Measles Virus-Mononuclear Cell Interactions

  • P. Borrow
  • M. B. A. Oldstone
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 191)

Abstract

The immune system has evolved to defend the body from pathogens; and concurrently pathogens, including viruses, have developed a variety of ingenious strategies to interfere with the immune defense mechanisms and hence promote their persistence at the individual or population level. The outcome of an infection is thus dependent on a two-way interaction between the pathogen and cells of the immune system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcami A, Smith GL (1992) A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection Cell 71: 153–167PubMedCrossRefGoogle Scholar
  2. Arneborn P, Biberfeld G (1983) T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella Infect Immun 39: 29–37PubMedGoogle Scholar
  3. Attibele N, Wyde PR, Trial J, Smole SC, Smith CW, Rossen RD (1993) Measles virus-induced changes in leukocyte function antigen 1 expression and leukocyte aggregation: possible role in measles virus pathogenesis J Virol 67: 1075–1079PubMedGoogle Scholar
  4. Barry DW, Sullivan JL, Lucas SJ, Dunlap RC, Albrecht P (1976) Acute and chronic infection of human Iymphoblastoid cell lines with measles virus, J Immunol 116: 89–98PubMedGoogle Scholar
  5. Beckford AP, Kaschula ROC, Stephen C (1985) Factors associated with fatal cases of measles: a retrospective autopsy study, S Afr Med J 68: 858–863PubMedGoogle Scholar
  6. Blumberg RW, Cassady HA (1947) Effect of measles on nephrotic syndrome Am J Dis Child 63: 151–166Google Scholar
  7. Boldogh I, Abubaker S, Albrecht T (1990) Activation of protooncogenes: an immediate early event in human cytomegalovirus infection. Science 247: 561–564PubMedCrossRefGoogle Scholar
  8. Borrow P, Tishon A, Oldstone MBA (1991) Infection of lymphocytes by a virus that aborts cytotoxic T lymphocyte activity and establishes persistent infection. J Exp Med 174: 203–212PubMedCrossRefGoogle Scholar
  9. Borysiewicz LK, Casali P, Rogers B, Morris S, Sissons JGP (1985). The immunosuppressive effects of measles virus on T cell function-failure to affect IL-2 release or cytotoxic T cell activity in vitro. Clin Exp Immunol 59: 29–36PubMedGoogle Scholar
  10. Casali P, Rice GP, Oldstone MBA (1984) Viruses distrupt functions of human lymphocytes. Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production. J Exp Med 159: 1322–1337PubMedCrossRefGoogle Scholar
  11. Casali P, Nakamura M, McChesney MB (1989) Immunosuppression by measles virus. In: Spector S, Bendinelli M, Friendman H (eds) Virus-induced immunosuppression. Plenum, New York, pp 345–373Google Scholar
  12. Dalgleish AC, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4(T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767PubMedCrossRefGoogle Scholar
  13. Dalgleish AG, Wilson S, Gompels M, Ludlam C, Gazzard B, Coates AM, Habeshaw J (1992) T-cell receptor variable gene products and early HIV-1 infection, Lancet 339: 824–828PubMedCrossRefGoogle Scholar
  14. de la Torre JC, Borrow P, Oldstone MBA (1991) Viral persistence and disease: cytopathology in the absence of cytolysis Br Med Bull 47: 838–851PubMedGoogle Scholar
  15. Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT (1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362: 359–362PubMedCrossRefGoogle Scholar
  16. Enders JF, Peebles TC (1954) Propagation in tissue cultures of cytopathogenic agents from patients with measles, Proc Soc Exp Biol Med 86: 277–286PubMedGoogle Scholar
  17. Esolen LM, Ward BJ, Moench TR, Griffin DE (1993) Infection of monocytes during measles. J Infect Dis 168: 47–52PubMedCrossRefGoogle Scholar
  18. Evans AS, Niederman JC (1982) In viral infections of humans: epidemiology and control Plenum, New York, pp253–281CrossRefGoogle Scholar
  19. Fireman P, Friday G, Kumate J (1969) Effect of measles vaccine on immunologic responsiveness. Pediatrics 43: 264–272PubMedGoogle Scholar
  20. Forthal DN, Aarnaes S, Blanding J, de la Maza L, Tilles JG (1992) Degree and length of viremia in adults with measles. J Infect Dis 166: 421–424PubMedCrossRefGoogle Scholar
  21. Galama JMD, Ubels-Postma J, Vos A, Lucas CJ (1980) Measles virus inhibits acquisition of lymphocyte functions but not established effect or functions. Cell lmmunol 50: 405–415CrossRefGoogle Scholar
  22. Gazzolo L, Dodon MD (1987) Direct activation of resting T lymphocytes by human T-Iymphotropic virus type I. Nature 326: 714–717PubMedCrossRefGoogle Scholar
  23. Golding H, Shever GM, Hillman K, Lucas P, Manischewitz J, Zajac RA, Clerici M, Gress RE, Boswell BN, Golding B (1989) Common epitope in human immunodeficiency virus (HIV)-1 gp41 and HLA class II elicits suppressive autoantibodies capable of contributing to immune dysfunction in HIV-1-infected individuals. J Clin Invest 83: 1430–1435PubMedCrossRefGoogle Scholar
  24. Gresser J, Chany C (1963) Isolating of measles virus from the washed leucocytic fraction of blood. Proc Soc Exp Biol Med 113: 695–698PubMedGoogle Scholar
  25. Griffin DE, Ward BJ (1993) Differential CD4 T cell activation in measles. J Infect Dis 168: 275–281PubMedCrossRefGoogle Scholar
  26. Griffin DE, Moench TR, Johnson RT, de Soriano IL Vaisberg A (1986) Peripheral blood mononuclear cells during natural measles virus infection: cell surface phenotypes & evidence for activation. Cline Immunol lmmunopathol 40: 305–312CrossRefGoogle Scholar
  27. Griffin DE, Johnson RT, Tamashiro VG, Moench TR, Jauregui E, Lindo-de-Soriano I, Vaisberg A (1987) In vitro studies of the role of monocytes in the immunosuppression asssociated with natural measles virus infections. Cline Immunol lmmunopathol 45: 375–383CrossRefGoogle Scholar
  28. Griffin DE, Ward BJ, Johnson RT, Jauregui E, Vaisberg A (1989) Immune activation in measles. N Engl J Med 320: 1667–1672PubMedCrossRefGoogle Scholar
  29. Griffin DE, Ward BJ, Jauregui E, Johnson RT, Vaisberg A (1990) Natural killer cell activity during measles. Clin Exp Immunol 81: 218–224PubMedCrossRefGoogle Scholar
  30. Hirsch HL, Griffin DE, Johnson RT, Cooper SJ, Lindo de Soriano I, Roedenbeck S, Vaisberg A (1984) Cellular immune responses during complicated and uncomplicated measles virus infections of man, Clin Immunol lmmunopathol 31: 1–12CrossRefGoogle Scholar
  31. Hsu DH, de Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann RT, Moore KW (1990) Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1, Science 250: 830–832PubMedCrossRefGoogle Scholar
  32. Huddlestone JR, Lampert PW, Oldstone MBA (1980) Virus-lymphocyte interactions: infection of TG and TM subsets by measles virus. Cline Immunol lmmunopathol 15: 502–509CrossRefGoogle Scholar
  33. Hyypia T, Korkiamaki P, Vainionpaa R (1985) Replication of measles virus in human lymphocytes. J Exp Med 161: 1261–1271PubMedCrossRefGoogle Scholar
  34. lIonen I, Salonen R, Marusyk R, Salmi A (1988) Measles virus strain-dependent variation in outcome of infection of human blood mononuclear cells. J. Gen Virol 69: 247–254CrossRefGoogle Scholar
  35. Jacobson S, McFarland HF (1982) Measles virus persistence in human lymphocytes: a role for virus-induced interferon J Gen Virol 63: 351–357PubMedCrossRefGoogle Scholar
  36. Joseph BS, Lampert PW, Oldstone MBA (1975) Replication and persistence of measles virus in defined subpopulations of human leukocytes. J Virol 16: 1638–1649PubMedGoogle Scholar
  37. Kapsenberg ML, Wierenga EA, Bos JD, Jansen HM (1991) Functional subsets of allergenreactive human CD4+ T cells. Immunol Today 12: 392–395PubMedCrossRefGoogle Scholar
  38. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC Montagnier L (1984b) T-Lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768PubMedCrossRefGoogle Scholar
  39. Leist TP, Ruedi E, Zinkernagerl EM (1988) Virus-triggered immune supperession in mice caused by virus-specific cytotoxic T cells. J Exp Med 167: 1749–1754PubMedCrossRefGoogle Scholar
  40. Leopardi R (1993) Measles virus infection in human immune cells Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis Sarja-Ser D. Med Odontol 114: 1–29Google Scholar
  41. Leopardi R, Vainionpaa R, Hurme M, Siljander P, Salmi A (1992) Measles virus infection enhances IL-1b but reduces tumor necrosis factor-α expression human monocytes. J Immunol 149: 2397–2401PubMedGoogle Scholar
  42. Leopardi R, Hukkanen V, Vainionpaa R, Salmi A (1993a) Cell proteins bind to sites within the 3’ noncoding region and the positive-strand leader sequence of measles virus RNA. J Virol 67: 785–790PubMedGoogle Scholar
  43. Leopardi R, lIonen J, Mattila L, Salmi A (1993b) Effect of measles virus infection on MHC class II expression and antigen presentation in human monocytes. Cell Immunol 147: 388–396PubMedCrossRefGoogle Scholar
  44. Lucas CJ, Galana JMD, Ubels-Postma J (1977) Measles virus - induced suppression of lymphocyte reactivity in vitro. Cell lmmunol 32: 70–85CrossRefGoogle Scholar
  45. Lucas CJ, Ubels-Postma JC, Galana JMD, Rezee A (1978a) Studies on the mechanism of measles virus-induced suppression of lymphocyte functions in vitro. Cell lmmunol 37: 448–458CrossRefGoogle Scholar
  46. Lucas CJ, Ubels-Postma JC, Rezee A Galana JMD, Rezee A (1978b) Activation of measles virus from silently-infected human lymphocytes. J Exp Med 148: 940–952PubMedCrossRefGoogle Scholar
  47. Macetonia SE, Gompels M, Pinching AJ, Patterson S, Knight SC (1992) Antigen presentation by macrophages but not by dendritic cells in human immunodeficiency virus (HIV) infection. Immunology 75: 576–581Google Scholar
  48. Manchester M, Liszewski MK, Atkinson J, Oldstone MBA (1993) Multiple isoforms of CD46 (membrane cofactor protein) can serve as receptors for measles virus. Proc Natl Acad Sci USA 91: 2161–2165CrossRefGoogle Scholar
  49. Mathes LE, Olsen RC, Habebrand LC, Hoover EA, Schaller JP (1978) Abrogation of lymphocyte blastogenesis by a feline leukemia virus protein. Nature 274: 687–689PubMedCrossRefGoogle Scholar
  50. Matsuyama T, Kobayashi N, Yamamoto N (1991) Cytokine and HIV infection: is AIDS a TNF disease? AIDS 5: 1405–1417PubMedCrossRefGoogle Scholar
  51. McChesney MB, Oldstone MBA (1987) Viruses perturb lymphocyte functions: selected principles characterizing virus-induced immunosuppression. Annu Rev Immunol 5: 279–304PubMedCrossRefGoogle Scholar
  52. McChesney MB, Oldstone MBA (1989) Viruses - induced immunosuppression: infections with measles virus and human immunodeficiency virus. Adv Immunol 45: 335–380PubMedCrossRefGoogle Scholar
  53. McChesney MB, Fujinami RS, Lampert PW, Oldstone MBA (1986) Viruses disrupt functions of human lymphocytes II. Measles virus suppresses antibody production by acting on B lymphocytes. J Exp Med 163: 1331–1336PubMedGoogle Scholar
  54. McChesney MB, Kehrl JH, Valsamakis A, Fauci AS, Oldstone MBA (1987) Measles virus infection of B lymphocytes permits cellular activation but block progression through the cell cycle. J Virol 61: 3441–3447PubMedGoogle Scholar
  55. McChesney MB, Altman A, Oldstone MBA (1988) Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1 J Immunol 140: 1269–1273PubMedGoogle Scholar
  56. Miller DL (1964) Frequency of complication of measles 1963 Br Med J 2: 75–78PubMedCrossRefGoogle Scholar
  57. Naniche D, Varior-Krishnan G, Cervoni F, Fabian Wild T Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032PubMedGoogle Scholar
  58. Oldstone MBA (1984) Virus can alter cell function without causing cell pathology: discordered function leads to imbalance of homeostasis and disesase. In: Notkins AL, Oldstone MBA Concepts in viral pathogenesis Springer, Berlin Heidelberg New York, pp 269–276CrossRefGoogle Scholar
  59. Osunkoya BO, Adeleye GI, Adejumo TA. Salimonu LS (1974) Studies on leukocyte cultures in measles II. Detection of measles virus antigen in human leukocytes by immunofluoresence. Arch Gesamte Virusforsch 44: 323–329PubMedCrossRefGoogle Scholar
  60. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362: 355–358PubMedCrossRefGoogle Scholar
  61. Patterson S, Knight S (1987) Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J Gen Virol 68: 1177–1181PubMedCrossRefGoogle Scholar
  62. Papp K (1937) Fixation de virus morbilleux aux leucocytes du sang de la periode d’incubation de la maladie. Bull Acad Med (Paris) 117: 46–51Google Scholar
  63. Peebles TC (1967) Distribution of virus in blood components during the viremia of measles. Arch Gesamte Virus forsch 22: 43–47CrossRefGoogle Scholar
  64. Preston VG (1990) Hepes simplex virus activates expression of a cellular gene by specific binding to the cell surface. Virology 176: 474–482PubMedCrossRefGoogle Scholar
  65. Rojko RL, Olsen RG (1984) The immunobiology of the feline leukemia virus. Vet Immunol lmmunopathol 6: 107–165CrossRefGoogle Scholar
  66. Salonen R, llonen J. Salmi AA (1988) Measles virus infection of unstimulated blood mononuclear cells in vitro: antigen expression and virus production preferentially in monocytes. Clin Exp Immunol 71: 224–228PubMedGoogle Scholar
  67. Salonen R, lIonen J. Salmi AA (1989) Measles virus inhibits lymphocyte proliferation in vitro by two different mechanisms. Clin Exp Immunol 75: 376–380PubMedGoogle Scholar
  68. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR (1991) Differeing Iymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Scinece 254: 279–282CrossRefGoogle Scholar
  69. Sanchez-Lanier M, Guerin P, McLaren LC, Bankhurst AD (1988) Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116: 367–381CrossRefGoogle Scholar
  70. Schneider-Schaulies S, Kreth HW, Hofman G, Billeter M, ter Meulen V (1991) Expression of measles virus RNA in peripheral blood mononucler cells of patients with measles, SSPE and autoimmune diseases. Virology 182: 703–711CrossRefGoogle Scholar
  71. Schrier RD, Rice GPA. Oldstone MBA (1986) Suppression of natural killer cell activity and T cell proliferation by fresh isolates of human cytomegalovirus. J Infect Dis 153: 1084–1091PubMedCrossRefGoogle Scholar
  72. Shearer GM, Clerici M (1992) T helper cell immune dysfunction in asymptomatic, HIV-1 seropositive individuals: the role of TH1-TH2 cross regulation. In RL Coffman (ed) Regulation and functional significance of T-cell subsets. Chem Immunol 54: 21–43CrossRefGoogle Scholar
  73. Sher A. Gazzinelli RT, Oswald IP, Clerici M, Kullberg M, Pearce EJ, Berzofsky JA, Mosmann TR, James SL, Morse HC (1992) Role of T-cell derived cytokinnes in the downregulation of immune responses in parasitic and retroviral infection. Immunol Rev 127: 283–294CrossRefGoogle Scholar
  74. Smithwick EM, Berkovich S (1969) The effect of measles on the In vitro lymphocyte response to tuberculin. In: Smith RT, Good RA Cellular recognition. Appleton Centruey Crafts, New York, p 131Google Scholar
  75. Somasundaran M, Robinson HL (1987) A major mechanism of human immunodeficiency virus-induced cell killing does not invove cell fusion. J Virol 61: 3114–3119PubMedGoogle Scholar
  76. Spriggs MK, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, Buller RML, Vanslyke J (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71: 145–152PubMedCrossRefGoogle Scholar
  77. Sullivan JL, Barry DW, Lucas SJ, Albrecht P (1975b) Measles infection of human mononuclear cells. I. Acute infection of peripheral blood lymphocytes and monocytes. J Exp Med 142: 773–784PubMedCrossRefGoogle Scholar
  78. Vainionpaa R, Hyypia T, Akerman KEO (1991) Early signal transduction in measles virus-infected lymphocytes is unaltered, but second meassangers activate virus replication. J Virol 65: 6743–6748PubMedGoogle Scholar
  79. Von Pirquet (1908) Das verhalten der kutanen tuberculinreaktion wahrend der masem. Dtsch Med Wochenschr 30: 1297–1300CrossRefGoogle Scholar
  80. Vydelingum S, IIonen J, Salonen R, Marusyk R, Salmi A (1989) Infection of human peripheral blood mononuclerar cells with a temperature-sensitive mutant of measles virus. J Virol 63: 689–695PubMedGoogle Scholar
  81. Walker CJ, Mody DJ, Stites DP, Levy JA (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234: 1563–1566PubMedCrossRefGoogle Scholar
  82. Ward BJ, Johnson RT, Vaisberg A, Jauregui E, Griffin DE (1990) Spontaneous proliferation of peripheral mononuclear cells in natural measles virus infection: identification of dividing cells and correlation with mitogen reponsiveness. Clin Immunol lmmunopathol 55: 315–326CrossRefGoogle Scholar
  83. Ward BJ, Johnson RT, Vaisberg A. Jauregui E, Griffin DE (1991) Cytokine production in vitro and the Iymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 61: 236–248PubMedCrossRefGoogle Scholar
  84. Weiss RA (1993) How does HIV cause AIDS? Science 260: 1273–1279PubMedCrossRefGoogle Scholar
  85. Wesley A, Coovadia HM, Henderson L (1978) Immunological recovery after measles. Clin Exp Immunol 32: 540–544PubMedGoogle Scholar
  86. White RG, Boyud JF (1973) The effect of measles on the thymus and other lymphoid tissues. Clin Exp Immunol 13: 323–357Google Scholar
  87. Whittle HC, Dossetor J, Oduloju A, Bryceson A, Greenwood BM (1978) Cell mediated immunity during natural measles infection. J Clin Invest 62: 678–684PubMedCrossRefGoogle Scholar
  88. Woodruff JJ, Woodruff JF (1974) Virus-induced alterations of lymphoid tissues. IV. The effect of Newcastle disease virus on the fate of transfused thoracic duct lymphocytes. Cell Immunol 10: 78–85PubMedCrossRefGoogle Scholar
  89. Yamanouchi K, Chino F, Kobune F, Kodama H, Tsuruhara T (1973) Growth of measles virus in the lymphoid tissues of monkeys. J Infect Dis 128: 795–799PubMedCrossRefGoogle Scholar
  90. Yanagi Y, Cubitt BA, Oldstone MBA (1992) Measles virus inhibits mitogen-induced T cell prolifereation but does not directly perturb the T cell activation process inside the cell. Virology 187: 280–289PubMedCrossRefGoogle Scholar
  91. Zweiman B (1971) In vitro effects of measles virus on proliferating human lymphocytes. J Immunol 106: 1154–1158PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Borrow
    • 1
  • M. B. A. Oldstone
    • 1
  1. 1.Viral-Immunobiology Laboratory, Division of Virology, Department of NeuropharmacologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations