Air pollution, Photosynthesis and Forest Decline: Interactions and Consequences

  • U. Heber
  • W. Kaiser
  • M. Luwe
  • G. Kindermann
  • S. Veljovic-Javonovic
  • Z. Yin
  • H. Pfanz
  • S. Slovik
Part of the Springer Study Edition book series (volume 100)


Industrialization has led, and is still leading, to the emission of large quantities of sulfur dioxide and nitrogen oxides in many countries. Atmospheric photochemistry has added ozone, which is formed by the interaction between light, NO2, and oxygen, and is one of the strongest oxidants known. There are also other air pollutants with the potential to damage plants, but since, according to Paracelsus, “the dose defines a poison”, only those pollutants can cause plant injury which occur at concentrations high enough to produce appreciable diffusional fluxes into the plants, fluxes that cannot be mastered by the chemical fluxes engaged in detoxifying entering pollutants.


Sulfur Dioxide Tolerance Limit Forest Decline Radical Chain Oxidation Cation Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–288Google Scholar
  2. Davison AW, Bailey IF (1982) SO2 pollution reduces the freezing resistance of ryegrass. Nature 297: 400–402CrossRefGoogle Scholar
  3. Dittrich A, Pfanz H, Heber U (1992) Oxidation and reduction of SO2 by chloroplasts and formation of sulfite addition compounds. Plant Physiol 98: 738–744PubMedCrossRefGoogle Scholar
  4. Elstner EF (1984) Schadstoffe die über die Luft zugeführt werden. In: Hock B, Elstner EF (eds) Pflanzentoxikologie. B.I. Wissenschaftsverlag, Mannheim, pp 67–94Google Scholar
  5. Elstner EF (1990) Der Sauerstoff. B.I. Wissenschaftsverlag, MannheimGoogle Scholar
  6. Hällgren JE (1978) Physiological and biochemical effects of sulfur dioxide on plants. In: Nriagu IO (ed) Sulfur in the environment. Part II. Ecological impacts. Wiley, New York, pp 163–209Google Scholar
  7. Halliwell B (1978) The Chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog Biophys Mol Biol 33: 1–54PubMedCrossRefGoogle Scholar
  8. Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9–17CrossRefGoogle Scholar
  9. Hampp R, Ziegler I (1977) Sulfate and sulfite translocation via the phosphate translocator of the inner envelope membrane of chloroplasts. Planta 137: 309–312CrossRefGoogle Scholar
  10. Hampp R, Spedding DJ, Zieger I, Ziegler H (1980) The efflux of inorganic sulfur from spinach chloroplasts. Z Pflanzenphysiol 99: 113–119Google Scholar
  11. Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31: 395–431CrossRefGoogle Scholar
  12. Heber U, Purczeld P (1978) Substrate and product fluxes across the chloroplast envelope during bicarbonate and nitrite reduction. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77, Proc 4th Int Congr Photosynth. Biochemical Society, London, pp 299–310Google Scholar
  13. Heber U, Laisk A, Pfanz H, Lange OL (1987) Wann ist SO2 Nähr- und wann Schadstoff? Ein Beitrag zum Waldschadensproblem. Allg Forstztg 27/28/29: 700–705Google Scholar
  14. Heber U, Yin Z-H, Dittrich A, Pfanz H, Lange O-L (1989a) The response of leaves to potentially acidic gases. In: Ulrich B (ed) International congress on forest decline research: state of knowledge and perspectives, Friedrichshafen, October 2–6, 1989, BMFT, pp 499–516Google Scholar
  15. Heber U, Yin Z-H, Dittrich A, Ghisi R, Wagner U (1989b) Response of mesophyll cells and its organelles to the stresses produced by the atmospheric pollutant SO2. In: Tazawa M, Katsumi M, Masuda Y, Okamoto H (eds) Pant water relations and growth under stress. Yamada Science Foundation and Myu KK, Tokyo, pp 93–100Google Scholar
  16. Heggestad HE, Bennet HJ (1981) Photochemical oxidants potentiate yield losses in snap beans attributable to sulfur dioxide. Science 213: 1008–1010PubMedCrossRefGoogle Scholar
  17. Jäger HJ (1989) Stand der Diskussion über Richtwerte für Schadstoffkonzentrationen in der Luft. In: Ulrich B (ed) International congress on forest decline research: state of knowledge and perspectives, Friedrichshafen, Oct. 2–6, 1989, Lecture Volume II, BMFT, pp 717–731Google Scholar
  18. Kaiser G, Martinoia E, Schröppel-Meier G, Heber U (1989) Active transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol 133: 756–763Google Scholar
  19. Kaiser WM (1976) The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim Biophys Acta 440: 476–482PubMedCrossRefGoogle Scholar
  20. Kaiser WM, Dittrich APM, Heber U (1991) Sulfatakkumulation in Fichtennadeln als Folge von SO2-Belastung. In: PBWU (ed) Proc 2. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”, Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen. GSF-Ber 26/91: 425–437Google Scholar
  21. Kaiser WM, Spill D, Brendle-Behnisch E (1992) Adenine nucleotides are apparently involved in the light-dark modulation of spinach-leaf nitrate reductase. Planta 186: 236–240CrossRefGoogle Scholar
  22. Kaiser WM, Höfler M, Heber U (1993a) Can plants exposed to SO2 excrete sulfuric acid through the roots. Physiol Plant 87: 61–67CrossRefGoogle Scholar
  23. Kaiser WM, Dittrich A, Heber U (1993b) Sulfate concentrations in Norway spruce needles in relation to atmospheric SO2: a comparison of trees from various forests in Germany with trees fumigated with SO2 in growth chambers. Tree Physiol 12: 1–13PubMedGoogle Scholar
  24. Kaupenjohann M, Schneider BU, Hantschel R, Zech W, Horn R (1988) Sulfuric acid rain treatment of Picea abies (L.) Karst.: effects on nutrient solution, throughfall chemistry, and tree nutrition. Z Pflanzenernähr Bodenkd 151: 123–126CrossRefGoogle Scholar
  25. Krämer E, Tischner R, Schmidt A (1988) Regulation of assimilatory nitrate reduction at the level of nitrite in Chlorella fusca. Planta 176: 28–35CrossRefGoogle Scholar
  26. Kreutzer K, Göttlein A (1991) Ökosystemforschung Höglwald. Paul Parey, HamburgGoogle Scholar
  27. Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90: 1163–1167PubMedCrossRefGoogle Scholar
  28. Lange O-L, Heber U, Schulze ED, Ziegler H (1989a) Atmospheric pollutants and plant metabolism. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological Studies 77. Springer, Berlin Heidelberg New York, pp 237–273Google Scholar
  29. Lange O-L, Weikert R, Wedler M, Gebel I, Heber U (1989b) Photosynthese und Nährstoffversorgung von Fichten aus einem Waldschadensgebiet auf basenarmem Untergrund. Allg Forstztg 3/1989: 55–64Google Scholar
  30. Lendzian KJ (1984) Permeability of plant cuticles to gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–81Google Scholar
  31. Lendzian KJ, Kerstiens G (1988) Interactions between plant cuticles an gaseous air pollutants. Aspects App Biol 17: 97–104Google Scholar
  32. Lendzian KJ, Kerstiens G (1991) Sorption and transport of gases and vapors in plant cuticles. Rev Environ Contam Toxicol 121: 65–128CrossRefGoogle Scholar
  33. Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach leaves. Plant Physiol 101: 969–976PubMedGoogle Scholar
  34. Matyssek R, Günthardt-Goerg MS, Saurer M, Keller T (1992) Seasonal growth, δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees 6: 69–76CrossRefGoogle Scholar
  35. Mitterhuber E, Pfanz H, Kaiser WM (1989) Leaching of solutes by the action of acidic rain: a comparison of efflux from twigs and single needles of Picea abies (L.) Karst. Plant Cell Environ 12: 93–100CrossRefGoogle Scholar
  36. Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, New YorkGoogle Scholar
  37. Oren R, Schulze ED (1989) Nutritional disharmony and forest decline: a conceptual model. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological Studies 77. Springer, Berlin Heidelberg New York, pp 425–443CrossRefGoogle Scholar
  38. Pfanz H, Beyschlag W (1991) Photosynthetic performance of Norway spruce (Picea abies (L.) Karst.) in relation to the nutrient status of the needles. A study in the forests of the Ore Mountains. In: PBWU (ed) Expertentagung Waldschäden im östlichen Mitteleuropa und in Bayern. GSF-Ber 24/91: 523–527Google Scholar
  39. Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce [Picea abies (L.) Karst.] in the forests of the Ore Mountains (Erzgebirge). Trees 7: 115–122CrossRefGoogle Scholar
  40. Pfanz H, Heber U (1986) Buffer capacities of leaf cells and leaf cell organelles in relation to fluxes of potentially acidic air pollutants. Plant Physiol 81: 597–602PubMedCrossRefGoogle Scholar
  41. Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linshens HF, Jackson IF (eds) Gases in plant and microbial cells. Mod Meth Plant Anal NS, vol 9. Springer, Berlin Heidelberg New York, pp 322–343Google Scholar
  42. Pfanz H, Oppmann B (1991) The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. In: Lobarzewski J, Greppin H, Peuel C, Gaspar Th (eds) Biochemical, molecular, and physiological aspects of plant peroxidases. University of Geneva, pp 401–417Google Scholar
  43. Pfanz H, Martinoia E, Lange OL, Heber U (1987) Mesophyll resistances to SO2 fluxes into leaves. Plant Physiol 85: 922–927PubMedCrossRefGoogle Scholar
  44. Pfanz H, Dietz K-J, Weinerth I, Oppmann B (1990) Detoxification of sulfur dioxide by apoplastic peroxidases. In: Rennenberg H, Brunold Ch, De Kok IJ, Stulen I (eds) Sulfur nutrition and assimilation in higher plants; fundamental, environmental and agricultural aspects. SPB Acad Publ, The Hague, pp 229–233Google Scholar
  45. 1.
    Polle A, Chakrabarti K, Rennenberg H (1991) Entgiftung von Peroxyden in Fichtennadeln (Picea abies L.) am Schwerpunktsstandort Kalkalpen (Wank). In: PBWU (ed) Proc 2. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”, Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen. GSF-Ber 26/91:151–160Google Scholar
  46. Raven JA (1986) Biochemical disposal of excess H+ in growing plants. New Phytol 104: 175–206CrossRefGoogle Scholar
  47. Reich PB, Amundson RG (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230: 566–570PubMedCrossRefGoogle Scholar
  48. Rennenberg H (1984) The fate of excess sulfur in higher plants. Annu Rev Plant Physiol 35: 121–153CrossRefGoogle Scholar
  49. Sandermann H, Schmitt R, Heller W, Rosemann D, Langebartels C (1989) Ozone-induced early biochemical reactions in conifers. In: Longhurst JWS (ed) Acid deposition. Sources, effects and controls. The British Library, London, pp 243–254Google Scholar
  50. Schulze E-D (1989) Die Wirkung von Immissionen auf Fichtenökosysteme — Ergebnisse der Waldschadensforschung im Fichtelgebirge. In: PBWU (ed) Proc 1. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”, Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen. GSF-Ber 6/89: 95–106Google Scholar
  51. Schulze E-D, Lange O-L, Oren R (1989) Forest decline and air pollution. A study of spruce (Picea abies) on acid soils. Springer, Berlin Heidelberg New York, 475 ppCrossRefGoogle Scholar
  52. Slovik S, Kaiser WM, Körner Ch, Kindermann G, Heber U (1992a) Quantifizierung der physiologischen Kausalkette von SO2-Immissionsschäden für Rotfichten [Picea abies (L.) Karst]. I. Ableitung von SO2-Immissionsgrenzwerten für akute Schäden. Allg Forstztg 15/1992: 800–805Google Scholar
  53. Slovik S, Heber U, Kaiser WM, Kindermann G, Körner Ch (1992b) Quantifizierung der physiologischen Kausalkette von SO2-Immissionsscnäden für Rotfichten [Picea abies (L.) Karst]. II. Ableitung von SO2-Immissionsgrenzwerten für chronische Schäden. Allg Forstztg 17/1992, 17: 913–920Google Scholar
  54. Smith WH (1991) Air pollution and forest damage. Chem Eng News 11: 30–43CrossRefGoogle Scholar
  55. Sze H (1985) H+ translocating ATPase S: advances using membrane vesicles. Annu Rev Plant Physiol 36: 175–208CrossRefGoogle Scholar
  56. Takahama U (1993) Hydrogen peroxide scavenging systems in vacuoles of mesophyll cells of Vicia faba L., Phytochemistry (in press)Google Scholar
  57. Takahama U, Veljovic-Jovanovic S, Heber U (1993) Effects of the air pollutant SO2 on leaves: inhibition of sulfite oxidation in the apoplast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol (in press)Google Scholar
  58. Thomas FM, Runge M (1992) Proton neutralization in the leaves of English oak (Quereus robur L.) exposed to sulfur dioxide. J Exp Bot 43: 803–809CrossRefGoogle Scholar
  59. Ulrich B (1980) Die Wälder in Mitteleuropa. Meßergebnisse ihrer Umweltbelastung, Theorie ihrer Gefährdung, Prognose ihrer Entwicklung. Allg Forstztg 35: 1198–1202Google Scholar
  60. 1.
    Umweltbundesamt (ed) (1991) Jahresbericht 1990. BerlinGoogle Scholar
  61. Urbach W, Schmidt W, Kolbowski J, Rümmele S, Reisberg E, Steigner W, Schreiber U (1989) Wirkungen von Umweltschadstoffen auf Photosynthese und Zellmembranen von Pflanzen. In: PBWU (ed) Proc 1. Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”, Projektgruppe Bayern zur Erforschung der Wirkung von Umweltschadstoffen. GSF-Ber 6/89: 195–206Google Scholar
  62. Veljovic-Jovanovic S, Bilger W, Heber U (1993) Inhibition of photosynthesis, Stimulation of zeaxanthin formation and acidification in leaves by SO2 and reversal of these effects. Planta (in press)Google Scholar
  63. Walker RR, Leigh RA (1981) Mg2+-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153: 150–155CrossRefGoogle Scholar
  64. Wellburn AR (1984) The influence of atmospheric pollutants and their cellular products upon photophosphorylation and related events. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 203–221Google Scholar
  65. Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phyototoxic and not alternative fertilizers? Tansley Rev 24, New Phytol 115: 395–429CrossRefGoogle Scholar
  66. Würfel M, Häberlein I, Follmann H (1990) Inactivation of thioredoxin by sulfite ions. FEBS Lett 268: 146–148.PubMedCrossRefGoogle Scholar
  67. Yin Z-H (1990) Durch Licht oder Luftschadstoffe induzierte pH-Änderungen in verschiedenen Kompartimenten der Blätter höherer Pflanzen. PhD Thesis, University of WürzburgGoogle Scholar
  68. Yoneyama T, Saskawa H, Ishizuka S, Totsuka T (1979) Absorption of atmospheric NO2 by plants and soils. II. Nitrite accumulation, nitrite reductase activity and diurnal change of NO2 absorption in leaves. Soil Sci Plant Nutr 25: 267–276Google Scholar
  69. Zeevaart AJ (1976) Some effects of fumigating plants for short periods with NO2. Environ Pollut 11: 97–108CrossRefGoogle Scholar
  70. Ziegler I (1975) The effect of SO2-pollution on plant metabolism. Res Rev 56: 79–105Google Scholar
  71. Ziegler H (1988) Weg der Schadstoffe in die Pflanze. In: Hock B, Elstner EF (eds) Schadwirkungen auf Pflanzen, 2nd edn. Bibliographisches Institut, Mannheim, pp 35–46Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • U. Heber
  • W. Kaiser
  • M. Luwe
  • G. Kindermann
  • S. Veljovic-Javonovic
  • Z. Yin
  • H. Pfanz
  • S. Slovik

There are no affiliations available

Personalised recommendations