Advertisement

The Action of the Virasoro Nonisospectral KdV Symmetries of the Whitham Equations

  • P. G. Grinevich
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)

Abstract

A new set of symmetries of the Whitham equations (averaged Korteweg-de-Vries equations) is constructed. These symmetries form a noncommutative algebra (isomorphic to the algebra of polynomial vector fields on the complex plane), explicitly depend upon the coordinates and time and act nontrivialy at the constant Whitham solutions.

Keywords

Riemann Surface Noncommutative Algebra Polynomial Vector Field Whitham Equation Auxiliary Linear Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.A. Dubrovin. Hamiltonian formalism of Whitham-type hiérarchies and topological Landau-Ginzburg models. Preprint 1991.Google Scholar
  2. [2]
    B.A. Dubrovin, S.P. Novikov., S.v. Math. Doklady 27, p. 665 (1983)zbMATHGoogle Scholar
  3. B.A. Dubrovin, S.P. Novikov, Russian Math. Surveys 44:6 (1989), p. 35.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [3]
    H. Flaschka, G. Forest, D.W. McLaughlin. Commun Pure Appl. Math. 33, no. 6 (1980).Google Scholar
  5. [4]
    P.G. Grinevich, Grassmannians, det \({\bar \partial _j}\) and Segal-Vilson τ function. in “Problems of modern quantum field theory”, ed. A.A. Belavin, A.U. Klimyk, A.B. Zamolodchikov, Springer 1989.Google Scholar
  6. [5]
    P.G. Grinevich, A.Yu. Orlov. Funct. Anal. Appl. 24 no. 1, (1990); Higher symmetries of KP equation and the Virasoro action on Riemann surfaces. in “Nonlinear evolution equations and dynamical systems”, ed. S. Carillo, O. Ragnisco, Springer 1990.Google Scholar
  7. [6]
    I.M. Krichever. Funct. Anal. Appl. 11 (1988), p. 15.MathSciNetGoogle Scholar
  8. [7]
    I.M. Krichever. “The dispersionless Lax equations and topological minimal models”. Preprint 1991 Torino; Lecture at the Sakharov Memorial Congress (1991).Google Scholar
  9. [8]
    Peter D. Lax, C. David Levermore. Commun. Pure Appl. Math., 36, pp. 253–290, 571–593, 809–830 (1983)Google Scholar
  10. [9]
    A.Yu. Orlov, E.I. Schulman Additional symmetries of the integrable one-dimensional equations and the conformal algebra representations. Preprint IA and E. Novosibirsk (1984); Lett. Math. Phys. 12 (1986); A.Yu. Orlov in Proceedings Int. Workshop “Plasma theory and… ” in Kiev 1987, World Scientific (1988) p. 116.Google Scholar
  11. [10]
    S.P. Tzarev. Soviet. Math. Dokl. 31, pp. 488–491 (1985).Google Scholar
  12. S.P. Tzarev. Math. USSR Izvestiya, 34, no. 5 (1990).Google Scholar
  13. [11]
    G.B. Whitham. Linear and nonlinear waves. N.Y., Wiley, 1974.Google Scholar
  14. [12]
    V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevsky. Soliton theory. Plenum, New York, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. G. Grinevich
    • 1
  1. 1.L.D. Landau Institute for Theoretical PhysicsMoscow, GSP-1Russia

Personalised recommendations