Geosiphon pyriforme (Kützing) von Wettstein, a Promising System for Studying Endocyanoses

  • Manfred Kluge
  • Dieter Mollenhauer
  • Resi Mollenhauer
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 55)


Endosymbiotic consortia are fascinating from several aspects. For instance, they are excellent systems for studying the mechanisms behind cell-to-cell recognition, they open promising possibilities of analyzing metabolic and genetic exchange between the partners, and they give insight into the principles of evolution leading to the organelles of the eukaryotic cell. In context with the evolution of the photoautotrophic eucytes, endosymbioses with cyanobacteria acting as one of the partners (i. e., endocyanoses) are particularly interesting. It is a widely accepted view that the plastids have evolved from endosymbiotic cyanobacteria (Sitte and Eschbach 1992; Sitte et al. 1992). Thus, comparative studies carried out on endocyanoses are not only relevant for research on evolution and on symbiosis per se, they can also contribute substantially to deeper insights into the mechanism of photosynthesis, in particular with respect to the question of how the plastids interact with the rest of the cell. Moreover, the ecological conditions for meeting and coexistence of symbiotic partners are also of interest because a better knowledge in this field could help in understanding the environmental prerequisites which have led to the evolution of different types of eukaryotic cells.


Fungal Hypha Promise System Symbiotic Partner Subapical Region Partner Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bilger W, Büdel B, Mollenhauer D, Mollenhauer R (1993) J Phycol (in press).Google Scholar
  2. Bohnert HJ, Löffelhardt W (1992) In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 379–397.Google Scholar
  3. Bothe H, Floener L (1978) Z Naturforsch 33c:981–987.Google Scholar
  4. Campbell EL, Meeks JC, (1992) J Gen Microbiol 138:473–480.Google Scholar
  5. Feige GB (1976) Z Pflanzenphysiol 80:386–394.Google Scholar
  6. Geitler L (1959) In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 11. Springer, Berlin Göttingen Heidelberg, pp 530–545.Google Scholar
  7. Grilli Caiola M (1992) In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 231–254.Google Scholar
  8. Henriksson E (1978) In: Singh SP, Tiwari DN, Kashyap AK, Yadava PK (eds) Advances in cya- nophyte research. Varanase, pp 7–13.Google Scholar
  9. Kies L (1992) In: Reisser W (ed) Algae and Symbioses. Biopress, Bristol, pp 353–377.Google Scholar
  10. Kluge M, Mollenhauer D, Mollenhauer R (1991) Planta 185:311–315.CrossRefGoogle Scholar
  11. Kluge M, Mollenhauer D, Mollenhauer R, Kape R (1992) Bot Acta 105:343–344.Google Scholar
  12. Knapp E (1933) Ber Dtsch Bot Ges 51:210–216.Google Scholar
  13. Komarek J, Anagnostidis K (1989) Arch Hydrobiol 82,3 = Algol Stud 56:247–345.Google Scholar
  14. Kremer BP, Kies L, Rostami-Babet M (1979) Z Pflanzenphysiol 92:303–317.Google Scholar
  15. Meeks JC (1990) In: Rai AN (ed) CRC Handbook of symbiotic Cyanobacteria. CRC, Boca Raton, pp 43–63.Google Scholar
  16. Mollenhauer D (1988) Natur und Museum, Frankfurt/M. 118:289–309.Google Scholar
  17. Mollenhauer D (1992) In: Reisser W (ed) Algae and Symbioses. Biopress, Bristol, pp 339–351.Google Scholar
  18. Mollenhauer D, Mollenhauer R (1988) Endocyt C Res 5:69–73.Google Scholar
  19. Mollenhauer D, Büdel B, Mollenhauer R (1993) Algol Stud (in press).Google Scholar
  20. Paerl HW (1992) In: Reisser W (ed) Algae and Symbioses. Biopress, Bristol, pp537–565.Google Scholar
  21. Pascher A (1929) Jahrb Wiss Bot 71:386–462.Google Scholar
  22. Reisser W (1984) In: Linskens HF, Heslop-Harrison J (eds) Encyclopedia of plant physiology, vol 17. Springer, Berlin Heidelberg New York, pp 91–112.Google Scholar
  23. Schlichting R, Zimmer W, Bothe H (1990) Bot Acta 103:392–398.Google Scholar
  24. Schmidt H (1991) Diss Bot 171:201.Google Scholar
  25. Schnepf E (1964) Arch Mikrobiol 49:112–131.CrossRefGoogle Scholar
  26. Sitte P, Eschbach S (1992) In: Behnke H- D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in Botany, vol 53. Springer, Berlin Heidelberg New York, pp 29–43.Google Scholar
  27. Sitte P, Eschbach S, Maerz M (1992) In: Reisser W (ed) Algae and Symbioses. Biopress, Bristol, pp 711–733.Google Scholar
  28. Smith AJ (1982) In: Carr NG, Whitton BA (eds) The biology of Cyanobacteria. Botanical Monographs, vol 19. Blackwell, Oxford, pp 47–117.Google Scholar
  29. Stewart WDP (1978) Endeavour 2:170–179.CrossRefGoogle Scholar
  30. Stewart WDP, Rowell P, Rai AN (1983) Ann Microbiol (Inst Pasteur) 134B:205–228.CrossRefGoogle Scholar
  31. von Wettstein F (1915) Österr Bot Z 65:145–156.CrossRefGoogle Scholar
  32. Werner D (1992) Symbiosis of plants and microbes. Chapman & Hall, London.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Manfred Kluge
    • 1
  • Dieter Mollenhauer
    • 2
  • Resi Mollenhauer
    • 2
  1. 1.Institut für Botanikder Technischen HochschuleDarmstadtGermany
  2. 2.Außenstelle LochmühleForschungsinstitut SenckenbergBiebergemündGermany

Personalised recommendations