Skip to main content

Altered Guanine Nucleotide Protein Function: Potential Role in Endotoxin Tolerance

  • Chapter
Host Defense Dysfunction in Trauma, Shock and Sepsis
  • 15 Accesses

Abstract

Endotoxin stimulates macrophages to synthesize and release a number of monokines including tumor necrosis factor (TNF), colony stimulating factor, platelet-activating factor, interleukin-1 (IL-1) and arachidonic acid metabolites [1–8]. In recent years arachidonic acid metabolites or eicosanoids, a group of inflammatory mediators, have generated considerable interest [9–14]. Arachidonic acid is esterified in the 2-position of specific cellular phospholipids including phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), and phosphatidylinositol (PI) [15–19]. The generation of free arachidonic acid from phospholipids is thought to be a rate-limiting step in the formation of arachidonic acid metabolites [20]. Endotoxin-stimulated cells mobilize their phospholipids through at least two major pathways [21]. In the first pathway, phospholipase C cleaves phosphatidylinositol 4,5-biphosphate, yielding inositol-1,4,5-triphosphate (IP3) and 1,2-diacylglycerol, both of which are second messengers [22–25]. IP3 mobilizes cytoplasmic calcium while 1,2-diacylglycerol stimulates protein kinase C [26–28]. A separate diglyceride lipase cleaves arachidonic acid from the diacylglycerol molecule [29, 30]. In the second pathway, phospholipase A2 (PLA2) directly releases arachidonic acid and other unsaturated fatty acids from phospholipids including PC, PE, and PI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annu Rev Immuno 2:283–318

    Article  CAS  Google Scholar 

  2. Ruco LP, Meltzer MS, Rosenstreich DL (1978) Macrophage activation for tumor cytotoxicity: control of macrophage tumoricidal capacity by the LPS gene. J Immunol 121/2:543–548

    PubMed  CAS  Google Scholar 

  3. Moore RN, Steeg PS, Mannel DN, Mergenhagen SE (1980) Role of lipopolysaccharide in regulating colony-stimulating factor-dependent macrophage proliferation in vitro. Infect Immun 30/3:797–804

    PubMed  CAS  Google Scholar 

  4. Hamilton TA, Adams DO (1987) Molecular mechanisms of signal transduction in macrophages. Immunol Today 8/5:151–158

    Article  CAS  Google Scholar 

  5. Bonney RJ, Humes JL (1984) Physiological and pharmacological regulation of prostaglandin and leukotriene production by macrophages. J Leukocyte Biol 35:1–10

    PubMed  CAS  Google Scholar 

  6. Unanue ER (1976) Secretory function of mononuclear phagocytes. Am J Pathol 83/2:396–417

    PubMed  CAS  Google Scholar 

  7. O’Flaherty Joseph T (1987) Phospholipid metabolism and stimulus-response coupling. Biochem Pharmacol 36/4:407–412

    Article  PubMed  Google Scholar 

  8. Morrison DC, Rudbach JA (1981) Endotoxin-cell-membrane interactions leading to transmembrane signaling. Contemp Top Mol Immunol 81:187–218

    Google Scholar 

  9. Fink MP (1985) Role of prostaglandins and related compounds in the pathophysiology of endotoxic and septic shock. Semin Respir Med 7(1):17–23

    Article  Google Scholar 

  10. Bull H, Herman AG (1982) Prostaglandins in circulatory shock. In: Herman AG et al. (eds) Cardiovascular pharmacology and the prostaglandins. Raven, New York, pp 327–345

    Google Scholar 

  11. Fletcher JR (1982) The role of prostaglandins in sepsis. Scand J Infect Dis [Suppl] 31:55–67

    CAS  Google Scholar 

  12. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Article  PubMed  CAS  Google Scholar 

  13. Wise WC, Cook JA, Halushka PV (1980) Ibuprofen improves survival from endotoxic shock in the rat. J Pharmacol Exp Ther 215:160–168

    PubMed  CAS  Google Scholar 

  14. Samuelsson B, Goldyne M, Granstrom E, Hamber M, Hammarstrom S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47:997–1029

    Article  PubMed  CAS  Google Scholar 

  15. Blackwell GJ, Duncombe WG, Flower RJ, Parsons MF, Vane JR (1977) The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br J Pharmacol 59:353–366

    PubMed  CAS  Google Scholar 

  16. Mahadevappa VG, Holub BJ (1982) The molecular species composition of individual diacyl phospholipids in human platelets. Biochim Biophys Acta 713:73–79

    PubMed  CAS  Google Scholar 

  17. Billah MM, Lapetina EG (1982) Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets. J Biol Chem 257/20:11856–11859

    PubMed  CAS  Google Scholar 

  18. Bills TK, Smith JB, Silver MJ (1977) Selective release of arachidonic acid from the phospholipids of human platelets in response of thrombin. J Clin Invest 60:1–6

    Article  PubMed  CAS  Google Scholar 

  19. Purdon AD, Smith JB (1985) Turnover of arachidonic acid in the major diacyl and ether phospholipids of human platelets. J Biol Chem 260/23:12700–12704

    PubMed  CAS  Google Scholar 

  20. Irvine RF (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    PubMed  CAS  Google Scholar 

  21. Lapetina EG (1982) Regulation of arachidonic acid production: role of phospholipases C and A2. Trends Pharmacol 3:115–118

    Article  CAS  Google Scholar 

  22. Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 230:345–360

    Google Scholar 

  23. Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  24. Majerus PW, Connolly TM, Deckmyn H, Ross TS, Bross TE, Ishii H, Bansal VS, Wilson DB (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519–1526

    Article  PubMed  CAS  Google Scholar 

  25. Prpic V, Weiel JE, Somers SD, DiGuiseppi J, Gonias SL, Pizzo S, Hamilton TA, Herman B, Adams DO (1987) Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol 139:526–533

    PubMed  CAS  Google Scholar 

  26. Cockcroft S (1984) Contrasting roles for receptor-stimulated inositol lipid metabolism in secretory cells. Biochem Soc Trans 17:966–968

    Google Scholar 

  27. Kukita M, Jirata M, Koga T (1986) Requirement of Ca2+ for the production of degradation of inositol 1,4,5-triphosphate in macrophages. Biochem Biophys Acta 885:121–128

    Article  PubMed  CAS  Google Scholar 

  28. Nomura H, Nakanishi H, Ase K, Kikkawa U, Nishizyka Y (1986) Inositol phospholipid turnover in stimulus-response coupling. Prog Hemost Thromb 143–158

    Google Scholar 

  29. Bell RL, Kennedy DA, Stanford N, Majerus PW (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76:3238–3241

    Article  PubMed  CAS  Google Scholar 

  30. Moscat J, Herrero C, Garcia-Barreno P, Municio AM (1986) Phospholipase C-diglyceride lipase is a major pathway for arachidonic acid release in macrophages. Biochem Biophys Res Comm 141/1:367–373

    Article  PubMed  CAS  Google Scholar 

  31. Rogers TS, Halushka PV, Wise WC, Cook JA (1986) Differential alteration of lipoxygenase and cyclo-oxygenase metabolism by rat peritoneal macrophages induced by endotoxin tolerance. Prostaglandins 31:639–650

    Article  PubMed  CAS  Google Scholar 

  32. Rogers TS, Halushka PV, Wise WC, Cook JA (1988) Arachidonic acid turnover in peritoneal macrophages is altered in endotoxin-tolerant rats. Biochim Biophys Acta 1001:169–175

    Google Scholar 

  33. Luderitz T, Schade U, Rietschel ET (1986) Formation and metabolism of leukotriene C4 in macrophages exposed to bacterial lipopolysaccharide. Eur J Biochem 155:377–382

    Article  PubMed  CAS  Google Scholar 

  34. Haeffner-Cavaillon N, Chaby R, Cavaillon J, Szabo L (1982) Lipopolysaccharide receptor on rabbit peritoneal macrophages: I. Binding characteristics. J Immunol 128/5:1950–1954

    PubMed  CAS  Google Scholar 

  35. Cavaillon J, Fitting C, Hauttencoeu B, Haeffner-Cavaillon N (1987) Inhibition by gangliosides of the specific binding of lipopolysaccharide (LPS) to human monocytes prevents LPS-induced interleukin-1 production. Cell Immunol 106:293–303

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs DM (1984) Structural features of binding of lipopolysaccharides to murine lymphocytes. Rev Infect Dis 6/4:501–505

    Article  PubMed  CAS  Google Scholar 

  37. Larsen NE, Sullivan R (1984) Interaction of radiolabeled endotoxin molecules with human monocyte membranes. Biochim Biophys Acta 774:261–268

    Article  PubMed  CAS  Google Scholar 

  38. Spiegel AM, Gierschik P, Levine MA, Downs RW (1985) Clinical implications of guanine nucleotide-binding proteins as receptor-effector couplers. N Engl J Med 312/1:26–33

    Article  PubMed  CAS  Google Scholar 

  39. Ui M (1984) Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol 5:277–279

    Article  CAS  Google Scholar 

  40. Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  PubMed  CAS  Google Scholar 

  41. Bourne H, Stryer L (1986) G proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–429

    Article  PubMed  Google Scholar 

  42. Okajima F, Datada T, Ui M (1985) Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. J Biol Chem 260/10:6761–6768

    PubMed  CAS  Google Scholar 

  43. Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75/6:2669–2673

    Article  PubMed  CAS  Google Scholar 

  44. Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 258/4:2072–2075

    PubMed  CAS  Google Scholar 

  45. Schleifer LS, Kahn RA, Hanski E, Northup JK, Sternweis PC, Gilman AG (1982) Requirements for cholera toxin-dependent ADP-ribosylation of the purified regulatory component of adenylate cyclase. J Biol Chem 257/1:20–23

    PubMed  CAS  Google Scholar 

  46. Nakamura T, Ui M (1985) Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin (a possible involvement of the toxin-specific substrate in the Ca mobilizing rece). J Biol Chem 260/6:3584–3593

    PubMed  CAS  Google Scholar 

  47. Ohta H, Okajima F, Ui M (1985) Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J Biol Chem 260/9:15771–15780

    PubMed  CAS  Google Scholar 

  48. Bokoch GM, Gilman AG (1984) Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308

    Article  PubMed  CAS  Google Scholar 

  49. Murayama T, Ui M (1985) Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. J Biol Chem 260/12:7226–7233

    PubMed  CAS  Google Scholar 

  50. Burch RM, Luini A, Axelrod J (1986) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in reponse to α 1-adrenergic stimulation in FRTL5 thyroid cells. Proc Natl Acad Sci USA 83:7201–7205

    Article  PubMed  CAS  Google Scholar 

  51. Wang J, Kester M, Dunn MJ (1988) Involvement of a pertussis toxin-sensitive G-protein-coupled phospholipase A2 in lipopolysaccharide-stimulated prostaglandin E2 synthesis in cultured rat mesangial cells. Biochem Biophys Acta 963:429–435

    PubMed  CAS  Google Scholar 

  52. Jakway JP, DeFranco AL (1986) Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science 234:743–746

    Article  PubMed  CAS  Google Scholar 

  53. Daniel-Issakani S, Spiegel AM, Strulovici B (1989) J Biol Chem

    Google Scholar 

  54. Chedid L, Parant M (1971) In: Kadis S, Weinbaum G, Ajl SJ (eds) Microbial Toxins Academic, New York, pp 415–456

    Google Scholar 

  55. Mulholland JH, Wolff SM, Jackson AL, Landy M (1965) Quantitative studies of febrile tolerance and levels of specific antibody by bacterial endotoxin. J Clin Invest 44/6:920–928

    Article  PubMed  CAS  Google Scholar 

  56. Greisman SE, Hornick RB, Carozza FA, Woodward TE (1964) The role of endotoxin during typhoid fever and tularemia in man: II. Altered cardiovascular responses to catecholamines. J Clin Invest 43/5:986–999

    Article  PubMed  CAS  Google Scholar 

  57. Greisman SE, Young EJ, DuBuy B (1973) Mechanisms of endotoxin tolerance: V. Specificity of the early and late phases of pyrogenic tolerance. J Immunol 103/6:1223–1236

    Google Scholar 

  58. Greisman SE, Young EJ, DuBuy B (1973) Mechanisms of endotoxin tolerance: VIII: specificity of serum transfer. J Immunol 111/5:1349–1360

    PubMed  CAS  Google Scholar 

  59. Colditz IG, Movat HZ (1984) Desensitization of acute inflammatory lesions to chemotoxins and endotoxin. J Immunol 133/4:2163–2168

    PubMed  CAS  Google Scholar 

  60. Chernow B, Roth BL (1986) Pharmacologic manipulation of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock 18:141–155

    PubMed  CAS  Google Scholar 

  61. Howes EL, Rosenbaum JT (1985) Lipopolysaccharide tolerance inhibits eye inflammation: II. Preliminary studies on the mechanism. Arch Opthalmol 103:261–265

    Article  CAS  Google Scholar 

  62. Bhattacherjee P, Parke A (1986) The reduction of inflammatory responses in lipopolysaccharide-tolerant eyes. Am J Pathol 122:268–276

    PubMed  CAS  Google Scholar 

  63. Rosenbaum JT, Mandell RB (1983) The effect of endotoxin and endotoxin tolerance on inflammation induced by mycobacterial adjuvant. Yale J Biol Med 56:293–301

    PubMed  CAS  Google Scholar 

  64. Beeson PB (1947) Tolerance to bacterial purogens: I. Factors influencing its development. J Exp Med 86:29–41

    Article  PubMed  CAS  Google Scholar 

  65. Freedman HH (1958) Passive transfer of tolerance to pyrogenicity of bacterial endotoxin. J Exp Med 92:453–463

    Google Scholar 

  66. Wise WC, Cook JA, Halushka PV (1983) Arachidonic acid metabolism in endotoxin tolerance. Adv Shock Res 10:131–142

    PubMed  CAS  Google Scholar 

  67. Rogers TS, Halushka PV, Wise WC, Cook JA (1988) Differential alterations of lipoxygenase and cyclooxygenase metabolism by rat peritoneal macrophages induced by endotoxin tolerance. Prostaglandins 31/4:639–650

    Article  Google Scholar 

  68. Zuckerman SH, Evans GF, Snyder YM, Roeder WD (1989) Endotoxin-macrophage interaction: post-translational regulation of tumor necrosis factor expression. J Immunol 143:1223–1227

    PubMed  CAS  Google Scholar 

  69. Virca GD, Kim SV, Glaser KB, Ulevitch RJ (1989) Lipopolysaccharide induces hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem 264:21951–21956

    PubMed  CAS  Google Scholar 

  70. Virca GD, Kim SV, Glaser KB, Ulevitch RJ (1989) Role of guanine nucleotide binding protein in the activation of polyphospholinositide phosphodiesterase. Nature 314:534–536

    Google Scholar 

  71. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–554

    Article  PubMed  CAS  Google Scholar 

  72. Geisel J, Cook JA, Ashton SH, Wise WC, Halushka PV (1990) De novo protein synthesis is required for endotoxin stimulation of arachidonic acid metabolism. Circ Shock (abstr) 31/1:57

    Google Scholar 

  73. Didsbury JR, Snyderman R (1987) Molecular cloning of a new human G protein: evidence for two G-like protein families. FEBS Lett 219:259–263

    Article  PubMed  CAS  Google Scholar 

  74. Beals CR, Wilson CB, Perimutter RM (1987) A small mutigene family encodes Gi signal-transduction proteins. Proc Natl Sci USA 84:7886–7890

    Article  CAS  Google Scholar 

  75. Axelrod J, Burch RM, Jelsema CL (1988) Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurosci 11:117–123

    Article  PubMed  CAS  Google Scholar 

  76. Malbon CC, Rapiejko PJ, Watkins DC (1988) Permissive hormone regulation of hormonesensitive effector systems. TIPS 9:33–36

    PubMed  CAS  Google Scholar 

  77. Ransnäs L, Hammond HK, Insel PA (1988) Increased GS in myocardial membranes from hyperthyroid pigs. Clin Res 36:552A

    Google Scholar 

  78. Gawler D, Milligan G, Spiegel AM, Unson CG, Houslay MD (1987) Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature 327:229–231

    Article  PubMed  CAS  Google Scholar 

  79. Insel PA, Ransnäs LA (1988) G proteins and cardiovascular disease. Circulation 78:1511–1513

    Article  PubMed  CAS  Google Scholar 

  80. Coffee T et al. (1990) Biochim Biophys Acta 1035:201–205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Coffee, K., Halushka, P.V., Wise, W.C., Cook, J.A. (1993). Altered Guanine Nucleotide Protein Function: Potential Role in Endotoxin Tolerance. In: Faist, E., Meakins, J.L., Schildberg, F.W. (eds) Host Defense Dysfunction in Trauma, Shock and Sepsis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77405-8_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77405-8_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77407-2

  • Online ISBN: 978-3-642-77405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics