Review Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean

  • Paul Tréguer
  • Guy Jacques

Summary

Four major functional units have been identified in the Southern Ocean and the mechanisms that control the dynamics of nutrients and phytoplankton are detailed for the different sub-systems. The very productive Coastal and Continental Shelf Zone (CCSZ, 0.9 M km2) can experience severe macronutrient depletion paralleling intense diatom-dominated phytoplankton blooming (maximum > 8 mg Chl a m−3) at the ice edge. In the Seasonal Ice Zone (SIZ, 16 M km2) dramatic variations in the hydrological structure occur in surface waters during the spring to summer retreat of the pack-ice, changing from a well-mixed system to a stratified one within the reaches of the ice edge. Grazing activity of euphausiids limits phytoplankton biomass to a moderate level (Chl a maximum around 4mg m−3). A shift from new production to a regenerated production regime has been demonstrated during spring, along with the key role played by protozoans in controlling high ammonium concentrations (maximum > 2 μM) in the surface layers. The well-mixed Permanently Open Ocean Zone (POOZ, 14 M km2) is characterised by variable N/Si ratios in surface waters along a north-south transect: at the northern border of the POOZ (N/Si = 0.25) silicate concentrations as low as <10 μM could help limit the phytoplankton growth. Although favourable conditions have been demonstrated for the initiation of blooms in spring in the Antarctic Circumpolar Current, it appears that critical-depth/ mixing-depth relationships control maximum chlorophyll a concentrations < 1 μg l−1 during summer. The POOZ is usually not influenced directly by euphausiids, except for the Scotia Sea and Drake Passage where migrations of krill from the adjacent SIZ are usual. Mesoscale eddies are typical of the Polar Front Zone (FPZ, 3 M km2): significant increases in phytoplankton biomass have been reported in this frontal area (maximum Chl a = 2 mg m−3). Food web and biogeochemical cycles in this sub-system are poorly documented. The question of limitation of the primary production by eolian-transported trace-metals in these different sub-systems is still a matter of debate, although clear iron limitation has been evidenced for offshore waters of the Ross Sea.

References

  1. Ainley D, Jacobs SS (1981) Sea-bird affinities for ocean and ice boundaries in the Antarctic. Deep-Sea Res 28:1173–1185CrossRefGoogle Scholar
  2. Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the costal diatom Thalassiosira weisfloggi. Limnol Oceanogr 27:789–813CrossRefGoogle Scholar
  3. Bareille G (1991) Flux sédimentaires, silice biogène et détritiques dans le secteur Indien de l’Océan Austral: paléoproductivité et évolution hydrologique au cours du dernier cycle climatique. PhD Thesis, Université de Bordeaux 1, 259 ppGoogle Scholar
  4. Bareille G, Labracherie M, Labeyrie L, Pichon JJ, Turon JL (1991) Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean Mar Chem 35:537–552Google Scholar
  5. Bathmann U, Nöthig EM, Jennings F, Fahrbach E, Makaraov A (1990) Physical, chemical and biological properties along a west-east transect across the Weddell Sea, Antarctica, in early austral spring 1989. Symposium Biogeochemistry and Circulation of Water masses in the Southern Ocean, Brest, 3–6 July (Abstr)Google Scholar
  6. Beklemishev KV (1958) Latitudinal zonality in the distribution of Antarctic phytoplankton (in Russian). Inf Byull Sov Antarkt Eksped 3:35–36Google Scholar
  7. Bres B, Brunet C, Metzl N, Poisson A, Schauer B (1991) Decadal, interannual, monthly and daily sea surface fCO2 variations (Indian and Southern Oceans sectors). The global carbon cycle NATO/ASI, II Ciocco, 8–20 September 1991, 12 pp (Abstr)Google Scholar
  8. Carbonell MC (1985) phytoplankton of an ice-edge bloom in the Ross Sea, with special reference to the elemental composition of Antarctic diatoms. MSc Thesis, Oregon State University, 133 ppGoogle Scholar
  9. Collos Y, Slawyk G (1986) 13C and 15N uptake by marine phytoplankton. IV. Uptake ratios and the contribution of nitrate to the productivity of Antarctic waters (Indian Ocean sector). Deep-Sea Res 33:1039–1051CrossRefGoogle Scholar
  10. Comiso JC, Sullivan CW (1986) Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone. J Geophys Res 91:9663–9681CrossRefGoogle Scholar
  11. Comiso JC, Maynard NG, Smith WO Jr, Sullivan CW (1990) Satellite ocean color studies of Antarctic ice edges in summer and autumn. J Geophys Res 95:9481–9486CrossRefGoogle Scholar
  12. Daniault N (1984) Apport des connaisances spatiales à la connaissance des courants de surface. Application à l’Océan Antarctique. Thèse D Ingenieur, UBO, Brest, 100 ppGoogle Scholar
  13. Daniault N, Ménard Y, Gonella J (1983) Eddy kinetic energy distribution in the Southern Ocean from SEASAT altimeter and FGGE drifting bouys. In: C Gautier, C Fieux M (eds) Large-scale oceanographie experiments and satellites. Reidel, Dordrecht, pp 41–56Google Scholar
  14. Davies AG (1990) Taking a cool look at iron. Nature 345: 114–115CrossRefGoogle Scholar
  15. De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotias Seas. Mar Ecol Prog Ser 65:105–122CrossRefGoogle Scholar
  16. De Master DJ (1981) The supply and accumulation of silica in the marine environment. Geochim cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  17. DeMaster DJ, Nelson TM, Harden SL, Nittrouer CA (1991) The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margins. Mar Chem 35:489–502CrossRefGoogle Scholar
  18. Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201CrossRefGoogle Scholar
  19. Ekau W (1990) Demersal fish fauna of the Weddell Sea. Antarct Sci 2:129–137CrossRefGoogle Scholar
  20. El-Sayed SZ (1984) Productivity of the Antarctic waters-a reappraisal. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin, pp 19–34Google Scholar
  21. El-Sayed SZ (1990) Plankton. In: Glasby GP (ed) Antarctic sector of the Pacific Ocean. Elsevier Oceanogr Ser, Elsevier Amsterdam Oxford, pp 207–241Google Scholar
  22. El-Sayed SZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea. Deep-Sea Res 28:1017–1032CrossRefGoogle Scholar
  23. El-Sayed SZ, Weber LH (1982) Spatial and temporal variations in phytoplankton biomass and primary productivity in the SW Atlantic and the Scotia Sea. Polar Biol 1:83–90Google Scholar
  24. Finden DAS, Tipping E, Jaworski GHM, Reynolds CS (1984) Light-induced reduction of natural Fe III oxide and its relevance to phytoplankton. Nature, London 309:783–784CrossRefGoogle Scholar
  25. Fischer G, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428CrossRefGoogle Scholar
  26. Fukuchi M (1980) phytoplankton chlorophyll stocks in the Antarctic Ocean. J Oceanogr Soc Jpn 36:73–84CrossRefGoogle Scholar
  27. Fukuda Y, Ohno M, Fukuchi M (1986) Surface chlorophyll-a distribution in marginal icé zone in Antarctica. Mem Natl. Inst Polar Res Spec Issue 44:24–33Google Scholar
  28. Glibert PM, Biggs DC, McCarthy JJ (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep-Sea Res 29:837–850CrossRefGoogle Scholar
  29. Glover HE (1977) Effect of iron-deficiency on Isochrysis galbana (Chrysophycae) and Phaeodactylum tricornutum (Bacillariophycae). J Phycol 13:208–212Google Scholar
  30. Goeyens L, Sörensson F, Tréguer P, Morvan J, Panouse M, Dehairs F (1991a) Spatiotemporal variability of inorganic nitrogen stocks and uptake fluxes in the Scotia-Weddell Confluence area during November and December 1988. Mar Ecol Prog Ser 77:7–19CrossRefGoogle Scholar
  31. Goeyens L, Tréguer P, Lancelot C, Mathot S, Becquevort S, Morvan J, Dehairs F, Baeyens W (1991b) Ammonium regeneration in the Scotia-Weddell Confluence area during spring 1988. Mar Ecol Prog Ser 78:241–252CrossRefGoogle Scholar
  32. Gordon AL, Georgi DT, Taylor HW (1977) Antarctic Polar Front zone in the western Scotia Sea-summer 1975. J Phys Oceanog 7:309–328CrossRefGoogle Scholar
  33. Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20 and 70°W. Polar Biol 3:153–165CrossRefGoogle Scholar
  34. Hart TJ (1934) On the Phytoplankton of the south-west Atlantic and the Bellingshausen Sea, 1929–31. Discovery Rep 8:1–268Google Scholar
  35. Hart TJ (1942) Phytoplankton periodicity in Antarctic surface waters. Discovery Rep 21:261–356Google Scholar
  36. Hempel G (1985) Antarctic marine food webs. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer Berlin Heidelberg, pp 266–270Google Scholar
  37. Holm-Hansen O (1985) Nutrient cycles in Antarctic Marine Ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 6–10Google Scholar
  38. Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institute, Washington DC, pp 11–50Google Scholar
  39. Hong H, Kester DR (1986) Iron assimilation by marine diatoms. Biol Bull 102:243–248Google Scholar
  40. Huntley ME, Karl DM, Niller PP, Holm-Hansen O (1991) Research on Antarctic Coastal Ecosystems Rates (RACER): an inter-disciplinary field experiment. Deep-Sea Res 38:911–942CrossRefGoogle Scholar
  41. Ichimura S, Fukushima H (1963) On the chlorophyll content in the surface water of the Indian and the Antarctic Oceans. Bot Soc Jpn 76:395–399Google Scholar
  42. Jacobs SS (1991) On the nature and significance of the Antarctic slope front. Mar Chem 35:9–24CrossRefGoogle Scholar
  43. Jacques G (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biol 2:27–33CrossRefGoogle Scholar
  44. Jacques G (1989) Primary production in the open Antarctic Ocean during the austral summer, a review. Vie Milieu 39:1–17Google Scholar
  45. Jacques G (1991) Is the concept of new production-regenerated production valid for the Southern Ocean? Mar Chem 35:273–286CrossRefGoogle Scholar
  46. Jacques J, Minas M (1981) Production primaire dans le secteur Indian de l’Océan Antarctique en fin d’été. Oceanol Acta 4:33–41Google Scholar
  47. Jacques G, Panouse M (1991) Biomass and composition of size fractionated phytoplankton in the Weddell-Scotia Confluence area. Polar Biol 11:315–328CrossRefGoogle Scholar
  48. Jacques G, Tréguer P (1986) Les écosystèmes pélagiques marins, Ser Ecol 19. Masson Paris, 250 ppGoogle Scholar
  49. Jones EPJ, Nelson DM, Tréguer P (1990) Chemical Oceanography. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New-York, pp 407–476Google Scholar
  50. Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349:772–774CrossRefGoogle Scholar
  51. Kanda H, Fukuchi M (1979) Surface chlorophyll-a concentration along the course of the FUJI to and from Antarctica in 1977–1978. Antarct Rec 66:37–49Google Scholar
  52. Karl DM (1991) Preface, Research on Antarctic Coastal Ecosystems Rates (RACER): an interdisciplinary field experiment. Deep-Sea Res 38:V–VIICrossRefGoogle Scholar
  53. Koike I, Holm-Hansen O, Biggs DC (1986) Inorganic nitrogen metabolism by antarctic phytoplankton with special reference to ammonium cycling. Mar Ecol Prog Ser 30:105–116CrossRefGoogle Scholar
  54. Lancelot C, Billen G, Becquevort S, Mathot S, Veth C (1991) Modelling carbon cycling through phytoplankton and microbes in the Scotia-Weddell Sea during sea ice retreat. Mar Chem 35:305–320CrossRefGoogle Scholar
  55. Lancelot C, Mathot S, Becquevort S, Dandois JM, Billen G (1992) Carbon and nitrogen cycling through the microbial network of the MIZ of the Southern Ocean with particular emphasis to the NW Weddell Sea. Rep Contract ANTAR/05, December 91, 106 ppGoogle Scholar
  56. Ledford-Hoffman PA, DeMaster DJ, Nittrouer CA (1986) Biogenic silica in the Ross Sea and the importance of Antarctic continental-shelf deposits in the marine silica budget. Geochim Cosmochim Acta 50: 2099–2110CrossRefGoogle Scholar
  57. Le Jehan S, Tréguer P (1983) Uptake and regeneration Si/N/P ratios in the Indian sector of the Southern Ocean. Originality of the biological cycle of silicon. Polar Biol 2:127–136CrossRefGoogle Scholar
  58. Lutjeharms JRE, Walters NM, Allanson BR (1985) In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs Springer, Berlin, pp 11–21Google Scholar
  59. Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Rep 32:33–464Google Scholar
  60. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, London 331: 341–343CrossRefGoogle Scholar
  61. Martin JH, Gordon RM, Fitzwater SE, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res 36:649–680CrossRefGoogle Scholar
  62. Martin JH, Fitzwater SE, Gordon RM (1990a) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12CrossRefGoogle Scholar
  63. Martin JH, Gordon RM, Fitzwater SE (1990b) Iron in Antarctic waters. Nature, London 345:156–158CrossRefGoogle Scholar
  64. Metzl N, Beauverger C, Brunet C, Goyet C, Poisson A (1991) Surface water carbon dioxide in the Southern Ocean: a highly variable CO2 source/sink region in summer. Mar Chem 35:85–96CrossRefGoogle Scholar
  65. McClain CR, Koblinsky CJ, Firestone J, Darzi M, Yeh E, Beckley BD (1991) Examining several Southern Ocean data sets. EOS 72:347, 351CrossRefGoogle Scholar
  66. Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macro-nutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677CrossRefGoogle Scholar
  67. Moffet JW, Zika RG (1987) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Tech 21:804–810CrossRefGoogle Scholar
  68. Mordasova NV (1989) Chlorophyll distribution in the Antarctic zone of the Atlantic Ocean. Oceanology 29:368–374Google Scholar
  69. Muench RD (1990) Mesoscale phenomena in the polar oceans. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York, pp 223–286Google Scholar
  70. Murphy P, Feely RA, Gammon RH, Kelly KC (1991) Autumn air-sea disequilibrium of CO2 in South Pacific Ocean. Mar Chem 35:77–84CrossRefGoogle Scholar
  71. Nelson DM, Gordon LI (1982) Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochim Cosmochim Acta 46:491–501CrossRefGoogle Scholar
  72. Nelson DM, Smith WO Jr (1986) Phytoplankton dynamics off the western Ross sea ice edge. Deep-Sea Res 33:1389–1412CrossRefGoogle Scholar
  73. Nelson DM, Tréguer P (1992) On the role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetics studies in the Ross Sea ice-edge zone. Mar Ecol Prog Ser 80:255–264CrossRefGoogle Scholar
  74. Nelson DM, Smith WO Jr, Muench R, Gordon LI, Sullivan CW, Husby D (1989) Particulate matter and nutrient distribution in the ice edge zone of the Weddell Sea: relationship to hydrography during the late summer. Deep-Sea Res 36:191–209CrossRefGoogle Scholar
  75. Nelson DM, Smith WO Jr (1991a) Sverdrup revisited: critical depths, maximum chlorophyll levels and the control of Southern Ocean productivity by the irradiance/mixing regime. Limnol Oceanogr 36:1650–1661CrossRefGoogle Scholar
  76. Nelson DM, Ahern JA, Herlihy LJ (1991b) Cycling of biogenic silica in the upper water column of the Ross Sea. Mar Chem 35:449–460CrossRefGoogle Scholar
  77. Nemoto T, Harrison G (1981) High latitude ecosystems. In: Long-hurst AR (ed) Analysis of marine ecosystems. Academic Press, London New York, pp 95–107Google Scholar
  78. Nolting RF, De Baar HJW, Bennekom AJ van, Masson A (1991) Cd, Cu and Fe in the Scotia Sea, Weddell/Scotia Confluence (Antarctica). Mar Chem 35:219–244CrossRefGoogle Scholar
  79. Oison RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074CrossRefGoogle Scholar
  80. Owens NJP, Priddle J, Whitehouse MJ (1991) Variations in phytoplanktonic nitrogen assimilation around South Georgia and in the Bransfield Strait (Southern Ocean). Mar Chem 35:287–304CrossRefGoogle Scholar
  81. Park YH, Gamberoni L, Charriaud E (1991) Frontal structure and transport of the Antarctic Circumpolar Current in the South Indian Ocean sector, 40–80°E. Mar Chem 35:45–62CrossRefGoogle Scholar
  82. Peng TH, Broecker WS (1991) Dynamical limitations on the Antarctic iron fertilization strategy. Nature 349:227–229CrossRefGoogle Scholar
  83. Pichon JJ, Bareille G, Labracherie M, Labeyrie L, Turon JL (1992) Quantification of the biogenic silica dissolution in Southern Ocean sediments. Quat Res (in press)Google Scholar
  84. Priddle J, Hawes I, Ellis-Evan JC, Smith TJ (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238CrossRefGoogle Scholar
  85. Priddle J, Croxall JP, Everson I, Heywood RB, Murthy EJ, Prince PA, Sear CB (1988) Large-scale fluctuations in distribution and abundance of krill — A discussion of possible causes. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin Heidelberg, pp 169–182Google Scholar
  86. Probyn TA, Painting SJ (1985) Nitrogen uptake by size-fractionated phytoplankton in Antarctic surface waters. Limnol Oceanogr 30:1237–1332CrossRefGoogle Scholar
  87. Rönner U, Sörrenson F, Holm-Hansen O (1983) Nitrogen assimilation by phytoplankton in the Scotia Sea. Polar Biol 2:137–147CrossRefGoogle Scholar
  88. Rueter JG, Ades DR (1987) The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophycea). J Phycol 23:452–457CrossRefGoogle Scholar
  89. Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin, pp 1–18Google Scholar
  90. Sakshaug E, Slagstad D, Holm-Hansen O (1991) Factors controlling the development of phytoplankton blooms in the Antarctic ocean — a mathematical model. Mar Chem 35:259–272CrossRefGoogle Scholar
  91. Schlüter M (1991) Organic carbon flux and oxygen penetration into sediments of the Weddell Sea: indicators for regional differences in export production. Mar Chem 35:569–579CrossRefGoogle Scholar
  92. Shuchman RA, Onsott RG (1990) Remote sensing in the Polar Oceans. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York, pp 123–171Google Scholar
  93. Simon V, Sarano F (1987) Concentrations en sels nutritifs de l’eau de surface dans le secteur Indien de l’Ocean Austral (campagne Apsara II — Antiprod III, 1984). In: Fontugne M, Fiala M (eds) Caractéristiques biologiques, chimiques et sédimentologiques du secteur indien de l’Océan Austral (Plateau des Kerguelen). Rapp Camp Mer TAAF 84–01:87–103Google Scholar
  94. Slawyk G (1979) 13C and 15N uptake by phytoplankton in the Antarctic upwelling area: results from the Antiprod I cruise in the Indian sector. Aust J Mar freshwater Res 30:431–448CrossRefGoogle Scholar
  95. Slawyk G (1980) L’absorption des composés azotés par le phytoplankton marin: rôle dans la production primaire, relations avec la photosynthèse et les variables du milieu extra- et intracellulaire. Thèse Doc Sci, Université d’Aix-Marseille II, pp 1–213Google Scholar
  96. Smetacek V, Passow U (1990) Spring bloom initiation and Sverdrup’s critical depth model. Limnol Oceanogr 35:228–233CrossRefGoogle Scholar
  97. Smetacek V, Scharek R, Nöthig E-M (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: KR Kerry, G Hempel (eds) Antarctic ecosystems, ecological change and conservation. Springer, New-York, pp 103–114Google Scholar
  98. Smith SL, Schnack-Schiel S (1990) Polar zooplankton. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York pp 527–598Google Scholar
  99. Smith WO Jr (1991) Nutrient distributions and new production in polar regions and contrast between the Arctic and the Antarctic. Mar Chem 35:245–258CrossRefGoogle Scholar
  100. Smith WO Jr, Harrison WG (1991) New production in polar regions: the role of environmental controls. Deep-Sea Res 38:1463–1479CrossRefGoogle Scholar
  101. Smith WO Jr, Nelson DM (1985) phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–167PubMedCrossRefGoogle Scholar
  102. Smith WO Jr, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern Ocean. BioScience 36:251–257CrossRefGoogle Scholar
  103. Smith WO Jr, Nelson DM (1990) phytoplankton growth and new production in the Weddell Sea marginal ice zone during austral spring and autumn. Limnol Oceanogr 35:809–821CrossRefGoogle Scholar
  104. Smith WO Jr, Sakshaug E (1990) Polar phytoplankton. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego, New York, pp 477–525Google Scholar
  105. Smith WO Jr, Keene NK, Comiso JC (1988) Interannual variability in estimated primary productivity in the Antarctic marginal ice zone. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin Heidelberg, pp 131–139Google Scholar
  106. Sommer U (1986) Nitrate and silicate compétition among antarctic phytoplankton. Mar Biol 91:345–351CrossRefGoogle Scholar
  107. Sommer U (1991) Comparative nutrient status and competitive interactions of two Antarctic diatoms (Corethron criophilum and Thalassiosira antarctica). J Plankton Res 13:61–75CrossRefGoogle Scholar
  108. Sullivan CW, McClain CR, Comiso JC, Smith (1988) phytoplankton standing crops within the Antarctic ice edge assessed by satellite remote sensing. J Geophys Res 93:12487–12498CrossRefGoogle Scholar
  109. Taniguchi A, Hamada E, Okazaki M, Naito Y (1986) Distribution of phytoplankton chlorophyll continuously recorded in the JARE-25 cruise to Syowa Station, Antarctica (SIBEX I). Mem Natl Inst Polar Res, Spec Issue 44:3–14Google Scholar
  110. Tréguer P, Bennekom AJ van (1991) The annual production of biogenic silica in the Antarctic Ocean. Mar Chem 35:477–488CrossRefGoogle Scholar
  111. Tréguer P, Gueneley, Kamatani A (1988) Biogenic silica and particulate organic matter from the Indian sector of the Southern Ocean. Mar Chem 23:167–180CrossRefGoogle Scholar
  112. Tréguer P, Gueneley S, Kamatani A, Quéguiner B (1989) Kinetics of dissolution of Antarctic diatoms and the biogeochemical cycle of silicon in the Southern Ocean. Polar Biol 9:397–403CrossRefGoogle Scholar
  113. Tréguer P, Nelson DM, Gueneley S, Zeyons C, Morvan J, Buma A (1990) The distribution of biogenic and lithogenic silica and the composition of particulate organic matter in the Scotia Sea and Drake Passage during autumn 1987. Deep-Sea Res 35:833–851CrossRefGoogle Scholar
  114. Tréguer P, Lindner L, Bennekom AJ van, Leynaert A, Panouse M, Jacques G (1991) The production of biogenic silica in the Weddell-Scotia Sea measured by 32Si. Limnol Oceanogr 36:1217–1227CrossRefGoogle Scholar
  115. Van Bennekom AJ, Berger GW, Gaast SJ van der, Vries RTP de (1988) Primary productivity and the silica in the Southern Ocean (Atlantic sector). In: Olansson E (ed) The Polar Ocean, the Antarctic: present and past. Paleogeogr Paleoclimatol, Special Issue 67:19–30Google Scholar
  116. Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of bibgenic silica. Mar Chem 35:423–434CrossRefGoogle Scholar
  117. Verstraede D, Storch R, Dunham VL (1980) A comparison of the influence of iron and nitrate metabolism of Anabaena and Scenedesmus. Physiol Plant 50:47–51CrossRefGoogle Scholar
  118. Voronina NM (1971) The distribution of zooplankton biomass in the Southern Ocean. Deep-Sea Res 29:1–15Google Scholar
  119. Waite TD, Morel FMM (1984) Photoreductive dissolution of colloidal iron oxides in natural waters. Environ Sci Tech 18:860–868CrossRefGoogle Scholar
  120. Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597–614CrossRefGoogle Scholar
  121. Wilson DL, Smith WO Jr, Nelson DM (1986) phytoplankton bloom dynamics of the western Ross Sea ice edge-I-Primary productivity and species-specific production. Deep-Sea Res 33:1375–1387CrossRefGoogle Scholar
  122. Yamaguchi Y, Shibata Y (1982) Standing stock and distribution of phytoplankton chlorophyll in the Southern Ocean south of Australia. Trans Tokyo Univ Fish 5:111–128Google Scholar
  123. Zentara SJ, Kamyshowski D (1981) Geographie variations in the relationship between silicic acid and nitrate in the South Pacific Ocean. Deep-Sea Res 28:455–465CrossRefGoogle Scholar
  124. Zwally HJ, Comiso JC Parkinson CL, Campabell WJ, Carsey FD, Gloersen P (1983) Antarctic sea ice, 1973–1976: satellite passive-microwave observations. NASA Spec Publ 459, Washington DC, 206 ppGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Paul Tréguer
    • 1
  • Guy Jacques
    • 2
  1. 1.Institut d’Etudes MarinesURA CNRS 1513Brest-CedexFrance
  2. 2.Observatoire Océanologique de BanyulsBanyuls-sur-MerFrance

Personalised recommendations