Skip to main content

Role of Free Radical Reactions in Experimental Hyperlipidemia in the Pathomechanism of Fatty Liver

  • Conference paper
Book cover Free Radicals and the Liver

Abstract

The oxygen free radicals, which play an important role in the living organism, are generated from oxygen by excitation or reduction. The primary free radicals generated are univalent and divalent products of oxygen, O2-, and H2O2. The true free radicals O2-, OH, and reactive products 1O2 or H2O2 may be formed by exogenous interactions, but also during physiological processes in all parts of the cells in the living organism [9, 15, 22, 28, 41, 42].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AOAC Official methods of analysis (1984)

    Google Scholar 

  2. Bindoli A, Cavallini L, Siliprandi N (1977) Inhibitory action of silymarin on lipid peroxide formation in rat liver mitochondria and microsomes. Biochem Pharmacol 26: 2405–2409

    Article  PubMed  CAS  Google Scholar 

  3. Blazovics A, Somogyi A, Lengyel G, Lang I, Feher J (1988) Inhibition of lipid peroxidation by dihydroquinoline type antioxidant (CH 402). Free Rad Res Comms 6: 409–413

    Article  Google Scholar 

  4. Bläzovics A, György I, JN Zsinka A, Biacs P, Földiäk G, Feher J (1989a) In vitro scavenger effect of dihydroquinoline type derivatives in different free radical generating systems. Free Rad Res Comms 4: 217–226

    Article  Google Scholar 

  5. Bläzdvics A, Somogyi A, Ambrus D, Mathiäsz D, Vereckei A, Feher J (1989b) The effect of CH 402 dihydroquinoline type antioxidant on the activity of Na+K+-ATPase and Mg++-ATPase of rat brain subcellular fractions in the presence and absence of ascorbic acid. Acta Physiol Hung 73: 3–7

    Google Scholar 

  6. Cavallini L, Bindoli A, Siliprandi N (1978) Comparative evaluation of antiper- oxidative action of Silymarin and other flavonoids. Pharmacol Res Commun 10: 133–138

    Article  PubMed  CAS  Google Scholar 

  7. Csomös G, Thaler H (1983) Clinical hepatology. History, present state, outlook. Foreword: Popper H. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Csomös G, Hruby K, Thaler M (1985) Silibinin in the treatment of deathcap fungus poisoning. Q Bull Hung Gastroenterol Soc 3: 39–46

    Google Scholar 

  9. Del Maestro RF (1980) An approach to free radicals in medicine and biology. Acta Physiol Scand Suppl 492: 153–168

    PubMed  Google Scholar 

  10. Demopoulus HB, Flamm ES, Pietronigro D, Seligman ML (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl 492: 91–119

    Google Scholar 

  11. Dormandy TL (1978) Free radical oxidation and antioxidants. Lancet: 647–650

    Google Scholar 

  12. Feher J, Bär-Polläk Zs, Sreter L, Feher E, Toncsev H (1982) Biochemical markers in carbon tetrachloride and galactosamine-induced acute liver injuries: the effect of dihydroquinoline-type antioxidants. Br J Exp Pathol 63: 394–400

    PubMed  CAS  Google Scholar 

  13. Feher J, Sulyok S, Polläk Zs, Toncsev H, Cornides Ä, Bläzovics A, Szondy E, Gero S (1984) The effect of a recently developed dihydroquinoline-type radical scavenger in cholesterol induced hyperlipidemia. In: Lenzi S, Descovich GC (eds) Arteriosclerosis and cardiovascular diseases. Compositori, Bologna, pp 87–91

    Google Scholar 

  14. Feher J, Kiss A, Bläzovics A, Szondy E, Toncsev H, Mathiäsz D, Gero S (1985) Hypolipidaemic effect and inhibition of lipid peroxidation with glunicate in rats treated with atherogenic diet. Drug Exp Clin Res 11: 413–419

    CAS  Google Scholar 

  15. Feher J, Csomös G, Vereckei A (1987a) Free radical reactions in medicine. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  16. Feher J, Läng I, Nekäm K, Csomös G, Müzes Gy, Deäk G (1987b) Effect of silibinin on the activity and expression of superoxide dismutase ( SOD) in lymphocytes from patients with chronic alcoholic liver diseases. Free Rad Res Comms 6: 373–376

    Google Scholar 

  17. Feher J, Bläzovics A, György I, Vereckei A, Somogyi A, Cornides A (1989) The effect proved by pulse radiolysis and chemiluminometric methods of free radical scavengers in liver lesions. EASL J Hepatol [Suppl 1]: 9 S148

    Article  Google Scholar 

  18. Fiebrich F, Koch H (1979) Silymarin an inhibitor of lipoxygenase. Experientia 35: 1548–1560

    Article  PubMed  CAS  Google Scholar 

  19. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47: 412–426

    PubMed  CAS  Google Scholar 

  20. Fridovich I (1987) The biology of oxygen radicals: general concepts. Upjohn Symposium/Oxygen radicals pp 1–5

    Google Scholar 

  21. Friedewald WT, Lewy RI, Fredrickson DS (1972) Estimation of the concentration of LDL-cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499–506

    PubMed  CAS  Google Scholar 

  22. Gutteridge JM (1987) Lipid peroxidation: some problems and concepts. Upjohn Symposium/Oxygen radicals: pp 1–19

    Google Scholar 

  23. Halliwell B, Gutteridge JM (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet i: 1936–1937

    Google Scholar 

  24. Harman D (1981) The aging process. Proc Natl Acad Sei USA 78: 7124–7128

    Article  CAS  Google Scholar 

  25. Hayashi H, Winship DH, Sternlieb, I (1977) Lipolysosomes in human liver: distribution in livers with fatty infiltration. Gastroenterology 73: 651–654

    PubMed  CAS  Google Scholar 

  26. Hayashi H, Sameshima Y, Lee M, Hotta Y, Kosaka T (1983) Lipolysosomes in human hepatocytes: their increase in number associated with serum level of cholesterol in chronic liver diseases. Hepatology 3: 221–225

    Article  PubMed  CAS  Google Scholar 

  27. Heide L, Bogl, W (1986) The identification of irradiated dried food-stuffs by luminescence measurements. Food Lab Newslett 5: 21–23

    Google Scholar 

  28. Hornsby PJ, Crivello JF (1983) The role of lipid peroxidation and biological antioxidants in the function of the adrenal cortex. Part I. A background review. Mol Cell Endocrinol 30: 1–20

    Google Scholar 

  29. Jansson J, Schenkman JB (1977) Studies on three microsomal electron-transfer enzyme systems (specificity of electron flow pathways). Arch Biochem Biophys 178: 89–107

    Article  PubMed  CAS  Google Scholar 

  30. Kanai M (1989) Ultrastructural and biochemical studies of lipolysis by lipolysosomes in chick hepatocytes. Cell Tissue Res 255: 559–565

    Article  PubMed  CAS  Google Scholar 

  31. Lee M, Hayashi H, Kato S, Sameshima Y, Hotta Y (1982) Egg yolk-induced lipolysosome proliferation and fat infiltration of rat liver. Lab Invest 47: 194–197

    PubMed  CAS  Google Scholar 

  32. Lowry AH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol-reagents. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  33. Marklund SL, Westman NG, Lundgren E, Ross G (1982) Copper and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42: 1955–1961

    PubMed  CAS  Google Scholar 

  34. Meins R, Heinrich V, Robenev H, Themen H (1982) Effect of silibinin on hepatic cell membranes after damage by polycyclic aromatic hydrocarbons. Agents Action 12: 254–257

    Article  Google Scholar 

  35. Misra HP, Fridrovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170–3175

    PubMed  CAS  Google Scholar 

  36. Nash T (1953) Colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55: 416–421

    PubMed  CAS  Google Scholar 

  37. Nizzamuddin A (1987) NADPH dependent and 02~ dependent lipid peroxidation. Biochem Educ 15: 58–63

    Article  Google Scholar 

  38. Omura T, Sato R (1964a) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239: 2370–2378

    PubMed  CAS  Google Scholar 

  39. Omura T, Sato R (1964b) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239: 2379–2385

    PubMed  CAS  Google Scholar 

  40. Ottolenghi A (1959) Interaction of ascorbic acid on mitochondrial lipids. Arch Biochem Biophys 79: 355–363

    Article  CAS  Google Scholar 

  41. Pryor WA (1973) Free radical reactions and their importance in biochemical systems. Fed Proc 32: 1862–1869

    PubMed  CAS  Google Scholar 

  42. Pryor WA (1982) Free radical biology, xenobiotics, cancer and aging. Ann N Y Acad Sci 393: 1–22

    Article  PubMed  CAS  Google Scholar 

  43. Ruprah M, Mant TGK, Flanagan RJ (1985) Acute carbon tetrachloride poisoning in 19 patients: implications for diagnosis and treatment. Lancet i: 1027–1029

    Article  Google Scholar 

  44. Shaw S, Jayatilleke E, Ross WA, Gordon EF, Lieber CS (1981) Ethanol-induced lipid peroxidation potentiation by long-term alcohol feeding and attenuation by methionine. J Lab Clin Med 98: 417–424

    PubMed  CAS  Google Scholar 

  45. Shaw S, Rubin KP, Lieber CS (1983) Depressed hepatic glutathione anc) increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Dig Dis Sci 28: 585–589

    Google Scholar 

  46. Toncsev H, Pollak Z, Kiss A, Feher J (1982) Acute carbon tetrachloride induced lysosomal membrane damage and the membrane protecting effect of a new di- hydroquinoline-type antioxidant. Int J Tissue React 4: 325–330

    PubMed  CAS  Google Scholar 

  47. USA Patent, Nr. 4356306 (MTDQ-DA)

    Google Scholar 

  48. USA Patent, Nr. 4363910 (CH 402)

    Google Scholar 

  49. Valenzuela A, Guerra KI (1986) Differential effect of silybin on the Fe2+-ADP and i-butyl-hydroperoxide induced microsomal lipid peroxidation. Experientia 42: 139–141

    Article  PubMed  CAS  Google Scholar 

  50. Zsinka AJN, Blazovics A, Biacs P (1988) Chemiluminescence phenomena in animal tissues of different quality. Hung Sci Instrum 64: 11–13

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blázovics, A., Fehér, E., Fehér, J. (1992). Role of Free Radical Reactions in Experimental Hyperlipidemia in the Pathomechanism of Fatty Liver. In: Csomós, G., Fehér, J. (eds) Free Radicals and the Liver. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76874-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76874-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76876-7

  • Online ISBN: 978-3-642-76874-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics