ulevitch RJ (1988) A family of lipopolysaccharide binding proteins involved in responses to Gram-negative sepsis. J Biol Chem 263: 13479–13781.PubMedGoogle Scholar
  228. Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270: 10482–10488.PubMedGoogle Scholar
  229. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ III, Zentella A, Albert JD (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474.PubMedGoogle Scholar
  230. Trautman M, Hahn H (1985) Antiserum against Escherichia coli J5: a reevaluation of its in vitro and in vivo activity against heterologous gram-negative bacteria. Infection 13: 140–145.Google Scholar
  231. Ulevitch RJ (1993) Recognition of bacterial endotoxin by receptor dependent mechanisms. Adv Immunol 53: 267–288.PubMedGoogle Scholar
  232. Ulevitch RJ, Johnston AR, Weinstein DB (1981) New function for high density lipoproteins. Isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma. J Clin Invest 67: 827–837.PubMedGoogle Scholar
  233. Ulevitch RJ, Schumann RR, Mathison JC, Leavesley DI, Martin TR, Soldau K, Kline L, Wolfson E, Tobias PS (1990) Endogenous anti-endotoxin mechanisms. In: Baumgartner, Calandra, Carlet (eds) Endotoxin: from pathophysiology to therapeutic approaches. Flammarion, Paris, pp 31–42.Google Scholar
  234. Ulmer AJ, Feist W, Heine H, Kirikae T, Kirikae F, Kusumoto S, Kusama T, Brade H, Schade FU, Rietschel ET, Flad H-D (1992) Modulation of endotoxin-induced monokine release in human monocytes by lipid A partial structures inhibiting the binding of 125I-LPS. Infect Immun 60: 5145–5152.PubMedGoogle Scholar
  235. Viriyakosol S Kirkland TN (1995) A region of human CD14 required for lipopolysaccharide binding. J Biol Chem 270: 361–368.PubMedGoogle Scholar
  236. Vogel SN, Hogan MM (1990) The role of cytokines in endotoxin-mediated host responses. In: Oppenheim JJ, Shevack EM (eds) Immunopharmacology—the Role of Cells and Cytokines in Immunity and Inflammation. Oxford University Press, New York, pp 238–258.Google Scholar
  237. Vosbeck K, Tobias PS, Mueller H, Allen RA, Arfors K-E, Ulevitch RJ, Sklar LA (1990) Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. J Leukocyte Biol 47: 97–104.PubMedGoogle Scholar
  238. Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1: 355.PubMedGoogle Scholar
  239. Wang M-H, Flad H-D, Feist W, Brade H, Kusumoto S, Rietschel ET, Ulmer AJ (1991) Inhibition of endotoxin-induced interleukin-6 production by synthetic lipid A partial structures in human peripheral blood mononuclear cells. Infect Immun 59: 4655–4664.PubMedGoogle Scholar
  240. Warren HS, Danner RL, Munford RS (1993) Anti-endotoxin monoclonal antibodies. N Engl J Med 326:1153–1157.Google Scholar
  241. Weidemann B, Brade H, Rietschel ET, Dziarski R, BaŽil V, Kusumoto S, Flad H-D, Ulmer AJ (1994) Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect Immun 62: 4709–4715.PubMedGoogle Scholar
  242. Weinstein SL, Gold MR, DeFranco AL (1991) Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci USA 88: 4148–4152.PubMedGoogle Scholar
  243. Weinstein SL, Sanghera JS, Lemke K, De Franco AL, Pelech SL (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem 267: 14955–14962.PubMedGoogle Scholar
  244. Weinstein SL, June CH, De Franco AL (1993) Lipopolysaccharide-induced protein tyrosine phosphorylation in human macrophages is mediated by CD14. J Immunol 151: 3829–3838.PubMedGoogle Scholar
  245. Weintraub A, Zähringer U, Wollenweber H-W, Seydel U, Rietschel ET (1989) Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide. Eur J Biochem 183:425–431.PubMedGoogle Scholar
  246. Weiss J, Elsbach P, Shu C, Castillo J, Horwitz A, Theofan G (1992) Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant Gramnegative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest 90: 1122–1130.PubMedGoogle Scholar
  247. Wenzel R, Bone R, Fein A, Quenzero R, Schentag J, Gorelick KJ, Wedel NI, Perl T (1991) Results of a second double-blind, randomized, controlled trial of antiendotoxin antibody E5 in gram-negative sepsis (Abstract). Interscience Conference on Antimicrobial Agents and Chemotherapy, Sept 19 to Oct 2, American Society of Microbiology, Washington p 294.Google Scholar
  248. Westphal O, Westphal U, Sommer T (1977) The history of pyrogen research. In: Schlessinger D (ed) Microbioloy—1977. American Society of Microbiology, Washington, pp 221–238.Google Scholar
  249. Wolff M (1904) Beiträge zur Immunitätslehre (Contributions to the teaching of Immunity). Zentralbl Bakteriol Parasitenkd Infektionskr Hyg I Orig 37: 392.Google Scholar
  250. Wright SD (1994) Septin, an activity in plasma that enables CD Independent recognition of LPS. Prog Clin Biol Res 388: 53–57.PubMedGoogle Scholar
  251. Wright SD Levin SM, Jong MTC, Chad Z, Kabbash LG (1989) CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 169: 175–183.PubMedGoogle Scholar
  252. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433.PubMedGoogle Scholar
  253. Wright SD, Ramos RA, Patel M, Miller DS (1992) A factor in plasma that opsonizes lipopolysaccharide-bearing particles for recognition by CD14 on phagocytes. J Exp Med 176: 719–727.PubMedGoogle Scholar
  254. Wurfel MM, Kunitake ST, Lichenstein H, Vane JP, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the ventralization of LPS. J Exp Med 180: 1025–1035.PubMedGoogle Scholar
  255. Young LS, Glauser MP (eds) (1991) Gram-negative septicemia and septic shock. Saunders, Philadelphia (Infectious Disease Clinics of North America, vol 5)Google Scholar
  256. Young LS, Gascon R, Alam S, Bermudez LEM (1989) Monoclonal antibodies for treatment of gramnegative infections. Rev Infect Dis 11: 1564–1571.Google Scholar
  257. Yu CL, Haskard DO, Cavender D, Ziff M (1986) Effects of bacterial lipopolysaccharides on the binding of lymphocytes to endothelial cell monolayers. J Immunol 136: 569–573.PubMedGoogle Scholar
  258. Zähringer U, Lindner B, Seydel U, Rietschel ET, Noaki H, Unger FM, Imoto M, Kusumoto S, Shiba T (1985) Structure of de-O-acylated lipopolysaccharide from the Escherichia coli Re mutant strain F515. Tetrahedr Lett 26: 6321–6324.Google Scholar
  259. Zähringer U, Lindner B, Rietschel ET (1994) Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv Carbohydr Chem Biochem 50: 211–276.PubMedGoogle Scholar
  260. Zähringer U, Knirel YA, Helbig JH, Sonesson A, Marre R, Rietschel ET (1995) The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): Chemical structure and biological significance. Prog Clin Biol Res 392: 114–139.Google Scholar
  261. Ziegler EJ, Douglas H, Sherman JE, Davis CE, Braude AI (1973) Treatment of E. coli and Klebsielia bacteremia in agranulocytic animals with antiserum to a UDP-Gal epimerase-deficient mutant. J Immunol 111: 433–438.PubMedGoogle Scholar
  262. Ziegler EJ, McCutchan JA, Fierer J, Glauser MP, Sadoff JC, Douglas H, Braude A (1982) Treatment of Gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307: 1225–1230.PubMedGoogle Scholar
  263. Ziegler SF, Wilson CB, Perlmutter RM (1988) Augmented expression of a myeloid specific protein tyrosine kinase gene (hck) after macrophage activation. J Exp Med 168: 1801–1810.PubMedGoogle Scholar
  264. Ziegler EJ, Fischer CJ, Sprung CI, Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP, Teng NNH, Allen IE, Berger HJ, Knatterud Gl, LoBuglio AF, the HA-1A Sepsis Study Group (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. N Engl J Med 324: 429–436.PubMedGoogle Scholar
  265. Ziegler-Heitbrock HWL, Ulevitch RJ (1993) CD14: cell surface receptor and differentiation marker. Immunol Today 14: 121–125.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. T. Rietschel
    • 1
  • H. Brade
    • 1
  • O. Holst
    • 1
  • L. Brade
    • 1
  • S. Müller-Loennies
    • 1
  • U. Mamat
    • 1
  • U. Zähringer
    • 1
  • F. Beckmann
    • 1
  • U. Seydel
    • 1
  • K. Brandenburg
    • 1
  • A. J. Ulmer
    • 1
  • T. Mattern
    • 1
  • H. Heine
    • 1
  • J. Schletter
    • 1
  • H. Loppnow
    • 1
  • U. Schönbeck
    • 1
  • H.-D. Flad
    • 1
  • S. Hauschildt
    • 2
  • U. F. Schade
    • 3
  • F. Di Padova
    • 4
  • S. Kusumoto
    • 5
  • R. R. Schumann
    • 6
  1. 1.Forschungszentrum BorstelZentrum für Medizin und BiowissenschaftenBorstelGermany
  2. 2.lnstitut für Zoologie und ImmunbiologieUniversität LeipzigLeipzigGermany
  3. 3.Zentrum für ChirurgieUniversitätsklinikum EssenEssenGermany
  4. 4.Sandoz, Preclinical ResearchBaselSwitzerland
  5. 5.Department of Chemistry, Faculty of ScienceOsaka UniversityJapan
  6. 6.Abteilung für Onkologie und Angewandte MolekularbiologieMax-Delbrück-Centrum für Molekulare MedizinBerlinGermany

Personalised recommendations