Skip to main content

Funktion, Lokalisation und Regulation des D3-Rezeptors: Relevanz für antipsychotische Mechanismen

  • Conference paper
Schizophrenie

Zusammenfassung

Mit molekularbiologischen Techniken konnten in jüngerer Zeit 5 verschiedene Gene identifiziert werden, die für Dopaminrezeptoren (DA-Rezeptoren) kodieren (Schwartz et al. 1992; Sibley u. Monsma 1992). Diese Rezeptoren lassen sich in D1- und D2-artige Unterfamilien einteilen, welche sich mehr oder weniger mit den früher in klassischen pharmakologischen Studien definierten D1- und D2-Rezeptoren decken (Spano et al. 1978; Kebabian u. Calne 1979). D1-artige Rezeptoren, z. B. D1- und D5-Rezeptoren, aktivieren die Bildung von zyklischem Adenosinmonophosphat (cAMP) und weisen eine hohe Affinität für „D1-selektive“ Agonisten und Antagonisten auf. D2-artige Rezeptoren, z. B. D2-, D3- und D4-Rezeptoren, verhalten sich wie hemmende Rezeptoren, indem sie nämlich im Fall der D2-und D4-Rezeptoren die Bildung von cAMP verhindern (Neve et al. 1989; Vallar et al. 1990, 1991; Cohen et al. 1993) und binden bereits früher identifizierte „D2-selektive“ Substanzen wie Anti-Parkinsonmittel und Antipsychotika.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Autelitano DJ, Snyder L, Sealfon SC, Roberts JL (1989) Dopamine D2-receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol Cell Endocrinol 67: 101–105

    Article  PubMed  CAS  Google Scholar 

  • Beckman L, Frohlander N (1990) Heterozygosity effects in studies of genetic markers in disease. Hum Hered 40: 322–329

    Article  PubMed  CAS  Google Scholar 

  • Bernard KF, Weinberger DR (1990) The prefrontal cortex in schizophrenia and other neuropsychiatric disease: in vivo physiological correlates of cognitive deficits. Prog Brain Res 85: 521–536

    Google Scholar 

  • Bernard V, Le Moine C, Bloch B (1991) Striatal neurons express increased level of dopamine D2 receptor mRNA in response to haloperidol treatment: a quantitative in situ hybridization study. Neuroscience 45: 117–126

    Article  PubMed  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564: 203–219

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D3 dopamine receptors. Science 260: 1815–1816

    Article  Google Scholar 

  • Castro SW, Strange PG (1993) Differences in the ligand binding properties of the short and long versions of the D2 dopamine receptor. J Neurochem 60: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Cohen AI, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci USA 89: 12093–12097

    Article  PubMed  CAS  Google Scholar 

  • Coon H, Byerley W, Holik J et al. (1993) Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees. Am J Hum Genet, in press

    Google Scholar 

  • Creese I, Sibley DR (1980) Receptor adaptations to centrally acting drugs. Annu Rev Pharmacol Toxico1 21:357–391

    Article  Google Scholar 

  • Crocq MA, Mant R, Asherson P et al. (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet 29: 858–860

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Cross AJ, Johnstone EC, Longden A, Owen F, Ridley RM (1980) Time course of the antipsychotic effect in schizophrenia and some changes in postmortem brain and their relation to neuroleptic medication. Adv Biochem Psychopharmac 24: 495–503

    CAS  Google Scholar 

  • Curran T (1988) The fos oncogene. In: Reddy EP, Shalka AM, Curran T (eds) The Oncogene Handbook, Elsevier, Amsterdam, p 307

    Google Scholar 

  • Daly SA, Waddington JL (1993) Behavioural effects of the putative D3 dopamine receptor agonist 7-OH-DPAT in relation to other „D2-like“ agonists. Neuropharmacology 32: 509–510

    Article  PubMed  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human DI dopamine receptor. Nature 347: 72–76

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Lee MC, Ladorola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3: 332–341

    Article  PubMed  CAS  Google Scholar 

  • Essman WD, Mc Gonigle P, Lucki I (1993) Anatomical differentiation within the nucleus accumbens of the locomotor stimulatory actions of selective dopamine agonists and d-amphetamine. Psychopharmacology 112: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptorincrease in PET study of schizophrenia. Arch Gen Psychiatry 44:671–672

    PubMed  CAS  Google Scholar 

  • Lang J (1983) Purification and characterization of subforms of the guanine-nucleotidebinding proteins Gai and Gao, Eur J Biochem 183:687

    Article  Google Scholar 

  • Gershon ES (1990) Genetics. In: Goodwin FK, Jamison KR (eds) Manic depressive illness, Oxford Univ Press, New York, pp 373–401

    Google Scholar 

  • Gottesman II (1991) Schizophrenia genesis: the origins of madness. Freedman WH (ed) New York.

    Google Scholar 

  • Govoni S, Hong JS, Yang H-Y T, Costa E (1980) Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J Pharm Exp Ther 215: 413–417

    CAS  Google Scholar 

  • Levant B, Bissette G, Widerlöv E, Nemeroff CB (1991) Alterations in regional brain neurotensin concentrations produced by atypical antipsychotic drugs. Regul Pept 32: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87: 6912–6916

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen Hi, Berendse HW, Meredith GE, Haber SN, Voorn P, Wolters JG, Lohman ARM (1991) Functional anatomy of the ventral limbic system-innervated striatum. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action, John Wiley, Chichester, p 19–59

    Google Scholar 

  • Jönsson E, Lannfelt L, Sokoloff P, Schwartz J-C, Sedvall G (1993) Lack of association between schizophrenia and alleles in the dopamine D3 receptor gene. Acta Psychiatr Scand 87: 345–349

    Article  PubMed  Google Scholar 

  • Julius D (1990) Molecular biology of serotonin receptors, Annu Rev Neurosci 14: 335–360

    Article  Google Scholar 

  • Kanterman RY, Mahan LC, Briley EM, Monsma FJ, Sibley DR, Axelrod J, Feldek CC (1991) Transfected D2 dopamine receptors mediate the potentiation of arachidonic release in Chinese Hamster Ovary cells. Mol Pharmacol 39: 364–369

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Caine DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Kislaukis E, Dobner PR (1990) Mutually dependent response elements in the cis-regulated region of the neurotensin/neuromedin N gene integrate environmental stimuli in PC 12 cells. Neuron 4: 783–795

    Google Scholar 

  • Kopp J, Lindefors N, Brene S, Hall H, Persson H, Sedvall G (1992) Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain. Neuroscience 47: 771–779

    Article  PubMed  CAS  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993) Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res 18: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Lang J (1983) Purification and characterization of subforms of the guanine-nucleotidebinding proteins Gai and Gao, Eur J Biochem 183: 687

    Article  Google Scholar 

  • Levesque D, Diaz J, Pilon C et al. (1992) Identification, characterization and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin, Proc Natl Acad Sci USA 89: 8155–8159

    Article  PubMed  CAS  Google Scholar 

  • Mant R, Williams J, Asherson P, Parfitt E, McGuffin P, Owen MJ (1994) The relationship between homozygosity at the dopamine D3 receptor gene and schizophrenia. Am J Med Genet (in press)

    Google Scholar 

  • Martres MP, Sokoloff P, Giros B, Schwartz JC (1992) Effects of dopaminergic transmission interruption on the D2 receptor isoforms in various cerebral tissues. J Neurochem 58: 673–679

    Article  PubMed  CAS  Google Scholar 

  • Martres M-P, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [1251]iodosulpride, a highly selective ligand. Science 228: 752–755

    Article  PubMed  CAS  Google Scholar 

  • Marx JL (1987) The fos gene as „master switch“. Science 237: 854–856

    Article  PubMed  CAS  Google Scholar 

  • Merchant KM, Dorsa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci USA 90: 3447–3451

    Article  PubMed  CAS  Google Scholar 

  • Miller JC (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J Neurochem 54: 1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Moises HW, Gelernter J, Giuffra LA et al. (1991) No linkage between D2 dopamine receptor gene region and schizophrenia. Arch Gen Psychiatr 48: 643–647

    PubMed  CAS  Google Scholar 

  • Monsma FJ, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci USA 87: 6723–6727

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12: 459–462

    Article  PubMed  CAS  Google Scholar 

  • Müller R (1986) Cellular and viral fos genes: structure, regulation of expression and bio- logical properties of their encoded products, Biochim Biophys Acta 823: 207–225

    PubMed  Google Scholar 

  • Neve KA, Henningen RA, Bunzow JR, Civelli O (1989) Functional characterization of a rat dopamine D2 cDNA expressed in a mammalian cell line. Mol Pharmacol 36: 446–451

    PubMed  CAS  Google Scholar 

  • Nguyen TV, Kasofsky B, Birnbaum B, Cohen B, Hyman SE (1992) Differential expression of c-fos and Zif 268 in rat striatum following haloperidol, clozapine and amphetamine. Proc Natl Acad Sci USA 89: 4270–4274

    Article  PubMed  CAS  Google Scholar 

  • Nimgaonkar VL, Zhang XR, Caldwell JG, Ganuli R, Chakravarti A (1993) An association with dopamine D3 receptor gene polymorphisms: probable effects of family history of schizophrenia. Am J Med Genet (in press)

    Google Scholar 

  • Nöthen M, Körner J, Lannfelt L et al. (1993) Lack of association between schizophrenia and alleles of the dopamine D1 D2, D3 and D4 receptor loci. Arch Gen Psychiatr (in press)

    Google Scholar 

  • Paul ML, Graybiel AM, David JC, Robertson HA (1992) D1-like and D2-like dodapine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12: 3729–3742

    PubMed  CAS  Google Scholar 

  • Pilon C, Levesque D, Dimitriadou V, Griffon N, Martres M-P, Schwartz JC, Sokoloff P (1994) Functional coupling of the human dopamine D3 receptor in a transfected NG 108–15 neuroblastoma-glioma hybrid cell line. Eur J Pharmacol Mol Pharmac Sect (submitted)

    Google Scholar 

  • Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC (1991) Dopamine activation of the arachidonic acid cascade via a modulatory mechanism as a basis for D1/D2 receptor synergism. Nature 353: 164–167

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase C-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46: 315–328

    Article  PubMed  CAS  Google Scholar 

  • Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) D1- dopamine receptor agonists selectively activate c-fos independant of rotational behavior, Brain Res 503: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Schmauss C, Haroutunian V, Davis KL, Davison M (1993) Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci USA 90: 8942–8946

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J-C, Giros B, Martres M-P, Sokoloff P (1992) The dopamine receptor family: molecular biology and pharmacology. Sem Neurosci 4: 99–108

    Article  Google Scholar 

  • Seabrook GR, Patel S, Marwood R, Emms F, Knowles MR, Freedman SB, McAllister G (1992) Stable expression of human D3 dopamine receptors in GH4 Ci pituitary cells. FEBS Lett 312: 123–126

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the central nervous system. Neuron 4: 477–485

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Larrick JW (1992) Competitive PCR. Nature 359: 557–558

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres MP, Giros B, Schwartz JC (1992) Pharmacology of human D3 dopamine receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol Mol Pharmacol Sect 225: 331–337

    Article  CAS  Google Scholar 

  • Spano PF, Govoni S, Trabucchi M (1978) Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol 19: 155–165

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM et al. (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF et al. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350: 614–619

    Article  PubMed  CAS  Google Scholar 

  • Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 334:234–245

    Article  PubMed  CAS  Google Scholar 

  • Tiberi M, Jarvie KR, Silvia C et al. (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 88: 7491–7495

    Article  PubMed  CAS  Google Scholar 

  • Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types. J Biol Chem 265: 10320–10326

    PubMed  CAS  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Article  PubMed  Google Scholar 

  • Willner P, Scheel-Krüger J (1991) The mesolimbic dopamine system: from motivation to action. John Wiley, Chichester

    Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE et al. (1986) Postron emission tomography reveals ele- vated D2 dopamine receptors in drug-naive schizophrenics. Nature 234: 1558–1563

    CAS  Google Scholar 

  • Young ST, Porrino LJ, Iadorola MJ (1991) Cocaine induces striatal c-fos immunoreactivity proteins via dopaminergic D1 receptors. Proc Natl Acad Sci 88: 1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS, Johnson SN (1989) Asymetrical distribution of neurotensin immunoreactivity following unilateral injection of 6-hydroxydopamine in rat ventral tegmental area (VTA) Brain Res 483: 301–311

    CAS  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the „accumbens“ part of the rat ventral striatum. Neuroscience 50: 751–767

    Article  PubMed  CAS  Google Scholar 

  • Zhou QZ, Grandy DK, Thambi L et al. (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347: 76–80

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sokoloff, P. et al. (1995). Funktion, Lokalisation und Regulation des D3-Rezeptors: Relevanz für antipsychotische Mechanismen. In: Gerlach, J. (eds) Schizophrenie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79738-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79738-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59243-3

  • Online ISBN: 978-3-642-79738-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics