Localization and Colocalization of Gastrointestinal Peptides

  • F. Sundler
  • E. Ekblad
  • R. Håkanson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 106)


The digestive tract is the richest source of biologically active peptides outside the brain. The number of identified gut peptides has increased dramatically over the last 2 decades. Methodological advances have made this rapid development possible. Many neurohormonal peptides have C-terminal α-amide groups and the development of a screening method for peptides with amidated C-terminal residues has enabled the isolation of several neurohormonal peptides, such as peptide histidine isoleucine amide (PHI), peptide YY (PYY), neuropeptide Y (NPY) and galanin, all of which are present in the gut (Tatemoto and Mutt 1978, 1980, 1981; Tatemoto et al. 1982, 1983). In addition, techniques of molecular biology have been used to identify the precursors of a great number of both known and previously unknown gut peptides (see e.g., Lund et al. 1982; Itoh et al. 1983; Rosenfeld et al. 1983). Many of the precursors of known peptides were found to contain, besides the known peptide, cryptic segments some of which seem to be of biological significance as messenger molecules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali-Rachedi A, Varndell IM, Adrian TE, Gapp DA, van Noorden S, Bloom SR, Polak JM (1984) Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry 80:487–489PubMedGoogle Scholar
  2. Alumets J, Håkanson R, Sundler F, Chang KJ (1978) Leu-enkephalin-like material in nerves and enterochromaffin cells in the gut. Histochemistry 56:187–196PubMedGoogle Scholar
  3. Alumets J, Ekelund M, El Munshid HA, Håkanson R, Lorén I, Sundler F (1979) Topography of somatostatin cells in the stomach of the rat; possible functional significance. Cell Tissue Res 202:177–188PubMedGoogle Scholar
  4. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedGoogle Scholar
  5. Amara S, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097PubMedGoogle Scholar
  6. Ballestra J, Cariei F, Bishop AE, Steel JH, Gibson SJ, Fehey M, Hennessey R, Domin J, Bloom SR, Polak JM (1988) Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 25:797–816Google Scholar
  7. Bishop AE, Polak JM, Bauer FE, Christofides ND, Cariei F, Bloom SR (1986) Occurrence and distribution of a newly discovered peptide, galanin, in the mammalian enteric nervous system. Gut 27:849–857PubMedGoogle Scholar
  8. Bjartell A, Ekman R, Hedenbro J, Sjölund K, Sundler F (1989) Delta sleep-inducing peptide (DSIP)-like immunoreactivity in gut: coexistence with known peptide hormones. Peptides 10:163–170PubMedGoogle Scholar
  9. Børglum-Jensen T, Fahrenkrug J, Sundler F (1991) Immunocytochemical localisation of pancreastatin and chromogranin A in porcine neuroendocrine tissues. Regul Pept 36:283–298Google Scholar
  10. Böttcher G, Sjölund K, Ekblad E, Håkanson R, Schwartz TW, Sundler F (1984) Coexistence of peptide YY and glicentin immunoreactivity in endocrine cells of the gut. Regul Pept 8:261–266PubMedGoogle Scholar
  11. Böttcher G, Alumets J, Håkanson R, Sundler F (1986) Co-existence of glicentin and peptide YY in colorectal L-cells in cat and man. An electron microscopic study. Regul Pept 13:283–291PubMedGoogle Scholar
  12. Brand SJ, Stone D (1988) Reciprocal regulation of antral gastrin and somatostatin gene expression in omeprazole-induced achlorhydria. J Clin Invest 82:1057–1066Google Scholar
  13. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79PubMedGoogle Scholar
  14. Brownstein MJ (1985) Peptide processing: an overview. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 105–112Google Scholar
  15. Bryant MG, Bloom SR, Polak JM, Albuquerque RH, Modlin I, Pearse AGE (1976) Possible dual role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance. Lancet 1:991–993PubMedGoogle Scholar
  16. Capella C, Finzi G, Cornaggia M, Usellini L, Luinetti O, Buffa R, Solcia E (1991) Ultrastructural typing of gastric endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 27–51 (Fernström symposium, no 15)Google Scholar
  17. Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nature [New Biol] 232:86–87Google Scholar
  18. Comb M, Seeburg PH, Adelman J, Eiden L, Herbert E (1982) Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature 295:663–666PubMedGoogle Scholar
  19. Curry WJ, Johnston CF, Shaw C, Buchanan KD (1990) Distribution and partial characterization of immunoreactivity to the putative C-terminus of rat pan-creastatin. Regul Pept 30:207–220PubMedGoogle Scholar
  20. Daniel EE, Furness JB, Costa M, Beibeck L (1987) The projections of chemically identified nerve fibres in canine ileum. Cell Tissue Res 247:377–384PubMedGoogle Scholar
  21. Dayal Y (1991) Neuroendocrine cells of the gastrointestinal tract: introduction and historical perspective. In: Dayal Y (ed) Endocrine pathology of the gut and pancreas. CRC, Boca Raton, pp 1–31Google Scholar
  22. Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE (1984) Cloning and sequence analysis of a cDNA encoding rat pre-procholecystokinin. Proc Natl Acad Sci USA 81:726–730PubMedGoogle Scholar
  23. Dimaline R (1988) Post-translational modification of peptide messengers in the gut. Q J Exp Physiol 73:873–902PubMedGoogle Scholar
  24. Dockray GJ, Vaillant C, Walsh JH (1979) The neuronal origin of bombesin-like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4:1561–1568PubMedGoogle Scholar
  25. Dockray GJ, Hamer C, Evans D, Karro A, Dimaline R (1991a) The secretory kinetics of the G cell in omeprazole-treated rats. Gastroenterology 100:1187–1194PubMedGoogle Scholar
  26. Dockray GJ, Varro A, Watkinson A, Dimaline R (1991b) Selective processing of peptides in gastric endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 197–210 (Fernström symposium, no 15)Google Scholar
  27. Domin J, Ghatei MA, Chohan P, Bloom SR (1987) Neuromedin U — a study of its distribution in the rat. Peptides 8:779–784PubMedGoogle Scholar
  28. Eipper BA, Mains R, Glembotski CC (1985) Peptide α-amidation: cellular and enzymatic studies. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 189–209Google Scholar
  29. Eipper BA, Mains RE, Herbert E (1986) Peptides in the nervous system. Trends Neurosci 9:463–468Google Scholar
  30. Eissele R, Rosskopf B, Koop H, Adler G, Arnold R (1991) Proliferation of endocrine cells in the rat stomach caused by drug-induced achlorhydria. Gastroenterology 101:70–76PubMedGoogle Scholar
  31. Ekblad E, Ekman R, Håkanson R, Sundler F (1984a) GRP neurones in the rat small intestine issue long anal projections. Regul Pept 9:279–287PubMedGoogle Scholar
  32. Ekblad E, Håkanson R, Sundler F (1984b) VIP and PHI coexist with an NPY-like peptide in intramural neurones of the small intestine. Regul Pept 10:47–58PubMedGoogle Scholar
  33. Ekblad E, Ekelund M, Graffner H, Håkanson R, Sundler F (1985a) Peptide-containing nerve fibers in the stomach wall of rat and mouse. Gastroenterology 89:73–85PubMedGoogle Scholar
  34. Ekblad E, Håkanson R, Rökaeus Å, Sundler F (1985b) Galanin nerve fibers in the rat gut: distribution, origin and projections. Neuroscience 16:355–363PubMedGoogle Scholar
  35. Ekblad E, Winther C, Ekman R, Håkanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188PubMedGoogle Scholar
  36. Ekblad E, Ekman R, Håkanson R, Sundler F (1988) Projections of peptide-containing neurons in rat colon. Neuroscience 27:655–674PubMedGoogle Scholar
  37. Ekblad E, Arnbjörnsson E, Ekman R, Håkanson R, Sundler F (1989a) Neuropeptides in the human appendix: distribution and motor effects. Dig Dis Sci 34:1217–1230PubMedGoogle Scholar
  38. Ekblad E, Håkanson R, Sundler F (1989b) Projections of enteric peptide-containing neurons in the rat. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. Kluwer, Dordrecht, pp 47–56 (Falk symposium, no 50)Google Scholar
  39. Ekblad E, Håkanson R, Sundler F (1991a) Innervation of the stomach of rat and man with special reference to the endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 79–95 (Fernström symposium, no 15)Google Scholar
  40. Ekblad E, Håkanson R, Sundler F (1991b) Microanatomy and chemical coding of peptide-containing neurons in the digestive tract. In: Daniel EE (ed) Neuropeptide function in the gastrointestinal tract. CRC, Boca Raton, pp 131–191Google Scholar
  41. Elde R, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine enkephalin: initial observations on the nervous system of the rat. Neuroscience 1:349–351PubMedGoogle Scholar
  42. Ericson LE, Sundler F (1984) Thyroid parafollicular cells. Ultrastructural and functional correlation. In: Motta PM (ed) Ultrastructure of endocrine cells and tissues. Nijhoff, Boston, pp 276–285Google Scholar
  43. Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennesy RJ, Polak JM (1985) Chromogranin: a newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastoenterology 89:1366–1373Google Scholar
  44. Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, LondonGoogle Scholar
  45. Furness JB, Costa M, Emson PC, Håkanson R, Moghimzadeh E, Sundler F, Taylor IL, Chance RE (1983) Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res 234:71–92PubMedGoogle Scholar
  46. Furness JB, Costa M, Rökaeus Å, McDonald TJ, Brooks B (1987) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell Tissue Res 250:607–615PubMedGoogle Scholar
  47. Furness JB, Morris JL, Gibbins IL, Costa M (1989a) Chemical coding of neurons and plurichemical transmission. Annu Rev Pharmacol Toxicol 29:289–306PubMedGoogle Scholar
  48. Furness JB, Pompolo S, Murphy R, Giraud A (1989b) Projections of neurons with neuromedin U-like immunoreactivity in the small intestine of the guinea pig. Cell Tissue Res 257:415–422PubMedGoogle Scholar
  49. Gibbins IL, Furness JB, Costa M, McIntyre I, Hillyard SJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea-pigs. Neurosci Lett 57:128–130Google Scholar
  50. Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223PubMedGoogle Scholar
  51. Gonda T, Daniel EE, McDonald TJ, Fox JET, Brooks BD, Oki M (1989) Distribution and function of enteric GAL-IR nerves in dogs: comparison with VIP Am J Physiol 256:G884–G896PubMedGoogle Scholar
  52. Gubler U, Chua AO, Hoffman BJ, Collier KJ, Eng J (1984) Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 81:4307–4310PubMedGoogle Scholar
  53. Gulbenkian S, Merighi A, Wharton J, Varndell IM, Polak JM (1986) Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542PubMedGoogle Scholar
  54. Håkanson R, Sundler F (1983) The design of the neuroendocrine system: a unifying concept and its consequences. Trends Pharmacol Sci 4:41–44Google Scholar
  55. Håkanson R, Sundler F (1986) The role of peptide messengers in the neuroendocrine system: hormones, neurotransmitters, or neuromodulators. In: Schou J, Greisler A, Norn S (eds) Drug receptors and dynamic processes in cells. Munksgaard, Copenhagen, pp 62–77 (Alfred Benzon symposium, no 22)Google Scholar
  56. Håkanson R, Sundler F (1991) The gastrin concept: the proposed mechanism behind the development of drug-induced gastric carcinoids. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 449–460 (Fernström symposium, no 15)Google Scholar
  57. Håkanson R, Alumets J, Rehfeld JF, Ekelund M, Sundler F (1982) The life cycle of the gastrin granule. Cell Tissue Res 222:479–491PubMedGoogle Scholar
  58. Håkanson R, Böttcher G, Ekblad E, Panula P, Simonsson M, Dohlsten M, Hallberg T, Sundler F (1986) Histamine in endocrine cells in the stomach. A survey of several species using a panel of histamine antibodies. Histochemistry 86:5–17PubMedGoogle Scholar
  59. Håkanson R, Böttcher G, Ekblad E, Grunditz T, Sundler F (1990) Functional implications of messenger coexpression in neurons and endocrine cells. In: Schwartz TW, Hilsted LM, Rehfeld JF (eds) Neuropeptides and their receptors. Munksgaard, Copenhagen, pp 211–232 (Alfred Benzon symposium, no 29)Google Scholar
  60. Halban PA (1991) Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34:767–778PubMedGoogle Scholar
  61. Heitz P, Polak JM, Timson CM, Pearse AGE (1976) Enterochromaffin cells as the source of gastrointestinal substance P. Histochemistry 49:343–347PubMedGoogle Scholar
  62. Hökfelt T, Johansson O, Efendic S, Luft R, Arimura A. (1975) Are there somatostatin containing nerves in the rat gut? Immunohistochemical evidence for a new type of peripheral nerve. Experientia 31:852–854PubMedGoogle Scholar
  63. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579PubMedGoogle Scholar
  64. Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human prepr o vaso active intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549PubMedGoogle Scholar
  65. Johnson KH, O’Brien TD, Hayden DW, Jordan K, Ghobrial HKG, Mahoney WC, Westermark P (1988) Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 130:1–8PubMedGoogle Scholar
  66. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta neoendorphin/dynorphin precursor. Nature 298:245–249PubMedGoogle Scholar
  67. Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jiang L, Dahl RR, Stibbs HH, Arimura A, Fujino M (1990) A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 166:81–89PubMedGoogle Scholar
  68. Koop H, Willemer S, Steinback F, Eissele R, Tuch K, Arnold R (1987) Influence of chronic drug-induced achlorhydria by substituted benzimidazoles on the endocrine stomach of rats. Gastroenterology 92:406–413PubMedGoogle Scholar
  69. Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD (1987) Three rat pre-protachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA 84:881–885PubMedGoogle Scholar
  70. Kuwahara A, Mikami S, Yanaihara N (1985) Coexistence of immunoreactive gastrin-releasing peptide and substance P in the myenteric plexus of rat stomach. Biomed Res 6:443–446Google Scholar
  71. Lamberts R, Schmidt WE, Creutzfeldt W (1990) Light and electron microscopic immunocytochemical localization of pancreastatin-like immunoreactivity in porcine tissues. Histochemistry 93:369–380PubMedGoogle Scholar
  72. Larsson L-I (1978) ACTH-like immunoreactivity in the gastrin cell. Independent changes in gastrin and ACTH-like immunoreactivity during ontogeny. Histochemistry 56:245–251PubMedGoogle Scholar
  73. Larsson L-I, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165: 201–218PubMedGoogle Scholar
  74. Larsson L-I, Fahrenkrug J, Schaffalitzky de Muckadell O, Sundler F, Håkanson R, Reheld JF (1976) Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurones. Proc Natl Acad Sci USA 73:3197–3200PubMedGoogle Scholar
  75. Larsson L-I, Golterman N, de Magistris L, Rehfeld JF, Schwartz TW (1989) Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393–1395Google Scholar
  76. Larsson LT, Sundler F (1990) Neuronal markers in Hirschsprung’s disease with special reference to neuropeptides. Acta Histochem (Jena) Suppl 38:115–125Google Scholar
  77. Lund PK, Goodman RH, Dee PC, Habener JF (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Sci USA 79:345–349Google Scholar
  78. Lundberg JM, Terenius L, Hökfelt T, Martling CR, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M (1982) Neuropeptide Y (NPY) like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand 116:477–480PubMedGoogle Scholar
  79. Lundberg JM, Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones — functional and pharmacological implications. Prog Brain Res 68:241–262PubMedGoogle Scholar
  80. Mattsson H, Sundler F, Carlsson K, Håkanson R (1991) Antral gastrin and somatostatin cells during long-term hypergastrinemia (Abstr). Gastroenterology 100:A655Google Scholar
  81. McDonald TJ, Jörnvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233PubMedGoogle Scholar
  82. Melander T, Hökfelt T, Rökaeus Å, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastrointestinal tract of several mammalian species. Cell Tissue Res 239:253–270PubMedGoogle Scholar
  83. Merighi A, Polak JM, Gibson SJ, Gulbenkian S, Valentino KL, Peirone SM (1988) Ultrastructural studies on calcitonin gene related peptide-, tachykinin- and somatostatin- immunoreactive neurones in rat dorsal root ganglia: evidence for the colocalization of different peptides in single secretory granules. Cell Tissue Res 254:101–109PubMedGoogle Scholar
  84. Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495PubMedGoogle Scholar
  85. Minamino N, Kangawa K, Matsuo H (1985) Neuromedin U-8 and U-25; novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem Biophys Res Commun 130:1078–1085PubMedGoogle Scholar
  86. Minth CD, Bloom SR, Polak JM, Dixon JE (1984) Cloning, characterization and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc Natl Acad Sci USA 81:4577–4581PubMedGoogle Scholar
  87. Miyata A, Arimura A, Dahl R, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574PubMedGoogle Scholar
  88. Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, Maclntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748PubMedGoogle Scholar
  89. Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA, Kanse S, Amara SG, Burrin JM, Legon S, Polak JM, Bloom SR (1988) Differential expression of α-CGRP and β-CGRP by primary sensory neurons and enteric autonomic neurons in the rat. Neuroscience 25:195–205PubMedGoogle Scholar
  90. Mutt V, Jorpes E (1971) Hormonal polypeptides of upper intestine. Biochem J 125:57P–58PPubMedGoogle Scholar
  91. Mutt V, Said SI (1974) Structure of the porcine vasoactive intestinal octacosapeptide: the amino-acid sequence. Use of kallikrein in its determination. Eur J Biochem 42:581–589PubMedGoogle Scholar
  92. Nawa H, Hirose T, Takashima H, Inayama S, Nakanishi S (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursors. Nature 306:31–36Google Scholar
  93. Nilsson G, Larsson L-I, Håkanson R, Brodin E, Pernow B, Sundler F (1975) Localization of substance P-like immunoreactivity in mouse gut. Histochemistry 43:97–99PubMedGoogle Scholar
  94. Noda M, Furutani Y, Takahashi H, Toyosato M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–208PubMedGoogle Scholar
  95. Ondolfo JP, Lehy T, Labeille D, Gres L (1989) Growth pattern of the polypeptide-YY cell population in the upper digestive tract of the rat during the perinatal period and after weaning. Cell Tissue Res 258:569–576Google Scholar
  96. Orci L (1986) The insulin cell: its cellular environment and how it processes (pro)insulin. Diabetes Metab Rev 2:71–106PubMedGoogle Scholar
  97. Pearse AGE, Polak JM (1975) Immunocytochemical localization of substance P in mammalian intestine. Histochemistry 41:373–375PubMedGoogle Scholar
  98. Persson P, Håkanson R (1991) The gastrin-gastrocalcin hypothesis. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 341–350 (Fernström symposium, no 15)Google Scholar
  99. Persson P, Håkanson R, Axelson J, Sundler F (1989) Gastrin releases a blood-calcium lowering peptide from the acid-producing part of the stomach. Proc Natl Acad Sci USA 86:2834–2838PubMedGoogle Scholar
  100. Polak JM, Bloom SR, Marangos PJ (1984) Neuron specific enolase, a marker for neuroendocrine cells. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier, Amsterdam, pp 433–452 (Fernström symposium, no 4)Google Scholar
  101. Rindi G, Buffa R, Sessa F, Tortora O, Solcia E (1986) Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 85:19–28PubMedGoogle Scholar
  102. Rix EW, Feurle GE, Carraway RE (1986) Colocalization of xenopsin and gastrin immunoreactivity in gastric antral G-cells. Histochemistry 85:135–138PubMedGoogle Scholar
  103. Rökaeus Å, Brownstein MJ (1986) Construction of a porcine adrenal medullary cDNA library and nucleotide sequence analysis of two clones encoding a galanin precursor. Proc Natl Acad Sci USA 83:6287–6291PubMedGoogle Scholar
