Advertisement

Bacterial Insertion Sequences

  • E. Ohtsubo
  • Y. Sekine
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 204)

Abstract

While DNA has a property of being fundamentally stable as invariable genetic information, studies on gene expression and gene organization have revealed that the genome is often subject to dynamic changes. Some of these changes are brought about by mobile genetic elements which have been found in prokaryotic and eukaryotic genomes so far studied. Insertion sequences (ISs) are bacterial mobile DNA elements which cause various kinds of genome rearrangements, such as deletions, inversions, duplications, and replicon fusions, by their ability to transpose. These were discovered during investigation of mutations that are highly polar in the galactose and lactose operons of Escherichia coli K−12 (Jordan etal. 1968; Malamy 1966, 1970; Shapiro 1969) and in the early genes of bacteriophage λ (Brachet et al. 1970). Many of these mutations were shown by electron microscope heteroduplex analysis to be insertions of distinct segments of DNA which are hence called insertion sequences (Fiandt et al. 1972; Hirsch et al. 1972; Malamy et al. 1972). It was later shown that the transcription of flanking genes can originate from promoters located within an IS or from hybrid promoters created by the insertion event or by the IS-mediated genome rearrangements. An important note here is that the finding of IS elements as mobile elements to new loci to turn genes either off or on would re-evaluate the controlling elements described in maize by McClintock (1956, 1965) (see Starlinger and Saedler 1976).

Keywords

Transposable Element Insertion Sequence Mouse Mammary Tumor Virus Insertion Element Pseudoknot Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ajdic D, Jovanovic G, Glisin V, Hejna J, Savic DJ (1991) Nucleotide sequence analysis of the inversion termini located within IS3 element a3ß3 and ß5oc5 of Escherichia coli. J Bacteriol 173: 906–909PubMedGoogle Scholar
  2. Alam J, Vrba JM, Cai Y, Martin JA, Weislo LJ, Curtis SE (1991) Characterization of the IS895 family of insertion sequences from the Cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173:5778–5783PubMedGoogle Scholar
  3. Armstrong KA, Ohtsubo H, Bauer WR, Yoshioka Y, Miyazaki C, Maeda Y, Ohtsubo E (1986) Characterization of the gene products produced in minicells by pSM1, a derivative of R100. Mol Gen Genet 205:56–65PubMedCrossRefGoogle Scholar
  4. Ashby MK, Berquist PL (1990) Cloning and sequence of IS1000, a putative insertion from Thermus thermophilus HB8. Plasmid 24: 1–11PubMedCrossRefGoogle Scholar
  5. Bartlett DH, Silverman M (1989) Nucleotide sequence of IS492, a novel insertion sequence causing variation in extracellular polysaccharide production in the marine bacterium, Pseudomonas atlantica. J Bacteriol 171: 1763–1766PubMedGoogle Scholar
  6. Birkenbihl RP, Vielmetter W (1989) Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. Mol Gen Genet 220: 147–153PubMedCrossRefGoogle Scholar
  7. Bisercic M, Ochman H (1993) The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J. Bacteriol 175: 7863–7868PubMedGoogle Scholar
  8. Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III y subunit from within the x subunit reading frame. Nucleic Acids Res 18: 1725–1729PubMedCrossRefGoogle Scholar
  9. Brächet P, Eisen H, Rambach A (1970) Mutations of coliphage lambda affecting the expression of replicative functions 0 and P. Mol Gen Genet 108: 266–276PubMedCrossRefGoogle Scholar
  10. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient Coronavirus ribosomal frame- shifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547PubMedCrossRefGoogle Scholar
  11. Brierley I, Rolley NJ, Jenner AJ, Inglis SC (1991) Mutational analysis of the RNA pseudoknot component of a Coronavirus ribosomal frameshifting signal. J Mol Biol 220: 889–902PubMedCrossRefGoogle Scholar
  12. Brown PO, Bowerman B, Varmus HE, Bishop JM (1987) Correct integration of retroviral DNA in vitro. Cell 49: 347–356PubMedCrossRefGoogle Scholar
  13. Brown PO, Bowerman B, Varmus HE, Bishop JM (1989) Retroviral integration: structure of the initial covalent product and its presursor, and a role for the viral IN protein. Proc Natl Acad Sci USA 86:2525–2529PubMedCrossRefGoogle Scholar
  14. Bruton CJ, Chater KF (1987) Nucleotide sequence of IS110, an insertion sequence of Streptomyces coelicolor A3(2). Nucleic Acids Res 15: 7053–7065PubMedCrossRefGoogle Scholar
  15. Bureau TE, Wessler SR (1994)Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916Google Scholar
  16. Calos MP, Johnsrud L, Miller JH (1978) DNA sequence at the integration sites of the insertion element IS1. Cell 13:411–418PubMedCrossRefGoogle Scholar
  17. Caparon MG, Scott JR (1989) Excision and insertion of the conjugative transposon Tn916 involves a novel mechanism. Cell 59: 1027–1934PubMedCrossRefGoogle Scholar
  18. Chamorro M, Parkin N, and Varmus HE (1992) An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci USA 89:713–717PubMedCrossRefGoogle Scholar
  19. Chan PT, Lebowitz J (1982) Mapping RNA polymerase binding sites in R12 derived plasmids carrying the replication-incompatibility region and the insertion element IS1. Nucleic Acids Res 10: 7295–7311PubMedCrossRefGoogle Scholar
  20. Chandler M, Fayet O (1993) Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7: 497–503PubMedCrossRefGoogle Scholar
  21. Craigie R, Fujiwara T, Bushman F (1990) The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62: 829–837PubMedCrossRefGoogle Scholar
  22. Deonier RC, Hadley RG, Hu M (1979) Enumeration and identification of IS3 elements in Escherichia coli strains. J Bacteriol 137: 1421–1424PubMedGoogle Scholar
  23. Dinman JD, Icho T, Wickner RB (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88:174–178PubMedCrossRefGoogle Scholar
  24. Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91: 942–946PubMedCrossRefGoogle Scholar
  25. Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M, Toussaint A (1992) Cloning and sequencing of IS1086, an Alcaligeries eutrophus insertion element related to IS30 and IS4351. J Bacteriol 174: 8133–8138PubMedGoogle Scholar
  26. Dreiich M, Wilhelm R, Mous J (1992) Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188: 459–468CrossRefGoogle Scholar
  27. Engelman A, Craigie R (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66: 6361–6369PubMedGoogle Scholar
  28. Escoubas JM, Prére MF, Fayet O, Salvignol I, Galas D, Zerbib D, Chandler M (1991) Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J 10: 705–712PubMedGoogle Scholar
  29. Fayet O, Ramond P, Polard P, Prére MF, Chandler M (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol Microbiol 4: 1771–1777PubMedCrossRefGoogle Scholar
  30. Fiandt M, Szybalski W, Malamy MH (1972) Polar mutations in lac, gal, and phage X consist of a few IS-DNA sequences inserted with either orientation. Mol Gen Genet 119: 223–231PubMedCrossRefGoogle Scholar
  31. Flower AM, McHenry CS (1990) The y subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87: 3713–3717PubMedCrossRefGoogle Scholar
  32. Fournier P, Paulus F, Otten L (1993) IS870 requires a 5’-CTAG-3’ target sequence to generate the stop codon for its large ORF1. J Bacterid 175:3151–3160Google Scholar
  33. Fujiwara T, Mizuuchi K (1988) Retroviral DNA integration: structure of an integration intermediate. Cell 54: 497–504PubMedCrossRefGoogle Scholar
  34. Galas DJ, Chandler M (1989) Bacterial insertion sequences. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 109–162Google Scholar
  35. Goussard S, Sougakoff W, Mabilat C, Bauernfeind A, Courvalin (1991) An IS1 -like element is responsible for high-level synthesis of extended-spectrum ß-lactamase TEM-6 in Enterobacteriaceae. J Gen Microbiol 137: 2681–2687PubMedGoogle Scholar
  36. Grandgenett DP, Vora AC, Swanstrom R, Olsen JC (1986) Nuclease mechanism of the avian retrovirus pp32 endonuclease. J Virol 58: 970–974PubMedGoogle Scholar
  37. Green EP, Tizard MLV, Moss MT, Thompson J, Winterborne DJ, McFadden JJ, Hermon-Taylor J (1989) Sequence and characteristics of IS900, an insertion element identified in human Crohn’s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res 17: 9063–9073PubMedCrossRefGoogle Scholar
  38. Grindley NDF (1978) IS1 insertion generates duplication of a nine base pair sequence at its target site. Cell 13:419–426PubMedCrossRefGoogle Scholar
  39. Grindley NDF, Joyce CM (1981) Genetic DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc Natl Acad Sci USA 77: 7176–7180CrossRefGoogle Scholar
  40. Henderson DJ, Lydiate DJ, Hopwood DA (1989) Structural and functional analysis of the minicircle, a transposable element ofStreptomyces coelicolor A3(2). Mol Microbiol 3: 1307–1318PubMedCrossRefGoogle Scholar
  41. Henikoff S (1992) Detection of Caeriorhabditis transposon homologs in diverse organisms. New Biol 4: 382–388PubMedGoogle Scholar
  42. Hirsch H-J, Starlinger P, Brächet P (1972) Two kinds of insertions in bacterial genes. Mol Gen Genet 119:191–206PubMedCrossRefGoogle Scholar
  43. Hizi A, Henderson LE, Copeland TD, Sowder RC, Hixson CV, Oroszlan S (1987) Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing. Proc Natl Acad Sci USA 84: 7041–7045PubMedCrossRefGoogle Scholar
  44. Hoover TA, Vodkin MH, Williams JC (1992) ACoxiella burnetii repeated DNA element resembling a bacterial insertion sequence. J Bacteriol 174: 5540–5548PubMedGoogle Scholar
  45. Hu S, Ptashne K, Cohen SN, Davidson N (1975) aß sequence uf F is IS3. J Bacteriol 123: 687–692Google Scholar
  46. lida S, Arber W (1980) On the role of IS1 in the formation of hybrids between the bacteriophage P1 and the R plasmid NR1. Mol Gen Genet 177: 261–270CrossRefGoogle Scholar
  47. Jacks T, Townsley K, Varmus HE, Majors J (1987) Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sci USA 84: 4298–4302PubMedCrossRefGoogle Scholar
  48. Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447–458PubMedCrossRefGoogle Scholar
  49. Jakowec M, Prentki P, Chandler M, Galas DJ (1988) Mutational analysis of the open reading frames in the transposable element IS1. Genetics 120: 47–55PubMedGoogle Scholar
  50. Jaraczewski JW, Jahn CL (1993) Elimination of Tec elements involves a novel excision process. Genes Dev 7: 95–105PubMedCrossRefGoogle Scholar
  51. Johnsrud L (1979) DNA sequence of the transposable element IS1. Mol Gen Genet 169: 213–218PubMedCrossRefGoogle Scholar
  52. Jordan E, Saedler H, Starlinger P (1968) O-zero and strong polar mutations in the gal operon are insertions. Mol Gen Genet 102: 353–363PubMedCrossRefGoogle Scholar
  53. Kanazawa H, Kiyasu T, Noumi T, Futai M, Yamaguchi K (1984) Insertion of transposable elements in the promoter proximal region of the gene cluster for Escherichia coli H+-ATPase: 8 base pair repeat generated by insertion of IS1. Mol Gen Genet 194: 179–187PubMedCrossRefGoogle Scholar
  54. Kato K, Ohtsuki K, Mitsuda H, Yomo T, Negoro S (1994) Insertion sequence IS6100 on plasmid pOAD2, which degrades nylon oligomers. J Bacteriol 176: 1197–1200PubMedGoogle Scholar
  55. Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM (1990) The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63: 87–95PubMedCrossRefGoogle Scholar
  56. Katzman M, Katz RA, Skalka AM, Leis J (1989) The avain retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63: 5319–5327PubMedGoogle Scholar
  57. Khan E, Mack JPG, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19: 851–860PubMedCrossRefGoogle Scholar
  58. Klaer R, Starlinger P (1980) IS4 at its chromosomal site in E. coli K-12. Mol Gen Genet 178: 285–291PubMedCrossRefGoogle Scholar
  59. Klaer R, Kühn S, Tillman E, Fritz H-J, Starlinger P (1981) The sequence of IS4. Mol Gen Genet 181: 169–175PubMedCrossRefGoogle Scholar
  60. Kohara Y, Akiyama K, Isono K (1987) The physical map of the wholeE. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495–508PubMedCrossRefGoogle Scholar
  61. Komoda Y, Enomoto M, Tominaga A (1991) Large inversion in Escherichia coli K-12 14851N between inversely oriented IS3 elements near lac and cdd. Genetics 129: 639–645PubMedGoogle Scholar
  62. Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12: 2331–2338PubMedGoogle Scholar
  63. Kunze ZM, Wall S, Appelberg R, Silva MT, Portaeis F, McFadden JJ (1991) IS901, a new member of a widespread class of atypical insertion sequences is associated with pathogenicity in Mycobacterium avium. Mol Microbiol 5: 2265–2272PubMedCrossRefGoogle Scholar
  64. Lawrence JG, Ochman H, Hartl DL (1992) The evolution of insertion sequences within enteric bacteria. Genetics 131: 9–20PubMedGoogle Scholar
  65. Lenich AG, Glasgow AC (1994) Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacuriata, and transposases of an unusual family of insertion elements. J Bacteriol 176:4160–4164PubMedGoogle Scholar
  66. Leskiw BK, Mevarech M, Barritt LS, Jensen SE, Henderson DJ, Hopwood DA, Bruton CJ, Chater KF (1990) Discovery of an insertion sequence, IS116, from Streptomyces clavuligerus and its relatedness to other transposable elements from actinomycetes. J Gen Microbiol 136: 1251–1258PubMedGoogle Scholar
  67. Luthi K, Moser M, Ryser J, Weber H (1990) Evidence for a role of translational frameshifting in the expression of transposition activity of the bacterial insertion element IS1. Gene 88: 15–20PubMedCrossRefGoogle Scholar
  68. Machida C, Machida Y (1989) Regulation of IS 1 transposition by the insA gene product. J Mol Biol 208: 567–574PubMedCrossRefGoogle Scholar
  69. Machida C, Machida Y, Ohtsubo E (1984) Both inverted repeat sequences located at the ends of IS1 provide promoter functions. J Mol Biol 177: 247–267PubMedCrossRefGoogle Scholar
  70. Machida Y, Machida C, Ohtsubo H, Ohtsubo E (1982) Factors determining frequency of plasmid cointegration mediated by insertion sequence IS1. Proc Natl Acad Sci USA 79: 277–281PubMedCrossRefGoogle Scholar
  71. Machida Y, Machida C, Ohtsubo E (1984) Insertion element IS1 encodes two structural genes required for its transposition. J Mol Biol 177: 229–245PubMedCrossRefGoogle Scholar
  72. Maekawa T, Ohtsubo E (1994) Identification of the region that determines the specificity of binding of the transposases encoded by Tn3 and y8 to the terminal inverted repeat sequences. Jpn J Genet 69: 269–285PubMedCrossRefGoogle Scholar
  73. Mahillon J, Seurinck J, van Rompuy L, Delcour J, Zabeau M (1985) Nucleotide sequences and structural organization of an insertion sequence element (IS231) from Bacillus thuringiensis strain berliner 1715. EMBO J 4: 3985–3899Google Scholar
  74. Polard P, Prere MF, Fayet 0, Chandler M (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J 11: 5079–5090PubMedGoogle Scholar
  75. Prere MF, Chandler M, Fayet O (1990) Transposition in Shigella dyseriteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. J Bacteriol 172: 4090–4099PubMedGoogle Scholar
  76. Rädström P, Sköld O, Swedberg G, Flensburg J, Roy PH, Sundström (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu and retroelements. J Bacteriol 176: 3257–3268PubMedGoogle Scholar
  77. Ramirez SJ, Alvarez G, Cisneros E, Gomez EM (1992) Distribution of insertion sequence IS1 in multiple-antibiotic resistant clinical Enterobacteriaceae strains. FEMS Microbiol Lett 72:189–193CrossRefGoogle Scholar
  78. Reimmann C, More R, Little S, Savioz A, Willetts NS, Haas D (1989) Genetic structure, function and regulation of the transposable element IS21. Mol Gen Genet 215: 416–424PubMedCrossRefGoogle Scholar
  79. Rezsöhazy R, Hallet B, Delcour J (1992) IS231D, E, and F, three new insertion sequences in Bacillus thuringiensis: extension of the IS231 family. Mol Microbiol 6: 1959–1967PubMedCrossRefGoogle Scholar
  80. Rezsöhazy R, Hallet B, Delcour J, Mahillon J (1993a) The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol 9:1283–1295PubMedCrossRefGoogle Scholar
  81. Rezsöhazy R, Hallet B, Mahillon J, Delcour J (1993b) IS231V and W from Bacillus thuringiensis subsp. israelensis, two distant members of the IS231 family of insertion sequences. Plasmid 30: 141–149PubMedCrossRefGoogle Scholar
  82. Rice NR, Stephens RM, Burny A, Gilden RV (1985) The gag and pol genes of bovine leukemia virus: nucleotide sequence and analysis. Virology 142: 357–377PubMedCrossRefGoogle Scholar
  83. Rodriguez H, Snow ET, Bhat U, Loechler (1992) AnEscherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res 270: 219–231PubMedCrossRefGoogle Scholar
  84. Romantschuk M, Richter GY, Mukhopadhyay P, Mills (1991) IS801, an insertion sequence element isolated from Pseudomonas syringae phaseolicola. Mol Microbiol 5: 617–622PubMedCrossRefGoogle Scholar
  85. Rose AM, Snutch TP (1984) Isolation of the closed circular form of the transposable element Tc1 in Caenorhabditis elegans. Nature 311: 485–486PubMedCrossRefGoogle Scholar
  86. Ruan KS, Emmons SW (1984) Extrachromosomal copies of transposon Tc1 in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 81: 4018–4022PubMedCrossRefGoogle Scholar
  87. Schwartz E, Kröger M, Rak B (1988) IS 150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. Nucleic Acids Res 16: 6789–6802PubMedCrossRefGoogle Scholar
  88. Scott JR, Kirchman PA, Caparon MG (1988) An intermediate in transposition of the conjugative transposon Tn916. Proc Natl Acad Sci USA 85: 4809–4813PubMedCrossRefGoogle Scholar
  89. Sekine Y, Ohtsubo E (1989) Frameshifting is required for expression of IS1 transposase. Proc Natl Acad Sci USA 86: 4609–4613PubMedCrossRefGoogle Scholar
  90. Sekine Y, Ohtsubo E (1991) Translational frameshifting in IS elements and other genetic systems. In: Kimura M, Takahata N (eds) New aspects of the genetics of molecular evolution. Japan Sci Soc Press, Tokyo/Springer, Berlin Heidelberg New York, pp 243–261Google Scholar
  91. Sekine Y, Ohtsubo E (1992) DNA sequences required for translational frameshifting in production of the transposase encoded by IS1. Mol Gen Genet 235: 325–332PubMedCrossRefGoogle Scholar
  92. Sekine Y, Nagasawa H, Ohtsubo E (1992) Identification of the site of translational frameshifting required for production of the transposase encoded by insertion sequence IS1. Mol Gen Genet 235: 317–324PubMedCrossRefGoogle Scholar
  93. Sekine Y, Eisaki N, Ohtsubo E (1994) Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol 235: 1406–1420PubMedCrossRefGoogle Scholar
  94. Sekine Y, Eisaki N, Ohtsubo E (1995) Identification and characterization of the linear IS3 molecules generated by staggered breaks. J Biol Chem (in press)Google Scholar
  95. Sekino N, Sekine Y, Ohtsubo E (1995) I Si-encoded proteins, InsA and the InsA-B’-lnsB transframe protein (transposase): functions deduced from their DNA-binding ability. Adv Biophys 31: 209–222PubMedCrossRefGoogle Scholar
  96. Shapiro JA (1969) Mutations caused by insertion of genetic material into the galactose operon of Escherichia coli. J Mol Biol 40: 93–105PubMedCrossRefGoogle Scholar
  97. Sherman PA, Fyfe JA (1990) Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selectine DNA cleaving activity. Proc Natl Acad Sci USA 87: 5119–5123PubMedCrossRefGoogle Scholar
  98. Sherratt D (1989) Tn3 and related transposable elements: site-specific recombination and transposition. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp163–184Google Scholar
  99. Shimotohno K, Takahashi Y, Shimizu N, Gojobori T, Golde DW, Chen IS, Miwa YM, and Sugimura T (1985) Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene. Proc Natl Acad Sci USA 82: 3101–3105PubMedCrossRefGoogle Scholar
  100. Skaliter R, Eichenbaum Z, Shwartz H, Ascarelli GR, Livneh Z (1992) Spontaneous transposition in bacteriophage lambda cro gene residing on a plasmid. Mutat Res 267: 139–151PubMedCrossRefGoogle Scholar
  101. Mahillon J, Seurinck J, Delcour J, Zabeau M (1987) Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon in Bacillus thuririgierisis. Gene 51: 187–196PubMedCrossRefGoogle Scholar
  102. Malamy MH (1966) Frameshift mutations in the lactose operon of £ coli. Cold Spring Harb Symp Quant Biol 31: 189–201PubMedGoogle Scholar
  103. Malamy MH (1970) Some properties of insertion mutations in the lac operon. In: Beckwith JR, Zipser D (eds) The loctose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 359–373Google Scholar
  104. Malamy MH, Fiandt M, Szybalski W (1972) Electron microscopy of polar insertions in the lac operon of Escherichia coli. Mol Gen Genet 119: 207–222PubMedCrossRefGoogle Scholar
  105. Malamy MH, Rahaim PT, Hoffman CS, Baghdoyan D, O’Connor MB, Miller JF (1985) A frameshift mutation at the junction of an IS1 insertion within lacZ restores ß-galactosidase activity via formation of an active lacZ-IS1 fusion protein. J Mol Biol 181: 551–555PubMedCrossRefGoogle Scholar
  106. Martin C, Timm J, Rauzier J, Gomez-Lus R, Davies J, Gicquel B (1990) Transposition of an antibiotics resistance element in mycobacteria. Nature 345: 739–743PubMedCrossRefGoogle Scholar
  107. Matsutani S, Ohtsubo E (1993) Distribution of the Shigella sonriei insertion elements in Entero- bacteriaceae. Gene 127: 111–115PubMedCrossRefGoogle Scholar
  108. Matsutani S, Ohtsubo H, Maeda Y, Ohtsubo E (1987) Isolation and characterization of IS elements repeated in the bacterial chromosome. J Mol Biol 196: 445–455PubMedCrossRefGoogle Scholar
  109. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216PubMedGoogle Scholar
  110. McClintock B (1965) The control of gene action in maize. Brookhaven Simp Biol 18: 162–184Google Scholar
  111. Mendiola MV, de la Cruz F (1989) Specificity of insertion of IS91, an insertion sequence present in alpha-hemolysin Plasmids of Escherichia coli. Mol Microbiol 3: 979–984PubMedCrossRefGoogle Scholar
  112. Mendiola MV, de la Cruz F (1992) IS91 transposase is related to the rolling-circle-type replication protein of the pUB110 family of plasmids. Nucleic Acids Res 20: 3521PubMedCrossRefGoogle Scholar
  113. Mendiola MV, Jubete Y, de la Cruz F (1992) DNA sequence of IS91 and identification of the transposase gene. J Bacteriol 174: 1345–1351PubMedGoogle Scholar
  114. Mills JA, Venkatesan MM, Baron LS, Buysse JM (1992) Spontaneous insertion of an IS1 -like element into the virF gene is responsible for avirulence in opaque colonial variants of Shigella flexrieri 2a. Infect Immun 60: 175–182PubMedGoogle Scholar
  115. Moore R, Dixon M, Smith R, Peters G, Dickson C (1987) Complete nucleotide sequence of a milk- transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol 61: 480–490PubMedGoogle Scholar
  116. Moss MT, Malik ZP, Tizard MLV, Green EP, Sanderson JD, Hermon-Taylor J (1992) IS902, an insertion element of the chronic-enteritis-causing Mycobacterium avium subsp. silvaticum. J Gen Microbiol 138: 139–145PubMedGoogle Scholar
  117. Nakatsu C, Ng J, Singh R, Straus N, Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316PubMedCrossRefGoogle Scholar
  118. Nyman K, Nakamura K, Ohtsubo H, Ohtsubo E (1981) Distribution of the insertion sequence IS1 in gram-negative bacteria. Nature 289: 609–612PubMedCrossRefGoogle Scholar
  119. Ohtsubo E, Zenilman M, Ohtsubo H (1980) Plasmids containing insertion elements are potential transposons. Proc Natl Acad Sci USA 77: 750–754PubMedCrossRefGoogle Scholar
  120. Ohtsubo E, Zenilman M, Ohtsubo H, McCormick M, Machida C, Machida Y (1981) Mechanism of insertion and cointegration mediated by IS1 and Tn3. Cold Spring Harb Symp Quant Biol 45: 283–295PubMedGoogle Scholar
  121. Ohtsubo E, Ohtsubo H, Doroszkiewicz W, Nyman K, Allen D, Davison D (1984) An evolutionary analysis of iso-ISI elements from Escherichia coli and Shigella strains. J Gen Appl Microbiol 30: 359–376CrossRefGoogle Scholar
  122. Ohtsubo H, Ohtsubo E (1978) Nucleotide sequence of an insertion element, IS1. Proc Natl Acad Sci USA 75:615–619PubMedCrossRefGoogle Scholar
  123. Ohtsubo H, Nyman K, Doroszkiewicz W, Ohtsubo E (1981) Multiple copies of iso-insertion sequences of IS1 in Shigella dysenteriae chromosome. Nature 292: 640–643PubMedCrossRefGoogle Scholar
  124. Ohtsubo H, Zenilman M, Ohtsubo E (1980) Insertion element IS102 resides in plasmid pSCl01. J Bacteriol 144: 131–140PubMedGoogle Scholar
  125. Olasz F, Stalder R, Arber W (1993) Formation of the tandem repeat (IS30)2 and its role in IS30-mediated transpositional DNA rearrangements. Mol Gen Genet 239: 177–187PubMedGoogle Scholar
  126. Ou JT, Huang CJ, Houng HS, Baron LS (1992) Role of IS1 in the conversion of virulence (Vi) antigen expression in Enterobacteriaceae. Mol Gen Genet 234: 228–232PubMedCrossRefGoogle Scholar
  127. Pabo C, Sauer R (1984) Protein-DNA recognition. Annu Rev Biochem 53: 293–321PubMedCrossRefGoogle Scholar
  128. Polard P, Prere MF, Chandler M, Fayet O (1991) Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol Biol 222: 465–477CrossRefGoogle Scholar
  129. Sommer H, Cullum J, Saedler H (1979) Integration of IS3 into IS2 generates a short sequence duplication. Mol Gen Genet 177: 85–89PubMedCrossRefGoogle Scholar
  130. Spielmann-Ryser J, Moser M, Kast P, Weber H (1991) Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli. Mol Gen Genet 226: 441–448PubMedCrossRefGoogle Scholar
  131. Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439PubMedCrossRefGoogle Scholar
  132. Starlinger P, Saedler H (1976) IS-elements in microorganisms. In: Compans RW, Cooper M, Koprowski H et al. (eds) Current topics in microbiology and immunology, vol 75. Springer, Berlin Heidelberg New York, pp 111–152Google Scholar
  133. Tenzen T, Ohtsubo E (1991) Preferential transposition of an IS630-associated composite transposon to TA in the 5’-CTAG-3’ sequence. J Bacteriol 173: 6207–6212PubMedGoogle Scholar
  134. Tenzen T, Matsutani S, Ohtsubo E (1990) Site-specific transposition of insertion sequence IS630. J Bacteriol 172: 3830–3836PubMedGoogle Scholar
  135. Tenzen T, Matsuda Y, Ohtsubo H, Ohtsubo E (1994) Transposition of Tnr1 in rice genomes to 5’- PuTAPy-3’ duplicating the TA sequence. Mol Gen Genet 245: 441–448PubMedCrossRefGoogle Scholar
  136. Terry R, Soltis DA, Katzman M, Cobrinik D, Leis J, Skalka AM (1988) Properties of avain sarcoma leukosis virus pp32-related pol-endonuclease produced in Escherichia coli. J Virol 62: 2358–2365PubMedGoogle Scholar
  137. Timmerman KP, Tu CD (1985) Complete sequence of IS3. Nucleic Acids Res 13: 2127–2139PubMedCrossRefGoogle Scholar
  138. Toba MM, Hashimoto GT (1992) Characterization of the spontaneous elimination of streptomycin sensitivity (SmS) on high-copy-number plasmids: SmS-enforcement cloning vectors with a syntheticrpsL gene. Gene 121: 25–33CrossRefGoogle Scholar
  139. Trinks K, Habermann P, Beyreuther K, Starlinger P, Ehring R (1981) An IS4-encoded protein is synthesized in minicells. Mol Gen Genet 182: 183–188PubMedCrossRefGoogle Scholar
  140. Tsuchihashi Z, Brown PO (1992) Sequence requirements for efficient translational frameshifting in the Escherichia coli driaX gene and the role of an unstable interaction between tRNALys and an AAG lysine codon. Genes Dev 6: 511–519PubMedCrossRefGoogle Scholar
  141. Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the y subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87: 2516–2520PubMedCrossRefGoogle Scholar
  142. Tudor M, Lobocka M, Goodell M, Pettitt J, O’Hare K (1992) The pogo transposable element family of Drosophila melanogaster. Mol Gen Genet 231:126–134CrossRefGoogle Scholar
  143. Umeda M, Ohtsubo E (1989) Mapping of insertion elements IS1, IS2 and IS3 on the E. coli K-12 chromosome: role of insertion elements in formation of Hfrs and F-prime factors and in rearrangement of bacterial chromosomes. J Mol Biol 208: 601–614PubMedCrossRefGoogle Scholar
  144. Umeda M, Ohtsubo E (1990a) Mapping of insertion element IS5 in the Escherichia coli K-12 chromosome: chromosomal rearrangement mediated by IS5. J Mol Biol 213: 229–237PubMedCrossRefGoogle Scholar
  145. Umeda M, Ohtsubo E (1990b) Mapping of insertion element IS30 on the Escherichia coli K-12 chromosome. Mol Gen Genet 222: 317–322PubMedCrossRefGoogle Scholar
  146. Umeda M, Ohtsubo E (1991) Four types of IS1 with difference in nucleotide sequences residue in the Escherichia coli K-12 chromosome. Gene 98: 1–5PubMedCrossRefGoogle Scholar
  147. Umeda M, Ohtsubo H, Ohtsubo E (1991) Diversification of the rice wxgene by insertion of mobile DNA elements into introns. Jpn J Genet 66: 569–586PubMedCrossRefGoogle Scholar
  148. van der Meer JR, Zehnder AJB, de Vos WM (1991) Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol 173: 7077–7083PubMedGoogle Scholar
  149. van Gent DC, Oude Groeneger AAM, Plasterk RHA (1992) Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc Natl Acad Sci USA 89: 9598–9602PubMedCrossRefGoogle Scholar
  150. van Hove B, Staudenmaier H, Braun V (1990) Novel two-component transmembrane transcriptional control: regulation of iron dicitrate transport in Escherichia coli K-12. J Bacteriol 172: 6749–6758PubMedGoogle Scholar
  151. Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 53–108Google Scholar
  152. Vögele K, Schwartz E, Welz C, Schiltz E, Rak B (1991) High-level ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res 19: 4377–4385PubMedCrossRefGoogle Scholar
  153. Weiss RB, Dunn DM, Atkins JFM, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops:-2, -1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 52: 687–693PubMedGoogle Scholar
  154. Yoshioka Y, Ohtsubo H, Ohtsubo E (1987) Repressor gene finO in plasmids R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into finO. J Bacteriol 169: 619–623PubMedGoogle Scholar
  155. Yoshioka Y, Fujita Y, Ohtsubo E (1990) Nucleotide sequence of the promoter distal region of the tra operon including tral (DNA helicase I) and traD genes of plasmid R100. J Mol Biol 214: 39–53PubMedCrossRefGoogle Scholar
  156. Zerbib D, Jakowec M, Prentki P, Galas DJ, Chandler M (1987) Expression of proteins essential for IS1 transposition: specific binding of InsA to the ends of IS1. EMBO J 6: 3163–3169PubMedGoogle Scholar
  157. Zerbib D, Polard P, Escoubas JM, Galas D, Chandler M (1990a) The regulatory role of the IS1-encoded InsA protein in transposition. Mol Microbiol 4: 471–477PubMedCrossRefGoogle Scholar
  158. Zerbib D, Prentki P, Gamas P, Freund E, Galas DJ, Chandler M (1990b) Functional organization of the ends of IS1: specific binding for an IS1-encoded protein. Mol Microbiol 4: 1477–1486PubMedCrossRefGoogle Scholar
  159. Zuber U, Schumann W (1993) The eighth copy of IS1 in Escherichia coli W3110 maps at 49.6 min. J Bacteriol 175:1552PubMedGoogle Scholar
  160. Zuerner RL (1994) Nucleotide sequence analysis of IS1533 from Leptospira borgpetersenii: identification and expression of two IS-encoded proteins. Plasmid 31:1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. Ohtsubo
    • 1
  • Y. Sekine
    • 1
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo-ku, Tokyo 113Japan

Personalised recommendations