Does the Pulmonary Surfactant System Yield Meaningful Parameters in Inhalation Toxicity Studies? A Review

  • R. Klingebiel
  • U. Heinrich
Conference paper
Part of the ILSI Monographs book series (ILSI MONOGRAPHS)


The existence of a surface active agent (surfactant) in the lung was first postulated by von Neergard in 1929. He himself did not seem to recognize the importance of his discovery, and it was up to other investigators (Clements and Chambers 1957; Pattle 1955) to supply experimental evidence for such a substance, almost 30 years later. Soon afterwards (Avery and Mead 1959) the pathophysiological importance of an immature surfactant system for the respiratory distress syndrome of the newborn (IRDS) was described. The therapeutic implication of this was successfully assessed by Fujiwara et al. (1980), who demonstrated that endotracheal replacement therapy with surfactant reduced the severity and mortality of IRDS. A historical review on the advances of surfactant research was published by Tierney in 1989.


Alveolar Macrophage Idiopathic Pulmonary Fibrosis Diesel Exhaust Adult Respiratory Distress Syndrome Surfactant Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adachi H, Hayashi H, Sato H, Dempo K, Akino T (1989) Characterization of phospholipids accumulated in pulmonary-surfactant compartments of rats intratracheally exposed to silica. Biochemistry 262:781–786Google Scholar
  2. Akino T, Shimizu H, Mizumoto M, Kuroki Y, Satoh H, Kataoka K, Hagisawa M, Fujimoto S, Hosoda K, Suzuki H (1988) Simplified monoclonal immunoassay for pulmonary surfactant 35-kDa apoprotein in human amniotic fluid. Clin Chem 34/7:1513PubMedGoogle Scholar
  3. Ansfield MJ, Benson BJ (1980) Identification of the immunosuppressove components of canine pulmonary surface active material. J Immunol 125/3:1093–1098PubMedGoogle Scholar
  4. Ansfield MJ, Benfer Kaltreider H, Benson BJ, Caldwell JL (1979) Immunosuppressive activity of canine pulmonary surface active material. J Immunol 122/3:1062–1066PubMedGoogle Scholar
  5. Arner EC, Rhoades RA (1973) Long-term nitrogen dioxide exposure. Arch Environ Health 26:156PubMedGoogle Scholar
  6. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyalinemembrane disease. Am J Dis Child 97:517–523Google Scholar
  7. Balis JU, Paterson JF, Lundh JM, Haller EM, Shelley SA, Montgomery MR (1991) Ozone stress initiates acute pertubations of secreted surfactant membranes. Am J Pathol 138/4:847–857PubMedGoogle Scholar
  8. Bates DV, Sizto R (1983) Relationship between air pollutant levels and hospital admissions in Southern Ontario. Can J Public Health 74:117–122PubMedGoogle Scholar
  9. Bates DV, Sizto R (1986) A study of hospital admissions and air pollutants in southern Ontario. In: Less SD, Schneider T, Grant LD (eds) Aerosols: research risk assessment and control strategies: proceedings of the second U.S.-Dutch international symposium, May 1985, Williamsburg. Lewis, Chelsea, pp 767–777Google Scholar
  10. Bates DV, Sizto R (1987) Air pollution and hospital admissions in southern Ontario: the acid summer haze effect. Environ Res 43:317–331PubMedCrossRefGoogle Scholar
  11. Bates DV, Sizto R (1989) The Ontario air pollution study: identification of the causative agent. Environ Health Perspect 79:69–72PubMedCrossRefGoogle Scholar
  12. Baughman RP, Strohofer S (1989) Lung derived surface active material (SAM) inhibits natural killer cell tumor cytotoxicity. J Clin Lab Immunol 28:51–54PubMedGoogle Scholar
  13. Baughman RP, Mangels DJ, Strohofer S, Corser BC (1987) Enhancement of macrophage and monocyte cytotoxicity by the surface active material of lung lining fluid. J Lab Clin Med 109:692–697PubMedGoogle Scholar
  14. Baughman RP, Stein E, MacGee J, Roshkin M, Sahebjami H (1984) Changes in fatty acids in phospholipids of the bronchoalveolar fluid in bacterial pneumonia and in adult respiratory distress syndrome. Clin Chem 30/4:521–523PubMedGoogle Scholar
  15. Baughman RP, Strohofer S, Dohn M (1985) Decreased phosphatidylcholine in the lung fluid of patients with sarcoidosis. Lipids 20:496–499PubMedCrossRefGoogle Scholar
  16. Becard J, Chevalier C, Biesse JP (1990) Quantitative analysis of phospholipids by HPLC with a light scattering evaporating detector — application to raw materials for cosmetic use. J High Resolution Chromatogr 13:126–129CrossRefGoogle Scholar
  17. Blank ML, Dalbey W, Nettesheim P, Price J, Creasia D, Snyder F (1978) Sequential changes in phospholipid composition and synthesis in lungs exposed to nitrogen dioxide. Am Rev Respir Dis 117:273–280PubMedGoogle Scholar
  18. Blank ML, Dalbey W, Cress EA, Garfinkel S, Snyder T (1982) Pulmonary NOr toxicity: phosphatidylcholine levels and incorporation of [3H] thymidine into DNA. Environ Res 27:352–360PubMedCrossRefGoogle Scholar
  19. Breton L, Serkiz B, Volland J-P (1989) A new rapid method for phospholipid separation by high performance liquid chromatography with light-scattering detection. J Chromatogr 497:243–249PubMedCrossRefGoogle Scholar
  20. Bruch J, Schlosser W (1989) The therapeutic influence of PVNO on the quartz induced pneumonitis in rat. Eur Respir J 2/8/408:722s (abstr)Google Scholar
  21. Casals C, Herrera L, Miguel E, Garcia-Barreto P, Municio AM (1989) Comparison between intra- and extracellular surfactant in respiratory distress induced by oleic acid. Biochim Biophys Acta 1003:201–203PubMedGoogle Scholar
  22. Catanzaro A, Richman P, Batcher S, Hallman M (1988) Immunomodulation by pulmonary surfactant. J Lab Clin Med 112:727–734PubMedGoogle Scholar
  23. Chen KC, Vostal JJ (1983) Proliferation of pulmonary alveolar type II cells in rats exposed to high concentration of diesel exhaust (DE). Toxicologist 3:9 (abstr)Google Scholar
  24. Clements JA (1972) Smoking and pulmonary surfactant. N Engl J Med 286:261–262PubMedCrossRefGoogle Scholar
  25. Clements JA, Chambers WH (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95:170–172PubMedGoogle Scholar
  26. Cockshutt AM, Weitz J, Possmayer F (1990) Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 29:8424–8429PubMedCrossRefGoogle Scholar
  27. Cook WD, Webb WR (1966) Surfactant in chronic smokers. Ann Thorac Surg 2:327–333PubMedCrossRefGoogle Scholar
  28. Coonrod JD (1987) Role of surfactant free fatty acids in antimicrobial defenses. Eur J Respir Dis 71/153:209–214Google Scholar
  29. De Bernardi M, Zanasi A, Feletti F, Ricevuti G, Barni S (1990) Toxicity of cigarette smoke and aerosol therapy: biochemical and ultrastructural findings. Eur J Respir Dis 3 [Suppl 10]:430s (abstr)Google Scholar
  30. Doll R, Peto R (1976) Mortality and relation to smoking; 20 years observation on male British doctors. Br Med J ii:1525CrossRefGoogle Scholar
  31. Dungworth DL (1989) Noncarcinogenic responses of the respiratory tract to inhaled toxicants. In: McClellan RO, Henderson RF (eds) Concepts in inhalation toxicology. Hemisphere, New York, pp 273–298Google Scholar
  32. Enhorning G (1989) Surfactant replacement in adult respiratory distress syndrome. Am Rev Respir Dis 140:281–283PubMedCrossRefGoogle Scholar
  33. Eskelson CD, Strom KA, Vostal JJ, Misiorowski RL, Chvapil M (1981) Lipids in the lung and lung lavage fluid of animals exposed to diesel particulates. Toxicologist 1:74–75 (abstr)Google Scholar
  34. Eskelson CD, Chvapil M, Strom KA, Vostal JJ (1987) Pulmonary phospholipidosis in rats respiring air containing diesel particulates. Environ Res 44:260–271PubMedCrossRefGoogle Scholar
  35. Finkelstein JN (1990) Physiologic and toxicologic responses of alveolar type II cells. Toxicology 60:41–52PubMedCrossRefGoogle Scholar
  36. Finley TN, Ladman AJ (1972) Low yield of pulmonary surfactant in cigarette smokers. N Engl J Med 286/5:223–227PubMedCrossRefGoogle Scholar
  37. Fujiwara T, Chida S, Watabe Y (1980) Artificial surfactant therapy in hyaline- membrane disease. Lancet i:55–59CrossRefGoogle Scholar
  38. Gabor S, Zugravu E, Kovats A, Bohm B, Andrasoni D (1978) Effects of quartz on lung surfactant. Environ Res 16:443–448PubMedCrossRefGoogle Scholar
  39. Gardner DE (1984) Oxidant-induced enhanced sensitivity to infection in animal models and their extrapolation to man. J Toxicol Environ Health 13(2–3):423- 439PubMedCrossRefGoogle Scholar
  40. Gehr P, Schiirch S, Geiser M, Im Hof V (1990a) Retention and clearance mechanisms of inhaled particles. J Aerosol Sci 21/1:S491-S496CrossRefGoogle Scholar
  41. Gehr P, Schiirich S, Berthiaume Y (1990b) Particle retention in airways by surfactant. J Aerosol Med 3/1:27–43CrossRefGoogle Scholar
  42. Gitlin JD, Soil RF, Parad RB, Horbar JD, Feldman HA, Lucey JF, Taeusch HW (1987) Randomized controlled trial of exogenous surfactant for the treatment of hyaline membrane disease. Pediatrics 79/1:31–37PubMedGoogle Scholar
  43. Goerke J (1974) Lung surfactant. Biochim Biophys Acta 344:241–261PubMedGoogle Scholar
  44. Green FHY, Schiirch S, De Sanctis GT, Wallace JA, Cheng S, Prior M (1991) Effects of hydrogen sulfide exposure on surface properties of lung surfactant. J Appl Physiol 70/5:1943–1949PubMedGoogle Scholar
  45. Haagsman HP, van Golde LMG (1985) Lung surfactant and pulmonary toxicology. Lung 163:275–303PubMedCrossRefGoogle Scholar
  46. Haagsman HP, Schuurmans EAJM, Alink GM, Batenburg JJ, Van Golde LMG (1985) Effects of ozone on phospholipid synthesis by alveolar type II cells isolated from adult rat lung. Exp Lung Res 9:67–84PubMedCrossRefGoogle Scholar
  47. Hallman M, Spragg R, Harrell JH, Moser KM (1982) Evidence of lung surfactant abnormality in respiratory failure. Study of broncholalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest 70:673–683PubMedCrossRefGoogle Scholar
  48. Hallman M, Arjomaa P, Tahvanainen J, Lachmann B, Spragg R (1985) Endobronchial surface active phospholipids in various pulmonary diseases. Eur J Respir Dis 142S:37–47Google Scholar
  49. Hallman M, Maasilta P, Sipila I, Tahvanainen J (1989a) Composition and function of pulmonary surfactant in adult respiratory distress syndrome. Eur Respir J 2/ 3:104s-108sGoogle Scholar
  50. Hallman M, Pohjavuori M, Jarvenpaa AL, Bry K, Merritt TA, Pesonen E (1989b) Human surfactant in the treatment of respiratory distress syndrome. A spectrum of clinical responses. Eur Respir J 2/3:77s-80sGoogle Scholar
  51. Hamosh M, Schlechter Y, Hamosh P (1979) Effect of tobacco smoke on the metabolism of rat lung. Lung Arch Environ Health 34:17–23Google Scholar
  52. Harris JD, Jackson F Jr, Moxley MA (1989) Effect of exogenous surfactant instillation on experimental acute lung injury. J Appl Physiol 66/4:1846–1851PubMedGoogle Scholar
  53. Harwood JL (1987) Lung surfactant. Prog Lipid Res 26:211–256 Harwood JL, Desai R, Hext P (1975) Characterization of pulmonary surfactant from ox, rabbit, rat and sheep. Biochem J 151:707–714Google Scholar
  54. Heinze T, Kynast G, Dudenhausen JW, Schmitz C, Saling E (1988) Quantitative determination of phospholipids in amniotic fluid by high-performance liquid chromatography. Chromatographia 25/6:497–503CrossRefGoogle Scholar
  55. Heppleston AG, Young AE (1972) Alveolar lipo-proteinosis: an ultrastructural comparison of the experimental and human forms. J Pathol 107:107–117PubMedCrossRefGoogle Scholar
  56. Heppleston AG, Fletcher K, Wyatt I (1972) Abnormalities of lung lipids following inhalation of quartz. Experientia 28:938–939PubMedCrossRefGoogle Scholar
  57. Heppleston AG, Fletcher K, Wyatt I (1974) Changes in the composition of lung lipids and the “turnover” of dipalmitoyl lecithin in experimental alveolar lipo- proteinosis induced by inhaled quartz. Br J Exp Pathol 55:384–395PubMedGoogle Scholar
  58. Heppleston AG, McDermott M, Collins MM (1975) The surface properties of the lung in rats with alveolar lipo-proteinosis. Br J Exp Pathol 56:444–453PubMedGoogle Scholar
  59. Higenbottam T (1989) Lung lipids and disease. Respiration 55:14–27PubMedCrossRefGoogle Scholar
  60. Hildebran JN, Goerke J, Clements JA (1981) Surfactant release in excised rat lung is stimulated by air inflation. J Appl Physiol 51:905–910PubMedGoogle Scholar
  61. Hills BA (1990) The role of lung surfactant. Br J Anaesth 65:13–29PubMedCrossRefGoogle Scholar
  62. Holm BA, Notter RH, Siegle J, Matalou S (1985) Pulmonary physiological and surfactant changes during injury and recovery from hyperoxia. J Appl Physiol 59/5:1402–1409PubMedGoogle Scholar
  63. Honda Y, Kataoka K, Hayashi H, Takahashi H, Suzuki A, Akino T (1989) Alternations of acidic phospholipids in bronchoalveolar lavage fluids of patients with pulmonary alveolar proteinosis. Clin Chim Acta 181:11–18PubMedCrossRefGoogle Scholar
  64. Honda Y, Tsunematsu K, Suzuki A, Akino T (1988) Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases. Lung 166:293–301PubMedCrossRefGoogle Scholar
  65. Hook GER, Gilmore LB, Talley FA (1986) Dissolution and reassembly of tubular myelin-like multilamellated structures form the lungs of patients with pulmonary alveolar proteinosis. Lab Invest 55/2:194PubMedGoogle Scholar
  66. Horiuchi T, Mason RJ, Kuroki Y, Cherniack RM (1990) Surface and tissue forces, surfactant protein A, and the phospholipid components of pulmonary surfactant in bleomycin-induced pulmonary fibrosis in the rat. Am Rev Respir Dis 141:1006–1013PubMedGoogle Scholar
  67. Hughes DA, Haslam PL, Path MRC (1989) Changes in phosphatidylglycerol in bronchoalveolar lavage fluids from patients with cryptogenic fibrosing alveolitis. Chest 95:82–89PubMedCrossRefGoogle Scholar
  68. Hughes DA, Haslam PL (1990) Effect of smoking on the lipid composition of lung lining fluid and relationship between immunostimulatory lipids, inflammatory cells and foamy macrophages in extrinsic allergic alveolitis. Eur Respir J 3:1128- 1139PubMedGoogle Scholar
  69. Ichikawa I, Yokoyama E (1982) Effect of short-term exposure to ozone on lecithin metabolism of rat lung. J Toxicol Environ Health 10:1005–1015PubMedCrossRefGoogle Scholar
  70. Jonsson S, Musher DM, Goree A, Lawrence EC (1986) Human alveolar lining material and antibacterial defenses. Am Rev Respir Dis 133:136–140PubMedGoogle Scholar
  71. Juers JA, Rogers RM, McCurdy JB, Cook WW (1976) Enhancement of bacterial capacity of alveolar macrophages by hyman alveolar lining material. J Clin Invest 58:271–275PubMedCrossRefGoogle Scholar
  72. Kakuta Y, Sasaki H, Takishima T (1991) Effect of artificial surfactant on ciliary beat frequency in guinea pig trachea. Respir Physiol 83/3:313–322PubMedCrossRefGoogle Scholar
  73. Katyal SL, Singh G (1983) An enzyme-linked immunoassay of surfactant apoproteins. Its application to the study of fetal lung development in the rat. Pediatr Res 17:439–443PubMedCrossRefGoogle Scholar
  74. Kawada H, Horiuchi T, Shannon JM, Kuroki Y, Voelker DR, Mason RJ (1989) Alveolar type II cells, surfactant protein A (SP-A), and the phospholipid components of surfactant in acute silicosis in the rat. Am Rev Respir Dis 140:460–470PubMedCrossRefGoogle Scholar
  75. Klingebiel R, Creutzenberg O, Hoymann HG, Dettmer M, Schiiler T, Heinrich U (1991) Effects of 12 weeks exposure to a diisocyanate (MDI) on the pulmonary surfactant system and bronchoalveolar cell content in rats. Eur Resp J 4/ 14:352s-353s (abstr)Google Scholar
  76. Kobayashi T, Noguchi T, Kikuno M, Kubota (1980) Effect of acute nitrogen dioxide exposure on the composition of fatty acids in lung and liver phospholipids. Toxicol Lett 6:149–155PubMedCrossRefGoogle Scholar
  77. Kuhnz W, Zimmermann B, Nau H (1985) Improved separation of phospholipids by high-performance liquid chromatography. J Chromatogr 344:309–312PubMedCrossRefGoogle Scholar
  78. Kuroki Y, Fukada Y, Takahashi H, Akino T (1985a) Monoclonal antibodies against human pulmonary surfactant apoproteins: Specificity and application in immunoassay. Biochim Biophys Acta 836:201–209PubMedGoogle Scholar
  79. Kuroki Y, Takahashi H, Fukada Y, Mikawa M, Inagawa A, Fujimoto S, Akino T (1985b) Two-site “simultaneous” immunoassay with monoclonal antibodies for the determination of surfactant apoproteins in human amniotic fluid. Pediatr Res 19/10:1017–1020PubMedCrossRefGoogle Scholar
  80. Kynast G, Schmitz C (1988) Determination of the phospholipid content of human milk, cow’s milk and various infant formulas. Z Ernahrungswiss 27:252–265PubMedCrossRefGoogle Scholar
  81. Kynast G, Schmitz C, Dudenhausen JW, Schnoy N, Wagner M (1987) Investigations on the influence of water-proofing sprays on the phospholipid composition of the lungs. Wiss Umwelt 4:200–205Google Scholar
  82. Lachmann B (1989a) Animal studies of surfactant replacement therapy. Dev Pharmacol Ther 13:164–172PubMedGoogle Scholar
  83. Lachmann B (1989b) Animal models and clinical pilot studies of surfactant replacement in adult respiratory distress syndrome. Eur Respir J 2/3:98s-103sGoogle Scholar
  84. LaForce FM, Kelly WJ, Huber GL (1973) Inactivation of staphylococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis 108:784–790PubMedGoogle Scholar
  85. Le Mesurier SM, Lykke AWJ, Stewart BW (1980) Reduced yield of pulmonary surfactant: patterns of response following administration of chemicals to rats by inhalation. Toxicol Lett 5:89–93PubMedCrossRefGoogle Scholar
  86. Le Mesurier SM, Stewart BW, Lykke AWJ (1981) Injury to type II pneumocytes in rats exposed to cigarette smoke. Environ Res 24:207–217PubMedCrossRefGoogle Scholar
  87. Leung H-W (1983) Effect of nitrogen dioxide exposure on rat lung lipids. Res Commun Chem Pathol Pharmacol 40/3:519–523PubMedGoogle Scholar
  88. Liau DF, Barrett CR, Bell ALL, Ryan SF (1987) Functional abnormalities of lung surfactant in experimental acute alveolar injury in the dog. Am Rev Respir Dis 136:395–401PubMedCrossRefGoogle Scholar
  89. Lippmann M (1989) Health effects of ozone. A critical review. JAPCA 39/5:672–695PubMedGoogle Scholar
  90. Liu M, Wang L, Li E, Enhorning G (1991) Pulmonary surfactant will secure airflow through a narrow tube. J Appl Physiol 71/2:742–748PubMedGoogle Scholar
  91. Longmuir KJ, Haynes S (1991) Evidence that fatty acid chain length is a type II cell lipid-sorting signal. Am J Physiol (Lung Cell Mol Physiol) 260/4:L44-L51Google Scholar
  92. Loo CKC, Smith GJ, Lykke AWJ (1989) Effects of hyperoxia on surfactant morphology and cell viability in organotypic cultures of fetal rat lung. Exp Lung Res 15:597–617PubMedCrossRefGoogle Scholar
  93. Low ES, Low RB, Green GM (1977) Correlated effects of cigarette smoke components on alveolar macrophage adenosine triphosphatase activity and phagocytosis. Am Rev Respir Dis 115:963PubMedGoogle Scholar
  94. Ma JVC, LaCagnin LB, Bowman L, Miles PR (1989) Carbon tetrachloride inhibits synthesis of pulmonary surfactant disaturated phosphatidylcholines and ATP production in alveolar type II cells. Biochim Biophys Acta 1003:136–144PubMedGoogle Scholar
  95. Martin-Carrera I, Klingebiel R, Hoymann HG, Heinrich U (1991) Effects of subchronic exposure to a diisoyanate (MDI) on the pulmonary surfactant system and lung function. Aerosol Med 4/1:35 (abstr)Google Scholar
  96. Mason RJ (1987) Surfactant in adult respiratory distress syndrome. Eur J Respir Dis 153:229–236Google Scholar
  97. Mathe AA, Volicer L, Puri SK (1974) Effect of anaphylaxis and histamine, pyrilamine and burimamide on levels of cyclic AMP and cyclic GMP in guinea- pig lung. Res Commun Chem Pathol Pharmacol 8/4:635–651PubMedGoogle Scholar
  98. McCormack FX Jr, Voelker DR, King TE Jr, Mason RJ (1988) Decreased levels of phosphatidylglycerol but not levels of surfactant protein correlate with severity of illness in patients with idiopathic pulmonary fibrosis. Am Rev Respir Dis 137/4:275Google Scholar
  99. McCormack FX, Talmadge EK Jr, Voelker DR, Robinson PC, Mason RJ (1991) Idiopathic pulmonary fibrosis. Abnormalities in the bronchoalveolar lavage content of surfactant protein A. Am Rev Respir Dis 144:160–166PubMedCrossRefGoogle Scholar
  100. Merritt TA, Hallman M, Spragg R, Heldt GP, Gilliard N (1989) Exogenous surfactant treatments for neonatal respiratory distress syndrome and their potential role in the adult respiratory distress syndrome. Drugs 38/49:591–611 Miller BE, Hook GER (1988) Isolation and characterization of hypertrophic type II cells from the lungs of silica-treated rats. Lab Invest 58/5:565–575Google Scholar
  101. Miller BE, Dethloff LA, Hook GER (1986) Silica-induced hypertrophy of type II cells in the lungs of rats. Lab Invest 55/2:153–163PubMedGoogle Scholar
  102. Miller BE, Dethloff LA, Gladen BC, Hook GER (1987) Progression of type II cell hypertrophy and hyperplasia during silica-induced pulmonary inflammation. Lab Invest 57/5:546–554PubMedGoogle Scholar
  103. Miller BE, Bakewell WE, Katyal SL, Singh G, Hook GER (1990) Induction of surfactant protein (SP-A) biosynthesis and SP-A mRNA in activated type II cells during acute silicosis in rats. Am J Respir Cell Mol Biol 3:217–226PubMedGoogle Scholar
  104. Miller D, Bondurant S (1962) Effects of cigarette smoke on the surface characteristics of lung extracts. Am Rev Respir Dis 85:692–696PubMedGoogle Scholar
  105. Morgenroth K (1986) Das Surfactantsystem der Lunge, de Gruyter, Berlin, pp 1–110Google Scholar
  106. Morgenroth K, Newhouse M (1988) The surfactant system of the lungs, de Gruyter, BerlinGoogle Scholar
  107. Morrow P (1984) Toxicoplogical data on NOx: an overview. J Toxicol Environ Health 13:205–227PubMedCrossRefGoogle Scholar
  108. Mustafa MG, Tierney DF (1978) Biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity. Am Rev Respir Dis 118:1061- 1090PubMedGoogle Scholar
  109. Miiller B (1989) Increased phospholipid synthesis in diseased lungs. Floating congress on the River Rhine, 11–17 Nov 1989 (abstr)Google Scholar
  110. Narayan S, Dani HM, Misra UK (1990) Lung subcellular fractions and surfactant lipid metabolism of rats exposed with DDT or endosulfan intratracheally. J Environ Sci Health B25/2:259–272Google Scholar
  111. Nicholas TE, Power JHT, Barr HA (1982) The pulmonary consequences of a deep breath. Respir Physiol 49:315–324PubMedCrossRefGoogle Scholar
  112. Nogee LM, Wispe JR, Clark JC (1991) Increased expression of pulmonary surfactant proteins in oxygen-exposed rats. Am J Respir Cell Mol Biol 4:102–107PubMedGoogle Scholar
  113. O’Brodovich HM, Weitz JI, Possmayer F (1990) Effect of fibrinogen degradation products and lung ground substance on surfactant function. Biol Neonate 57:325–333PubMedCrossRefGoogle Scholar
  114. O’Neill SJ, Lesperance E, Klass DJ (1984a) Rat lung lavage surfactant enhances bacterial phagocytosis and intracellular killing by alveolar macrophages. Am Rev Respir Dis 130:225–230PubMedGoogle Scholar
  115. O’Neill SJ, Lesperance E, Klass DJ (1984b) Human lung lavage surfactant enhances staphylococcal phagocytosis by alveolar macrophages. Am Rev Respir Dis 130:1177–1179PubMedGoogle Scholar
  116. Oosterlaken-Dijksterhuis MA, van Eijk M, van Buel BLM (1991) Surfactant protein composition of lamellar bodies isolated from rat lung. Biochem J 274:115–119PubMedGoogle Scholar
  117. Oosting RS, van Greevenbroek MM J, Verhoef J, van Golde LMG, Haagsman HP (1991) Structural and functional changes of surfactant protein A induced by ozone. Am J Physiol (Lung Cell Mol Physiol) 261/5:L77-L83Google Scholar
  118. Oosting RS, van Iwaarden JF, van Bree L, Verhoef J, van Golde LMG, Haagsman HP (1992) Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells. Am J Physiol (Lung Cell Mol Physiol) 262:L63-L68Google Scholar
  119. Oulton M, Moores HK, Scott JE (1991) Effects of smoke inhalation on surfactant phospholipids and phospholipase A2 activity in the mouse lung. Am J Pathol 138:195–202PubMedGoogle Scholar
  120. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175/4469:1125–1126PubMedCrossRefGoogle Scholar
  121. Persson A, Chang D, Rust K, Moxley M, Longmore W, Crouch E (1989) Purification and biochemical characterization of CP4 (SP-D), a collagenous surfactant-associated protein. Biochemistry 28:6361–6367PubMedCrossRefGoogle Scholar
  122. Persson A, Chang D, Crouch E (1990) Surfactant protein D is a divalent cation- dependent carbohydrate-binding protein. J Biol Chem 265/10:5755–5760PubMedGoogle Scholar
  123. Peters RE, Mudd JB (1982) Inhibition by ozone of the acylation of glycerol 3- phosphate in mitochondria and microsomes from rat lung. Arch Biochem Biophys 216/1:34–41PubMedCrossRefGoogle Scholar
  124. Pison U, Gono E, Joka T, Obertake U, Obladen M (1986) High-performance liquid chromatography of adult human bronchoalveolar lavage: assay for phospholipid lung profile. J Chromatogr 377:79–89PubMedCrossRefGoogle Scholar
  125. Possmayer F (1990) The role of surfactant-associated proteins. Am Rev Respir Dis 142:749–752PubMedGoogle Scholar
  126. Rice WR, Sarin VK, Fox JL, Baatz J, Wert S, Whitsett JA (1989) Surfacant peptides stimulate uptake of phophatidylcholine by isolated cells. Biochim Biophys Acta 1006:237–245PubMedGoogle Scholar
  127. Rich EA (1990) Pulmonary surfactant as a physiologic immunosuppressive agent.J Lab Clin Med 116/1:4–5PubMedGoogle Scholar
  128. Richards R, Hunt J, George G (1983) Pulmonary surfactant and mineral-induced diseases. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier, Amsterdam, pp 287–296Google Scholar
  129. Rimpler M, Gerull A, Dörwald ML, Zaremba W, Degen E (1987) Quantitative determination of phospholipids in biological samples by high-performance liquid chromatography (abstract). Fresenius Z Anal Chem 327:37CrossRefGoogle Scholar
  130. Robertson B (1989a) Background to neonatal respiratory distress syndrome and treatment with exogenous surfactant. Dev Pharmacol Ther 13:159–163PubMedGoogle Scholar
  131. Robertson B (1989b) European multicenter trials of Curosurf for treatment of neonatal respiratory distress syndrome (RDS). Eur Resp J 2/S8/598:763sGoogle Scholar
  132. Robertson B (1989c) The evolution of neonatal respiratory distress syndrome into chronic lung disease. Eur Respir J 2/3:33s-37sGoogle Scholar
  133. Robertson B (1989d) Neonatal respiratory distress syndrome and surfactant therapy; a brief review. Eur Respir J 2/3:73s-76sGoogle Scholar
  134. Robinson PC, Watters LC, King TE, Mason RJ (1988) Idiopathic pulmonary fibrosis. Abnormalities in bronchoalveolar lavage fluid phospholipids. Am Rev Respir Dis 137:585–591PubMedGoogle Scholar
  135. Rooney SA (1985) The surfactant system of the lung. In: Witschi HP, Brain JD (eds) Toxicology of inhaled materials. Springer, Berlin Heidelberg New York, pp. 471–502CrossRefGoogle Scholar
  136. Rooney SA (1987) The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis 131:439–460Google Scholar
  137. Ryan SF, Ghassibi Y, Liau DF (1991) Effects of activated polymorphonuclear leucocytes upon pulmonary surfactant in vitro. Am J Respir Cell Mol Biol 4:33–41PubMedGoogle Scholar
  138. Salierin F, Prevost MC, De Graeve P (1984) Etude cytologique et phospholipidique du liquide de lavage broncho-alveolaire au cours des pneumopathies interstitielles diffuses et des sarcoidoses. Rev Mal Respir 1:181–185Google Scholar
  139. Scarim J, Ghanbari H, Taylor V, Menon G (1989) Determination of phosphatidylcholine and ¿¿saturated phosphatidylcholine content in lung surfactant by high performance liquid chromatography. J Lipid Res 30:607–611PubMedGoogle Scholar
  140. Schimmelpfeng J, Pätzold S, Seidel A (1989) Studies on the protective action of surfactant components on quartz and chrysotile asbestos toxicity. Eur Resp J 2/S8/411:722s (abstr)Google Scholar
  141. Schlepper-Schäfer J, Wintergerst E, Plattner H, Manz-Keinke H (1989) SP-A interacts with macrophages and monocytes in a mannose dependent manner (abstract). Floating congress on the River Rhine, 11–17 Nov 1989 (abstr)Google Scholar
  142. Schürch S, Gehr P, Im Hof V, Geiser M, Green F, (1990) Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 80:17–32PubMedCrossRefGoogle Scholar
  143. Schurch S, Gehr P, Im Hof V, Geiser M, Green F (1990) Surfactant displacesparticles to the epithelium in airways and alveoli. Respir Physiol 80:17–32PubMedCrossRefGoogle Scholar
  144. Seeger W, Gunther A, Thede C (1989) Differential sensitivity to fibrinogen- inhibition of SP-C- versus SP-B-based surfactants. Floating congress on the River Rhine, 11–17 Nov 1989 (abstr)Google Scholar
  145. Shapiro DL, Notter RH (1988) Controversies regarding surfactant replacement therapy. Clin Perinatol 1514:891–903Google Scholar
  146. Sheehan PM, Stokes OC, Yeh Y-Y, Hughes WT (1986) Surfactant phospholipids and lavage phospholipase A2 in experimental Pneumocystis carinii pneumonia. Am Rev Respir Dis 134:526–531PubMedGoogle Scholar
  147. Shimura S, Maeda S, Takismima T (1984) Giant lamellar bodies in alveolar type II cells of rats exposed to a low concentration of ozone. Respiration 46:303–309PubMedCrossRefGoogle Scholar
  148. Singh G, Katyal SL, Brown WE, Kennedy AL, Wong-Chong M-L, Gottron SA (1991) Identification, isolation, and partial characterization of a 7.5-kDa surfactant-associated protein. Exp Lung Res 17:559–567PubMedCrossRefGoogle Scholar
  149. Strayer DS, Merritt TA, Lwebuga-Mukasa J, Hallman M (1986) Surfactant-anti- surfactant immune complexes in infants with respiratory distress syndrome. Am J Pathol 122:353PubMedGoogle Scholar
  150. Strayer DS, Merritt TA, Hallman M (1989) Surfactant replacement: immunological considerations. Eur Respir J 2/3:91s-96sGoogle Scholar
  151. Strayer DS, Hallman M, Merritt TA (1991a) Immunogenicity of surfactant: I. Human alveolar surfactant. Clin Exp Immunol 83:35–40PubMedCrossRefGoogle Scholar
  152. Strayer DS, Hallman M, Merritt TA (1991b) Immunogenicity of surfactant: II.Porcine and bovine surfactants. Clin Exp Immunol 83:41–46PubMedCrossRefGoogle Scholar
  153. Strohmaier W, Redl H, Schlag G (1990) Studies of the potential role of a semisynthetic surfactant preparation in an experimental aspiration trauma in rabbits. Exp Lung Res 16:101–110PubMedCrossRefGoogle Scholar
  154. Strom KA (1983) Increase in lipid contents of alveolar macrophages from diesel particulates exposed rats. Toxicologist 3:8 (abstr)Google Scholar
  155. Sulavik SB, Thrall RS (1987) Surfactant and physiologic alternations in an animal model of adult human lung disease. Respiration 51/1:10–14PubMedCrossRefGoogle Scholar
  156. Tahvanainen J, Hallman M (1987) Surfactant abnormality after endotoxin-induced lung injury in guinea-pigs. Eur J Respir Dis 71:250–258PubMedGoogle Scholar
  157. Tenner AJ, Robinson SL, Borchelt J, Wright JR (1989) Human pulmonary surfactant protein (SP-A), a protein structurally homologous to Clq, can enhance FcR- and CRl-mediated phagocytosis. J Biol Chem 264/23:13923- 13928PubMedGoogle Scholar
  158. Thrall RS, Swendsen CL, Shannon TH, Kennedy CA, Frederick DS, Grunze MF, Sulavik SB (1987) Correlation of changes in pulmonary surfactant phospholipids with compliance in bleomycin-induced pulmonary fibrosis in the rat. Am Rev Respir Dis 136:113–118PubMedCrossRefGoogle Scholar
  159. Tierney DF (1989) Lung surfactant: some historical perspectives leading to its cellular and molecular biology. Am J Physiol 257:L1-L12PubMedGoogle Scholar
  160. Van Golde LMG (1985) Synthesis of surfactant lipids in the adult and fetal lung: pathways and regulatory aspects. Eur J Respir Dis 142:19–24Google Scholar
  161. Van Golde LMG, Batenburg JJ, Robertson B (1988) The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev 68/2:374- 455PubMedGoogle Scholar
  162. Van Iwaarden F, Welmers B, Verhoef J (1990) Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2:91–98PubMedGoogle Scholar
  163. Van Iwaarden JF, van Strijp JAG, Ebskamp MJM, Welmers AC, Verhoef J, van Golde, LMG (1991) Surfactant protein A is opsonin in phagocytosis of herpes simplex virus type 1 by rat alveolar macrophages. Am J Physiol (Lung Cell Mol Physiol) 261/5.L204–209Google Scholar
  164. Venkitaraman AR, Hall SB, Whitsett JA, Notter RH (1990) Enhancement of biophysical activity of lung surfactant extracts and phospholipid-apoprotein mixtures by surfactant protein A. Chem Phys Lipids 56:185–194PubMedCrossRefGoogle Scholar
  165. von Neergard K, (1929) Neue Auffassungen über einen Begriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Gesamte Exp Med 66:373–381CrossRefGoogle Scholar
  166. Wallace WE, Keane MJ, Vallythan V (1988) Suppression of inhaled particle cytotoxicity by pulmonary surfactant and re-toxification by phospholipase: distinguishing properties of quartz and kaolin. Ann Occup Hyg 32:291–298Google Scholar
  167. Webb DSA, Jeska EL (1986) Enhanced luminol-dependent chemiluminescence of stimulated rat alveolar macrophages by pretreatment with alveolar lining material. J Leukoc Biol 40:55–64PubMedGoogle Scholar
  168. Weber H, Heilmann P, Meyer B, Maier KL (1990) Effect of canine surfactant protein (SP-A) on the respiratory burst of phagocytic cells. FEBS Lett 270(1,2):90–94PubMedCrossRefGoogle Scholar
  169. Wilsher ML, Hughes DA, Haslam PL (1988a) Immunomodulatory effects of pulmonary surfactant on lymphocyte mediated cytotoxicity. Am Rev Respir Dis 137/4:52Google Scholar
  170. Wilsher ML, Hughes DA, Haslam PL (1988b) Immunoregulatory properties of pulmonary surfactant: influence of variations in the phospholipid profile. Clin Exp Immunol 73:117–122PubMedGoogle Scholar
  171. Wilsher ML, Hughes DA, Haslam PL (1988c) Immunomodulatory effects of pulmonary surfactant on natural killer cell and antibody-dependent cytotoxicity. Clin Exp Immunol 74:465–470PubMedGoogle Scholar
  172. Wispe JR, Clark JC, Warner BB, Fajardo D, Hull WE, Holtzman RB, Whitsett JA (1990) Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein. J Clin Invest 86:1954–1960PubMedCrossRefGoogle Scholar
  173. Wright ES (1986) Effects of short-term exposure to diesel exhaust on lung cell proliferation and phospholipid metabolism. Exp Lung Res 10:39–55PubMedCrossRefGoogle Scholar
  174. Wright ES, Vostal JJ (1983) Changes in lung cell population and phospholipid (PL) metabolism during inhalation exposure of rats to diesel exhaust. Toxicologist 3:8 (abstr)Google Scholar
  175. Wright ES, White DM, Smiler KL (1990) Effects of chronic exposure to ozone on pulmonary lipids in rats. Toxicology 64:313–324PubMedCrossRefGoogle Scholar
  176. Wright JR (1990) Clearance and recycling of pulmonary surfactant. Lung Cell Mol Physiol 259/3:Ll-L12Google Scholar
  177. Wright JR, Tenner AJ (1989) Metabolism of lung surfactant components: could SP-A be a mediator of both surfactant metabolism and immune function? Floating congress on the River Rhine, 11–17 Nov 1989 (abstr)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. Klingebiel
    • 1
  • U. Heinrich
    • 1
  1. 1.Fraunhofer-Institut für Toxikologie und AerosolforschungHannover 61Germany

Personalised recommendations