Radiative forcing due to changes in ozone: a comparison of different codes

  • K. P. Shine
  • B. P. Briegleb
  • A. S. Grossman
  • D. Hauglustaine
  • Huiting Mao
  • V. Ramaswamy
  • M. D. Schwarzkopf
  • R. Van Dorland
  • W.-C. Wang
Part of the NATO ASI Series book series (volume 32)


The radiative forcing due to changes in ozone in the troposphere and stratosphere is calculated using a number of different radiative transfer codes and the results are compared. The calculations use a tightly specified set of input parameters. The 14 µm band of ozone is shown to make a significant contribution to the forcing for changes in stratospheric ozone, although, because of line overlap, it is of less importance for tropospheric ozone changes. The main cause of the spread in results is differenees in the solar forcings; these differences are believed to reflect simplifications used in parameterizations rather than the actual uncertainty in modelling solar irradiances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briegleb BP (1992) Longwave band model for thermal radiation in climate studies. J Geophys Res 97: 11475–11485Google Scholar
  2. Ellingson RG, Ellis J, Fels SB (1991) The intercomparison of radiation codes used in climate models: Long wave results. J Geophys Res 96: 8929–8953CrossRefGoogle Scholar
  3. Ellingson RG, Wiscombe WJ, De Luisi J, Kunde V, Melfi H, Murcray D, Smith W (1992) The Spectral Radiation Experiment (SPECTRE): Clear sky observations and their use in ICRCCM and ITRA. Pp451–453 in “IRS ’92: Current Problems in Atmospheric Radiation” (Eds S.Keevalik and O.Karner). A. Deepak PublishingGoogle Scholar
  4. Fels SB, Kaplan LD (1975) A test of the role of longwave radiative transfer in a general circulation model. J Atmos Sci 32: 779–789CrossRefGoogle Scholar
  5. Grossman AS, Grant KE, Wuebbles DJ (1993) Radiative flux calculations at UV and visible wavelengths. LLNL Report UCRL-ID-115336, Livermore, Calif.Google Scholar
  6. Grossman AS, Grant KE (1994) A correlated k-distribution model ofthe heating rates for atmospheric mixtures of H2O, CO2, O3, CH4 and N2O in the 0-2500 cm-1 wavenumber region at altitudes between 0–60 km. Pp 97–99 in Proceedings of the 8th Conference on Atmospheric Radiation, American Meteorological Society, Boston, Mass.Google Scholar
  7. Hauglustaine DA, Granier C, Brasseur GP, Mégie G (1994) The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. J Geophys Res 99: 1173–1186CrossRefGoogle Scholar
  8. IPCC (1990) Climate Change: The IPCC Scientific Assessment. Cambridge University PressGoogle Scholar
  9. IPCC (1992) Climate Change 1992 — The Supplementary Report to the IPCC Scientific Assessment. Cambridge University PressGoogle Scholar
  10. IPCC (1994) Radiative Forcing of Climate Change. Cambridge University Press (to appear)Google Scholar
  11. Kiehl JT, Wolski RJ, Briegleb BP, Ramanathan V (1987) Documentation of radiation and cloud routines in the NCAR Community Climate Model. NCAR Technical Note TN-288+IA, NCAR, Boulder, USAGoogle Scholar
  12. Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31: 118–133CrossRefGoogle Scholar
  13. Lacis AA, Wuebbles DJ, Logan JA (1990) Radiative forcing of climate by changes in the vertical distribution of ozone. J Geophys Res 95: 9971–9981CrossRefGoogle Scholar
  14. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24: 241–259CrossRefGoogle Scholar
  15. McClatchey RA, Fenn RW, Selby JEA, Volz PE, Garing JS (1972) Optical properties ofthe atmosphere (3rd Edition) Air Force Cambridge Research Papers No 411Google Scholar
  16. Morcrette JJ (1991) Radiation and cloud radiative properties in the ECMWF forecasting system. J Geophys Res 96: 9121–9132CrossRefGoogle Scholar
  17. Ramanathan V, Dickinson RE (1979) The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth-troposphere system. J Atmos Sci 36: 1084–1104Google Scholar
  18. Ramaswamy V, Schwarzkopf MD, Shine KP (1992) Radiative forcing of climate from halocarbon induced stratospheric ozone loss. Nature 355: 810–812CrossRefGoogle Scholar
  19. Schwarzkopf MD, Fels SB (1991) The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J Geophys Res 96: 9075–9096CrossRefGoogle Scholar
  20. Schwarzkopf MD, Ramaswamy V (1993) Radiative forcing due to ozone in the 1980s: dependence on altitude of ozone change. Geophys Res Lett 20: 205–208CrossRefGoogle Scholar
  21. Shine KP (1991) On the cause of the relative greenhouse strength of gases such as the halocarbons. J Atmos Sci 48: 1513–1518CrossRefGoogle Scholar
  22. Slingo A, Schrecker HM (1982) On the shortwave properties of stratiform water clouds. Quart J R Meteorol Soc 108: 407–426CrossRefGoogle Scholar
  23. Strobel DF (1978) Parameterization ofthe atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation. J Geophys Res 83: 6225–6230CrossRefGoogle Scholar
  24. Wang WC, Sze ND (1980) Coupled effects of atmospheric N2O and O3 on the Earth’s climate. Nature 350: 573–577CrossRefGoogle Scholar
  25. Wang WC, Shi GY, Kiehl JT (1991) Incorporation ofthe thermal radiative effect of CH4, N2O, CF2Cl2 and CFCl3 into the NCAR Community Climate Model. J Geophys Res 96: 9097–9103CrossRefGoogle Scholar
  26. Wang WC, Zhuang YC, Bojkov RD (1993) Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the northern hemisphere. Geophys Res Lett 20: 1567–1570CrossRefGoogle Scholar
  27. WMO (1991) Scientific Assessment of Ozone Depletion: 1991. Global Ozone Research and Monitoring Project Report No 25. World Meteorological Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • K. P. Shine
    • 1
  • B. P. Briegleb
    • 2
  • A. S. Grossman
    • 3
  • D. Hauglustaine
    • 4
  • Huiting Mao
    • 5
  • V. Ramaswamy
    • 6
  • M. D. Schwarzkopf
    • 7
  • R. Van Dorland
    • 8
  • W.-C. Wang
    • 5
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Global Climate Research DivisionLawrence Livermore National LaboratoryLivermoreUSA
  4. 4.Service d’Aéronomie du CNRSUniversité de Paris VIParis Cedex 05France
  5. 5.Atmospheric Sciences Research CenterState University of New YorkAlbanyUSA
  6. 6.AOS ProgramPrinceton UniversityPrincetonUSA
  7. 7.GFDL/NOAAPrincetonUSA
  8. 8.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands

Personalised recommendations