RNA Pseudoknots

  • R. M. W. Mans
  • C. W. A. Pleij
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 7)


Our view on RNA has changed radically over the last decade. In addition to its function as carrier of genetic information, RNA was shown to have several catalytic properties, culminating recently in the stunning fact that probably 23S ribosomal RNA alone participates in peptide bond formation (Noller et al. 1992).


Tobacco Mosaic Virus Hepatitis Delta Virus Hairpin Loop Barley Yellow Dwarf Virus Deep Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrahams JP, van der Berg M, van Batenburg E, Pleij CWA (1990) Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res 18: 3035–3044PubMedCrossRefGoogle Scholar
  2. Allen PN, Noller HF (1989) Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA. J Mol Biol 208: 457–468PubMedCrossRefGoogle Scholar
  3. Atkins JF, Weiss RB, Gesteland RF (1990) Ribosome gymnastics - degree of difficulty 9.5, style 10.0. Cell 62: 413–423PubMedCrossRefGoogle Scholar
  4. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus frame-shifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547PubMedCrossRefGoogle Scholar
  5. Brierley I, Rolley NJ, Jenner AJ, Inglis SC (1991) Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol 229: 889–902CrossRefGoogle Scholar
  6. Brown EA, Day SP, Jansen RW, Lemon SM (1991) THe 5′ nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro. J Virol 65: 5828–5838PubMedGoogle Scholar
  7. Chamorro M, Parkin N, Varmus HE (1992) An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci USA 89: 713–717PubMedCrossRefGoogle Scholar
  8. Chastain N, Tinoco I Jr (1991) Structural elements in RNA. Prog Nucleic Acids Res Mol Biol 41: 131–177CrossRefGoogle Scholar
  9. Clarke BE, Brown AL, Currey KM, Newton SE, Rowlands DJ, Carroll AR (1987) Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus. Nucleic Acids Res 15: 7067–7078PubMedCrossRefGoogle Scholar
  10. Deckman IC, Draper DE (1987) S4-amRNA translation regulation complex II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J Mol Biol 196: 323–332PubMedCrossRefGoogle Scholar
  11. Dinman JD, Icho T, Wickner RB (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88: 174–178PubMedCrossRefGoogle Scholar
  12. Dreher TW, Hall TC (1988) Mutational analysis of the tRNA mimicry of brome mosaic virus RNA. The sequence and structural requirements for aminoacylation and 3′- adenylation. J Mol Biol 201: 41–55PubMedCrossRefGoogle Scholar
  13. Duke GM, Hoffman M, Palmenberg AC (1992) Sequence and structural elements that contribute to efficient encephalomyocarditis viral RNA translation. J Virol 66: 1602–1609PubMedGoogle Scholar
  14. Dumas P, Moras D, Florentz C, Giege R, Verlaan P, van Belkum A, Pleij CWA (1987) 3D-graphic modeling of the tRNA-like 3′ end of turnip yellow mosaic virus RNA: structural and functional implications. J Biomol Struct Dynam 4:707–728Google Scholar
  15. Gallie DR, Walbot V (1990) RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev 4: 1149–1157PubMedCrossRefGoogle Scholar
  16. Gultyaev AP (1991) The computer simulation of RNA folding involving pseudoknot formation. Nucleic Acids Res 19: 2489–2494PubMedCrossRefGoogle Scholar
  17. Gutell RR, Woese CR (1990) Higher order structural elements in ribosomal RNAs: pseudoknots and the use of noncanonical pairs. Proc Natl Acad Sci USA 87: 663–667PubMedCrossRefGoogle Scholar
  18. Haas ES, Morse DP, Brown JW, Schmidt FJ, Pace NR (1991) Long-range structure in ribonuclease P RNA. Science 254: 853–856PubMedCrossRefGoogle Scholar
  19. Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447–458PubMedCrossRefGoogle Scholar
  20. Jaeger L, Westhof E, Michel F (1991) Function of Pll, a tertiary base pairing in self-splicing introns of subgroup 1A. J Mol Biol 221: 1153–1164PubMedCrossRefGoogle Scholar
  21. James BD, Olsen GJ, Liu J, Pace NR (1988) The secondary structure of ribonuclease pRNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52: 19–26PubMedCrossRefGoogle Scholar
  22. Kim S-H, Cech TR (1987) Three-dimensional model of the active site of the self-splicing rRNA precursor of Tetrahymena. Proc Natl Acad Sci USA 84: 8788–8792PubMedCrossRefGoogle Scholar
  23. Kösel H, Hoch B, Zeltz P (1990) Alternative base pairing between 5′- and 3′-terminal sequences of small subunit RNA may provide the basis of a conformational switch of the small ribosomal subunit. Nucleic Acids Res 18: 4083–4088PubMedCrossRefGoogle Scholar
  24. Leclerc D, Brakier-Gingras L (1991) A conformational switch involving the 915 region of Escherichia coli 16S ribosomal RNA. FEBS Lett 279: 171–174PubMedCrossRefGoogle Scholar
  25. Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R (1991) The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253: 1255–1260PubMedCrossRefGoogle Scholar
  26. Mans RMW (1991) Functional properties of plant viral RNA pseudoknots. Thesis, University of Leiden, The Netherlands Mans RMW, Pleij CWA, Bosch L (1991) Transfer RNA-like structures: structure, function and evolutionary significance. Eur J Biochem 201: 303–324Google Scholar
  27. Mans RMW, Pleij CWA, Bosch L (1991) Transfer RNA-like structures: structure, function and evolutionary significance. Eur J Biochem 201:303–324PubMedCrossRefGoogle Scholar
  28. Mans R, Van Steeg MH, Verlaan PWG, Pleij CWA, Bosch L (1992) Mutational analysis of the pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. Aminoacylation efficiency and RNA pseudoknot stability. J Mol Biol 223: 221–232PubMedCrossRefGoogle Scholar
  29. McPheeters DS, Stormo GD, Gold L (1988) Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Mol Biol 201: 517–535PubMedCrossRefGoogle Scholar
  30. Michel F, Westhof E (1990) Modelling of the three-dimensdional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610PubMedCrossRefGoogle Scholar
  31. Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns - a review. Gene 82: 5–30PubMedCrossRefGoogle Scholar
  32. Miller WA, Silver SL (1991) Alternative tertiary structure attenuates self-cleavage of the ribozyme in the satellite RNA of barley yellow dwarf virus. Nucleic Acids Res 19: 5313–5320PubMedCrossRefGoogle Scholar
  33. Morikawa S, Bishop DHL (1992) Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 186: 389–397PubMedCrossRefGoogle Scholar
  34. Neefs J-M, De Wächter R (1990) A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res 18: 5695–5704PubMedCrossRefGoogle Scholar
  35. Ninio J (1971) Properties of nucleic acid representations I. Topology. Biochimie 53: 485–494 Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419PubMedCrossRefGoogle Scholar
  36. Perrotta AT, Been MD (1991) A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 350: 434–436PubMedCrossRefGoogle Scholar
  37. Philippe C, Portier C, Mougel M, Grunberg-Manago M, Ebel JP, Ehresmann B, Ehresmann C (1990) Target site of Escherichia coli ribosomal protein S15 on its messenger RNA. J Mol Biol 211: 415–426PubMedCrossRefGoogle Scholar
  38. Pilipenko EV, Maslova SV, Sinyakov AN, Agol VI (1992) Towards identification of exacting elements involved in the replication of enterovirus and rhino virus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res 20: 1739–1745PubMedCrossRefGoogle Scholar
  39. Pleij CWA (1990) Pseudoknots: a new motif in the RNA game. Trends Biochem Sci 15: 143–147PubMedCrossRefGoogle Scholar
  40. Pleij CWA, Bosch L (1989) RNA pseudoknots: structure, detection and prediction. Methods Enzymol 180a: 289–303PubMedCrossRefGoogle Scholar
  41. Pleij CWA, Rietveld K, Bosch L (1985) A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res 13: 1717–1731PubMedCrossRefGoogle Scholar
  42. Pleij CWA, Abrahams JP, Van Belkum A, Rietveld K, Bosch L (1987) The spatial folding of the 3′ noncoding region of aminoacylatable plant viral RNAs. In: Brinton MA, Rueckert R (eds) Positive strand RNA viruses. UCLA Symp on Mol Cell Biol, Ser 54. Liss, New York, pp 299–316Google Scholar
  43. Pleij CWA, Mans RMW, Verlaan P, Bosch L (1992) H-type RNA pseudoknots: structure, mutational analysis and prediction. In: Sarma RH, Sarma MH (eds) Structure and function, vol 1. Nucleic acids. Adenine Press, pp 261–275Google Scholar
  44. Portier C, Philippe C, Dondon L, Grunberg-Manago M, Ebel JP, Ehresmann B, Ehresmann C (1990) Translational control of ribosomal protein S15. Biochim Biophys Acta 1050: 328–336PubMedGoogle Scholar
  45. Powers T, Noller HF (1991) A functional pseudoknot in 16S ribosomal RNA. EMBO J 10: 2203–2214PubMedGoogle Scholar
  46. Puglisi JD, Wyatt JR, Tinoco I Jr (1990) Conformation of an RNA pseudoknot. J Mol Biol 214: 437–453PubMedCrossRefGoogle Scholar
  47. Puglisi JD, Wyatt JR, Tinoco I Jr (1991) RNA pseudoknots. Acc Chem Res 24: 152–158CrossRefGoogle Scholar
  48. Richards EG (1969) 5S RNA. An analysis of possible base pairing schemes. Eur J Biochem 10:36–42Google Scholar
  49. Rietveld K, van Poelgeest R, Pleij CWA, van Boom JH, Bosch L (1982) The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res 10: 1929–1946PubMedCrossRefGoogle Scholar
  50. Rietveld K, Linscooten K, Pleij CWA, Bosch L (1984) The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J 3: 2613–2619PubMedGoogle Scholar
  51. Schimmel P (1989) RNA pseudoknots that interact with components of the translation apparatus. Cell 58: 9–12PubMedCrossRefGoogle Scholar
  52. Stern S, Weiser B, Noller HF (1988) Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol 204: 447–481PubMedCrossRefGoogle Scholar
  53. Studnicka GM, Rahn GM, Cummings IW, Salser WA (1978) Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res 5: 3365–3387PubMedCrossRefGoogle Scholar
  54. Tang CK, Draper DE (1990) Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationaily regulated mRNA. Biochemistry 29: 4434–4439PubMedCrossRefGoogle Scholar
  55. Ten Dam EB, Pleij CWA, Bosch L (1990) RNA pseudoknots and translational frame-shifting on retroviral, coronaviral and luteoviral RNAs. Virus Genes 4: 121–136PubMedCrossRefGoogle Scholar
  56. Tinoco I Jr, Puglisi JD, Wyatt JR (1990) RNA folding. In: Eckstein F, Lilley DMJ (eds) Nucleic Acids and Molecular Biology, vol 4. Springer, Berlin Heidelberg New York, pp 205–226Google Scholar
  57. Tsuchihashi Z (1991) Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Res 19: 2457–2462PubMedCrossRefGoogle Scholar
  58. Van Belkum A, Abrahams JP, Pleij CWA, Bosch L (1985) Five pseudoknots are present at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res 13: 7673–7686PubMedCrossRefGoogle Scholar
  59. Van Belkum A, Bingkun J, Rietveld K, Pleij CWA, Bosch L (1987) Structural similarities among valine-accepting tRNA-like structures in tymoviral and elongator tRNAs. Biochemistry 26: 1144–1151CrossRefGoogle Scholar
  60. Westhof E, Jaeger L (1992) RNA pseudoknots. Curr Opinion Struct Biol 2: 327–333CrossRefGoogle Scholar
  61. Wills N, Gesteland RF, Atkins JF (1991) Evidence that a downstream pseudoknot is required for translational readthrough of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA 88: 6991–6995PubMedCrossRefGoogle Scholar
  62. Woese CR, Gutell RR (1989) Evidence for several higher order structural elements in ribosomal RNA. Proc Natl Acad Sci USA 86: 3119–3122PubMedCrossRefGoogle Scholar
  63. Wyatt JR, Puglisi JD, Tinoco I Jr (1990) RNA pseudoknots, stability and loop size requirements. J Mol Biol 214: 455–470PubMedCrossRefGoogle Scholar
  64. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. M. W. Mans
    • 1
  • C. W. A. Pleij
    • 1
  1. 1.Department of Biochemistry, Gorlaeus LaboratoriesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations