Live Escherichia coli Sepsis Models in Baboons

  • G. Schlag
  • H. Redl
  • J. Davies
  • C. J. J. van Vuuren
  • P. Smuts


Sepsis and septic shock are usually complex conditions in which the overall picture heavily depends on numerous interrelationships among all organ systems and tissues. In the study of such a complicated problem it seems important to eliminate as many variables as possible. In this respect, the use of experimental animals which phylogenetically are as close to humans as possible would appear to be an important initial goal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers WH, Tyler CW, Boxerbaum B (1966) A symptomatic bacteremia in the newborn infant. J Pediatr 69:193–202.PubMedCrossRefGoogle Scholar
  2. Bell H, Thal A (1970) The peculiar hemodynamics of septic shock. Postgrad Med J 48:106–114.Google Scholar
  3. Bengtsson A, Redl H, Paul E, Schlag G, Mollnes TE, Davies J (1993) Complement and leukocyte activation in septic baboons. Circ Shock 39:83–88.PubMedGoogle Scholar
  4. Brede HD, Murphy GP (1972) Bacteriological and virological considerations in primate transplants. Prim Med 7:18–28.Google Scholar
  5. Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MB (1985) Beta-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 17 [Suppl 2]:41–43.PubMedCrossRefGoogle Scholar
  6. Callery MP, Kamei T, Mangino MJ, Flye WM (1991) Organ interactions in sepsis. Host defense and the hepatic pulmonary macrophages axis. Arch Surg 126: 28–32.PubMedCrossRefGoogle Scholar
  7. Carroll GC, Snyder JV (1982) Hyperdynamic severe intravascular sepsis depends on fluid administration in cynomolgus monkey. Am J Physiol 243:R131–R141.PubMedGoogle Scholar
  8. Dietzman DE, Fischer GW, Schönknecht FD (1974) Neonatal Escherichia coli septicemia; bacterial counts in blood. J. Pediatr 85:128–133.CrossRefGoogle Scholar
  9. Duff JH, Groves AC, McLean AP, Lapointe R, MacLean LD (1969) Defective oxygen consumption in septic shock. Surg Gynecol Obstet 128:1051.PubMedGoogle Scholar
  10. Fridman EP, Popova VN (1988) Species of the genus papio (cercopithecidae) as subjects of biomedical research: I. Biological basis of experiments on baboons. J Med Primatol 17:291–307.PubMedGoogle Scholar
  11. Groenewald van Zyl JJW (1973) The cape chacma baboon in surgical research. In: Bourne GH (ed) Non-human primates and medical research. Academic, New York, pp 269–279.Google Scholar
  12. Hales RS, Rowell LB, King RB (1979) Regional distribution of blood flow in awake heat-stressed baboons. Am J Physiol 237:H705–H712.PubMedGoogle Scholar
  13. Herman CM, McKee AE, Schilling PW, Dickson LG, Hörwitz DL, Coran AG, Cryer PE, Kopriva CJ (1972) The baboon as a subhuman primate shock model. In: Forscher BK, Lillehei RC, Stubbs SS (eds) Shock in low and high flow states. Excerpta Medica, Amsterdam, pp 42–48.Google Scholar
  14. Hinshaw LB (1985) Application of animal shock models to the human. Circ Shock 17:205–212.PubMedGoogle Scholar
  15. Hinshaw LB, Brackett DJ, Archer LT, Beller BK, Wilson MF (1983) Detection of the hyperdynamic state of sepsis in the baboon during lethal E. coli infusion. J Trauma 23:361–365.PubMedCrossRefGoogle Scholar
  16. Hitchcock CR (1969) Experimental surgery in primates and in standard laboratory animals: a comparative survey. Ann NY Acad Sci 162:393–403.PubMedCrossRefGoogle Scholar
  17. Hobson BM (1970) Comparison of chorionic gonadotropin in primates. Proc Soc Endocrinol 47:5–6.Google Scholar
  18. Houtchens BA, Westenskow DR (1984) Oxygen consumption in septic shock: collective review. Circ Shock 13:361–384.PubMedGoogle Scholar
  19. Jones WG II, Barker AE, Minei JP, Fahey TJ III, Shires GT III, Shires GT (1991) Differential pathophysiology of bacterial translocation after thermal injury and sepsis. Ann Surg 214:24–30.PubMedCrossRefGoogle Scholar
  20. Karr JP, Hirdani RY, Murphy GP, Sandberg AA (1979) The baboon prostate as a model for steroid hormone receptors in the human gland. In: Murphy GP, Sanberg AA (eds) Prostate cancer and hormone receptors. Liss, New York, pp 165–179.Google Scholar
  21. Kelly CA, Gleiser CA (1986) Selected coagulation reference values for adult and juvenile baboons. Lab Anim Sci 36:173–175.PubMedGoogle Scholar
  22. Kosanke SD, White GL, Archer LT, Britz WE Jr (1982) A comparison of the morphologic lesions in the dog and baboon septic shock models. Lab Anim Sci 32:420.Google Scholar
  23. Mollnes TE, Redl H, Högasen K, Bengtsson A, Garred P, Speilberg L, Lea T, Oppermann M, Götze O, Schlag G (1993) Complement activation in septic baboons detected by neoepitope-specific assays for C3b/iC3b/C3c, C5a and the terminal C5b-9 complement complex (TCC). Clin Exp Immunol 91:295–300.PubMedCrossRefGoogle Scholar
  24. Nute PE, Mahoney WC (1979) Complete sequence of the chain from the fetal hemoglobin of the baboon, papio cynocephalus. Hemoglobin 3:399–410.PubMedCrossRefGoogle Scholar
  25. Redl H, Dinges HP, Buurman WA, van der Linden CJ, Pober JS, Cotran RS, Schlag G (1991a) Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am J Pathol 139:461–466.PubMedGoogle Scholar
  26. Redl H, Schlag G, Bahrami S, Schade U, Ceska M, Stütz P (1991b) Plasma neutrophil-activation peptide-1/interleukin-8 and neutrophil elastase in a primate bacteremia model. J Infec Dis 164:383–388.CrossRefGoogle Scholar
  27. Redl H, Schlag G, Dinges HP, Bahrami S, Buurman WA, Schade U, Ceska M (1991c) Trauma and sepsis induced activation of granulocytes, monocytes/macrophages and endothelial cells in primates. In: Schlag G, Redl H, Siegel JH, Traber DL (eds) Shock, sepsis, and organ failure, 2nd Wiggers Bernard conference, 27–30 May 1990, Schloß Dürnstein, Austria. Springer, Berlin Heidelberg New York, pp 297–313.Google Scholar
  28. Schlag G, Redl H, Dinges HP, Davies J, Radmore K (1991a) Bacterial translocation in a baboon model of hypovolemic-traumatic shock. In: Schlag G, Redl H, Siegel JH, Traber DL (eds) Shock, sepsis, and organ failure, 2nd Wiggers Bernard conference, 27–30 May 1990, Schloß Dürnstein, Austria. Springer, Berlin Heidelberg New York, pp 53–83.Google Scholar
  29. Schlag G, Redl H, Hallström S, Radmore K, Davies J (1991b) Hyperdynamic sepsis in baboons: I. Aspects of hemodynamics. Circ Shock 34:311–318.PubMedGoogle Scholar
  30. Schlag G, Redl H, Davies J, Bodmer MW, Foulkes R (1992a) Humanized TNF-antibodies in a subchronic septic model in baboons with single bacterial challenge to improve survival and to prevent multi-organ failure (MOF). Circ Shock 37:52–53.Google Scholar
  31. Schlag G, Redl H, van Vuuren CJJ, Davies J (1992b) Hyperdynamic sepsis in baboons. II. Relation of organ damage to severity of sepsis evaluated by a newly developed morphological scoring system. Circ Shock 38:253–263.PubMedGoogle Scholar
  32. Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DH (1973) Physiologic patterns in surviving and nonsur-viving shock patients. Arch Surg 106:630–636.PubMedCrossRefGoogle Scholar
  33. Siegel JH, Greenspan M, DelGuercio LRM (1967) Abnormal vascular tone, defective oxygen transport and myocardial failure in human septic shock. Ann Surg 165:504–517.PubMedCrossRefGoogle Scholar
  34. Simon GL, Gelfand GA, Connolly RA, O’Donnell TF Jr, Gorbach SL (1985) Experimental bacteroides fragilis bacteremia in a primate model: evidence that bacteroides fragilis does not promote the septic shock syndrome. J Trauma 25:1156–1162.PubMedCrossRefGoogle Scholar
  35. Stephens KE, Ishizaka A, Larrick JW, Raffin TA (1988) Tumor necrosis factor causes increased pulmonary permeability and edema. Am Rev Respir Dis 137: 1364–1370.PubMedGoogle Scholar
  36. Stumacher RJ, Kovnat MJ, McCabe WR (1973) Limitations of the usefulness of the limulus assay for endotoxin. N Engl J Med 288:1261–1263.PubMedCrossRefGoogle Scholar
  37. Sugerman HJ, Austin G, Newsome HH, Hylemon P, Greenfield LJ (1982) Hemodynamics, oxygen consumption and serum catecholamine changes in progressive, lethal peritonitis in the dog. Surg Gynecol Obstet 154:8–12.PubMedGoogle Scholar
  38. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ, Zentella A, Albert JD, Shires GT, Cerami A (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470–474.PubMedCrossRefGoogle Scholar
  39. Tracey KJ, Lowry SF, Cerami A (1988) Cachectin-TNF-α in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis 138:1377–1379.PubMedGoogle Scholar
  40. Vincent JL, Thirion M, Brimioulle S, Lejeune P, Kahn RJ (1986) Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 12:33–38.PubMedCrossRefGoogle Scholar
  41. Wells CL, Maddaus MA, Simmons RL (1987) Role of the macrophage in the translocation of intestinal bacteria. Arch Surg 122:48–53.PubMedCrossRefGoogle Scholar
  42. Wells CL, Maddaus MA, Erlandsen SL, Simmons RL (1988) Evidence for the phagocytic transport of intestinal particles in dogs and rats. Infect Immun 56: 278–282.PubMedGoogle Scholar
  43. Wells CL, Erlandsen SL, Dunn DL, Simmons RL (1991) Bacterial translocation across a histologically intact intestinal mucosa. In: Schlag G, Redl H, Siegel JH, Traber DL (eds) Shock, sepsis, and organ failure, 2nd Wiggers Bernard conference, 27–30 May 1990, Schloß Dürnstein, Austria. Springer, Berlin Heidelberg New York, pp 91–113.Google Scholar
  44. Werner AS, Cobbs CG, Kaye D, Hook EW (1967) Studies on the bacteremia of bacterial endocarditis. JAMA 202:127–131.CrossRefGoogle Scholar
  45. Wolf YG, Cotev S, Perel A, Manny J (1987) Dependence of oxygen consumption on cardiac output in sepsis. Crit Care Med 15:198–203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Schlag
    • 1
  • H. Redl
    • 1
  • J. Davies
    • 2
  • C. J. J. van Vuuren
    • 2
  • P. Smuts
    • 2
  1. 1.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
  2. 2.Roodeplaat Research LaboratoriesPretoriaSouth Africa

Personalised recommendations