  104. Rökaeus A, Melander T, Hökfelt T, Lundberg JM, Tatemoto K, Carlquist M, Mutt V (1984) A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci Lett 47:161–166PubMedGoogle Scholar
  105. Rosa P, Hille A, Lee RWH, Zanini A, de Camilli P, Huttner WB (1985) Seereto-granins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol 101:1991–2011Google Scholar
  106. Rosenfeld MG, Mermod J-J, Amara SG, Swanson LW, Sawchenko PE, Riviera J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135PubMedGoogle Scholar
  107. Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing serotonin, secretin and substance P in normal and transgenic mice. Proc Natl Acad Sci USA 87:6408–6412PubMedGoogle Scholar
  108. Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Eide R, Goldstein M, Said S (1980) Distribution of peptide- and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea-pig: immuno-histochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine β-hydroxylase. Neuroscience 5:689–744PubMedGoogle Scholar
  109. Shen L-P, Pictet RL, Rutter WJ (1982) Human somatostatin. I. Sequence of the cDNA. Proc Natl Acad Sci USA 79:4575–4579PubMedGoogle Scholar
  110. Sjölund K, Sandén G, Håkanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130PubMedGoogle Scholar
  111. Solcia E, Capella C, Buffa R, Frigerio B (1976) Histochemical and ultrastructural studies on the argentaffin and argyrophil cells of the gut. In: Coupland RE, Fujita T (eds) Chromaffin, enterochromaffin and related cells. Elsevier, Amsterdam, pp 209–255Google Scholar
  112. Solcia E, Capella C, Buffa R, Usellini L, Fiocca R, Sessa F (1987) Endocrine cells of the digestive system. In: Johnson LR (ed) Physiology of the gastointestinal tract, 2nd edn. Raven, New York, pp 111–130Google Scholar
  113. Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF (1984) Cloning and characterization of cDNA’s encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81:5699–5703PubMedGoogle Scholar
  114. Steenbergh PH, Höppener JWM, Zandberg J, Lips CJM, Jansz HS (1985) A second human calcitonin/CGRP gene. FEBS Lett 183:403–407PubMedGoogle Scholar
  115. Sternini C, Reeve JR, Brecha N (1987) Distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal and capsaicin-treated rats. Gastroenterology 93:852–862PubMedGoogle Scholar
  116. Su HC, Bishop AE, Power RF, Hamada Y, Polak JM (1987) Dual intrinsic and extrinsic origin of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J Neurosci 7:2674–2687PubMedGoogle Scholar
  117. Sundler F, Håkanson R (1988) Peptide hormone-producing endocrine/paracrine cells in the gastro-entero-pancreatic region. In: Björklund A, Hökfelt T, Owman C (eds) The peripheral nervous system. Elsevier, Amsterdam, pp 219–295 (Handbook of chemical neuroanatomy, vol. 6)Google Scholar
  118. Sundler F, Håkanson R (1991) Gastric endocrine cell typing at the light microscopic level. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 9–26 (Fernström symposium, no 15)Google Scholar
  119. Sundler F, Alumets J, Håkanson R (1977) 5-Hydroxytryptamine-containing enterochromaffin cells: storage site of substance P. Acta Physiol Scand Suppl 452:121–123PubMedGoogle Scholar
  120. Sundler F, Håkanson R, Lorén I, Lundquist I (1980) Amine storage and function in peptide hormone-producing cells. Invest Cell Pathol 3:87–103PubMedGoogle Scholar
  121. Sundler F, Moghimzadeh E, Håkanson R, Ekelund M, Emson PC (1983) Nerve fibers in the gut and pancreas of the rat displaying neuropeptide Y immunoreactivity. Intrinsic and extrinsic origin. Cell Tissue Res 230:487–493PubMedGoogle Scholar
  122. Sundler F, Brodin E, Ekblad E, Håkanson R, Uddman R (1985a) Sensory nerve fibers: distribution of substance P, neurokinin A and calcitonin gene-related peptide. In: Håkanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 3–14 (Fernström symposium, no 6)Google Scholar
  123. Sundler F, Ekblad E, Böttcher G, Alumets J, Håkanson R (1985b) Coexistence of peptides in the neuroendocrine system. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 213–243Google Scholar
  124. Sundler F, Håkanson R, Ekblad E, Uddman R, Wahlestedt C (1986) Neuropeptide Y in the peripheral adrenergic and enteric nervous systems. Int Rev Cytol 102:243–269PubMedGoogle Scholar
  125. Sundler F, Bjartell A, Böttcher G, Ekblad E, Håkanson R (1987) Localization of enkephalins and other endogenous opioids in the digestive tract. Gastoenterol Clin Biol 11:14B–26BGoogle Scholar
  126. Sundler F, Ekblad E, Grunditz T, Håkanson R, Uddman R (1988) Vasoactive intestinal peptide in the peripheral nervous system. Ann NY Acad Sci 527:143–167PubMedGoogle Scholar
  127. Sundler F, Böttcher G, Ekblad E, Håkanson R (1989) The neuroendocrine system of the gut. Acta Oncol 28:303–314PubMedGoogle Scholar
  128. Sundler F, Ekblad E, Håkanson R (1991a) Occurrence and distribution of substance P- and CGRP-containing nerve fibers in gastric mucosa: species differences. Adv Exp Med Biol 298:29–37PubMedGoogle Scholar
  129. Sundler F, Ekblad E, Håkanson R (1991b) The neuroendocrine system of the gut -an update. Acta Oncol 30:419–427PubMedGoogle Scholar
  130. Sundler F, Ekelund M, Håkanson R (1991c) Morphological aspects of gastrin cell activation. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 167–178 (Fernström symposium, no 15)Google Scholar
  131. Sundler F, Ekblad E, Absood A, Håkanson R, Köves K, Arimura A (1992) Pituitary adenylate cyclase activating peptide: A novel vasoactive intestinal peptide-like neuropeptide in the gut. Neuroscience 46:439–454PubMedGoogle Scholar
  132. Tatemoto K (1982) Neuropeptide Y: Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 79:5485–5489PubMedGoogle Scholar
  133. Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci USA 75:4115–4119PubMedGoogle Scholar
  134. Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature (Lond) 285:417–418Google Scholar
  135. Tatemoto K, Mutt V (1981) Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proc Natl Acad Sci USA 78:6603–6607PubMedGoogle Scholar
  136. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660PubMedGoogle Scholar
  137. Tatemoto K, Rökaeus Å, Jörnvall H, McDonald T, Mutt V (1983) Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128PubMedGoogle Scholar
  138. Tsuruo Y, Hökfelt T, Visser TJ, Kimmel JR, Brown JC, Verhofstadt A, Walsh J (1988) TRH-like immunoreactivity in endocrine cells and neurons in the gastrointestinal tract of the rat and guinea pig. Cell Tissue Res 253:347–356PubMedGoogle Scholar
  139. Uchida T, Kobayashi S, Yanaihara N (1985) Occurrence and projections of three subclasses of met-enkephalin-Arg6-Gly7-Leu8 neurons in the guinea pig duodenum: immunoelectron microscopic study on the co-storage of metenkephalin-Arg6-Gly7-Leu8 with substance P or PHI (1–15). Biomed Res 6:415–422Google Scholar
  140. Vincent SR, Dalsgaard C-J, Schultzberg M, Hökfelt T, Christensson I, Terenius L (1984) Dynorphin-immunoreactive neurons in the autonomie nervous system. Neuroscience 11:973–987PubMedGoogle Scholar
  141. Voigt KH, Martin R (1985) Coexistence of unrelated neuropeptides in nerve terminals. In: Håkanson R, Thorell J (eds) Biogenetics of Neurohormonal Peptides. Academic Press, London, pp 245–272Google Scholar
  142. Wattchow DA, Furness JB and Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41PubMedGoogle Scholar
  143. Weihe E, Hörsch D, Eiden LE, Hartschuh W (1991) Dual presence of chromogranin A-like immunoreactivity in a population of endocrine-like cells and in nerve fibers in the human anal canal. Neurosci Lett 130:190–194PubMedGoogle Scholar
  144. Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins — widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol 58:95–121Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • F. Sundler
  • E. Ekblad
  • R. Håkanson

There are no affiliations available

Personalised recommendations