Experimental Models in Surfactant Research

  • W. Strohmaier
  • G. Schlag


Since the first reported cases of adult respiratory distress syndrome (ARDS) by Ashbough et al. in 1967, efforts have been undertaken to understand the sequence of events leading to lung failure. ARDS represents a spectrum of respiratory dysfunctions that involve a variety of etiologic factors, with the alveolar epithelium and capillary endo-thelium constituting prime targets. As no model has proven to be adequate to study all aspects of pulmonary disease (Holm et al. 1988), numerous experiments have been conducted to simulate the clinical features and/or the pathophysiologic route of ARDS. Figure 1 shows the two groups of injuries that may lead to ARDS; Fig. 2 lists the models used to study the pathogenesis of lung injury and surfactant impairment.


Adult Respiratory Distress Syndrome Pulmonary Surfactant Lung Lavage Lung Surfactant Edema Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamson IY, Bowden DH, Wyatt JP (1970) Oxygen poisoning in mice. Ultrastructural and surfactant studies during exposure and recovery. Arch Pathol 90:436–472.Google Scholar
  2. Ansfield MJ, Kaltreider HB, Benson BJ, Caldwell JL (1979) Immunosuppressive activity of canine pulmonary surface active material. J Immunol 122:1062–1067.PubMedGoogle Scholar
  3. Arakawa K, Sagai M (1986) Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipid 21:769–775.Google Scholar
  4. Ashbough DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet II: 319–323.Google Scholar
  5. Awe WC, Fletcher W, Jacobs SW (1966) The pathophysiology of aspiration pneumonitis. Surgery 60:232–239.Google Scholar
  6. Baritussio A, Bellina L, Carraro R, Possi A, Enzi G, Magoon MW, Mussini J (1984) Heterogeneity of alveolar surfactant in the rabbit: composition, morphology and labelling of subfractions isolated by centrifugation of lung lavage. Eur J Clin Invest 14:24–29.PubMedGoogle Scholar
  7. Baritussio A, Carraro O, Bellina L, Rossi A, Bruni R, Pettenazzo A, Enzi G (1985) Turnover of phospho-lipids isolated from fractions of lung lavage fluid. J Appl Physiol 59:1055–1060.PubMedGoogle Scholar
  8. Barrett CR, Bell ALL, Ryan SF (1979) Alveolar epithelial injury causing respiratory distress in dogs. Chest 75:705–711.PubMedGoogle Scholar
  9. Baum KF, Beckman DL (1976) Aspiration pneumonitis and pulmonary phospholipids. J Trauma 16:782–787.PubMedGoogle Scholar
  10. Beppu OS, Clements JA, Goerke J (1983) Phosphatidyl-glycerol-deficient lung surfactant has normal properties. J Appl Physiol 55:496–502.PubMedGoogle Scholar
  11. Bergmann KC, Lachmann B (1975) immunologic differentiation of proteins in the surfactant system of the lung. Scand J Respir Dis 56:87–92.PubMedGoogle Scholar
  12. Berry D, Ikegami M, Jobe A (1986) Respiratory distress and surfactant inhibition following vagotomy in rabbits. J Appl Physiol 61:1741–1748.PubMedGoogle Scholar
  13. Bolande RP, Klaus MH (1964) Morphologic demonstration of an alveolar lining layer and its relationship to pulmonary surfactant. Am J Pathol 45:449–462.PubMedGoogle Scholar
  14. Brown ES (1967) Aspiration and lung surfactant. Anesth Analg Curr Res 46:665–672.Google Scholar
  15. Clark DG, McElliot TF, Hurst EW (1966) The toxicity of paraquat. Br J Industr Med 23:126–132.Google Scholar
  16. Clark WR, Webb WR, Wax SD, Nieman GF (1977) Inhalation injuries: the pathophysiology of acute smoke inhalation. Surg Forum 28:177–179.PubMedGoogle Scholar
  17. Clements JA, Tierney DF (1965) Alveolar instability associated with altered surface tension. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration sect 3, vol II. American Physiological Society, Washington DC, pp 1565–1583.Google Scholar
  18. Coalson JJ, King RJ, Winter UT, Prihoda TJ, Anzueto AR, Peters JL, Johanson WG (1989) O2-pneu-monia-induced lung injury. I. Pathological and morphological studies. J Appl Physiol 67:346–356.PubMedGoogle Scholar
  19. Crittenden DJ, Beckman DL (1982) Traumatic head injury and pulmonary damage. J Trauma 22:766–769.PubMedGoogle Scholar
  20. Curstedt T, Johansson J, Barros-Söderling J, Robertson B, Nilsson G, Westberg M, Jörnvall H (1988) Low-molecular-mass surfactant protein type I. The primary structure of a hydrophobic 8-kDa polypeptide with eight half-cysteine residues. Eur J Biochem 172:521–525.PubMedGoogle Scholar
  21. Curstedt T, Johansson J, Persson P, Eklung A, Robertson B, Löwenadler B, Jörnvall H (1990) Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acid groups. Proc Natl Acad Sci USA 87:2985–2989.PubMedGoogle Scholar
  22. De los Santos R, Seidenfeld JJ, Anuzeto A, Collins JF, Coalson JJ, Johanson WG, Peters JL (1987) One hundred percent oxygen lung injury in adult baboons. Am Rev Respir Dis 136:657–661.Google Scholar
  23. Enhorning G (1977) Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol 43:198–203.PubMedGoogle Scholar
  24. Fisher CJ, Wood LDH (1980) Effect of lobar acid injury on pulmonary perfusion and gas exchange in dogs. J Appl Physiol 49:150–156.PubMedGoogle Scholar
  25. Gasser H, Strohmaier W, Redl H, Schlag G (1989) Chemical changes of natural surfactant after exposure to oxidant stress in vitro. Abstractbook ‘60 years of surfactant research’, floating congress on the river Rhine, 11–17 Nov 1989.Google Scholar
  26. Glauser FL, Falls RK, Mathers JAL, Millen JE (1981) Pulmonary microvascular and alveolar epithelial permeability characteristics in N-nitroso-N-methyl-urethane injected dogs. Chest 79:217–221.PubMedGoogle Scholar
  27. Goldenberg VE, Buckingham S, Sommers SC (1967) Pulmonary alveolar lesions in vagotomized rats. Lab Invest 16:693–705.PubMedGoogle Scholar
  28. Goldman G, Welbourn R, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1990) Tumor necrosis factor-alpha mediates acid aspiration-induced systemic organ injury. Ann Surg 212:513–520.PubMedGoogle Scholar
  29. Grimbert F, Parker JC, Taylor AE (1981) Increased pulmonary vascular permeability following acid aspiration. J Appl Physiol 51:335–345.PubMedGoogle Scholar
  30. Guyton AC, Moffatt DS, Adair TH (1984) Role of alveolar surface tension in transepithelial movement of fluid. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 171–185.Google Scholar
  31. Haagsman HP, van Golde LMG (1985) Lung surfactant and pulmonary toxicology. Lung 163:275–303.PubMedGoogle Scholar
  32. Hales CA, Barkin PW, Jung W, Trautman E, Lamborghini D, Herrig N, Burke J (1988) Synthetic smoke with acrolein but not HC1 produces pulmonary edema. J Apply Physiol 64:1121–1133.Google Scholar
  33. Hallman M, Epstein BL (1982) Myoinositol decreases N-nitroso-N-methylurethane induced lung surfactant deficiency. Life Sci 31:175–180.PubMedGoogle Scholar
  34. Hallman M, Gluck L (1976) Phosphatidylglycerol in lung surfactant. III. Possible modifier of surfactant function. J Lipid Res 17:257–262.PubMedGoogle Scholar
  35. Hallman M, Spragg R, Harreil JH, Moser KM, Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity and plasma myo-inositol. J Clin Invest 69:673–683.Google Scholar
  36. Hampson EC, Pond SM (1988) Ultrastructure of canine lung during the proliferative phase of paraquat toxicity. Br J Exp Pathol 69:57–68.PubMedGoogle Scholar
  37. Harris JD, Jackson F, Moxley MA, Longmore WJ (1989) Effect of exogenous surfactant instillation on experimental acute lung injury. J Appl Physiol 66:1846–1851.PubMedGoogle Scholar
  38. Head JM (1980) Inhalation injury in burns. Am J Surg 139:508–512.PubMedGoogle Scholar
  39. Holm BA, Notter RH (1986) Pulmonary surfactant effects in sublethal hyperoxic lung injury. In: Taylor A, Matalon S, Ward P (eds) Physiology of oxygen radicals. American Physiological Society, Bethesda, pp 71–86.Google Scholar
  40. Holm BA, Notter RH, Finkelstein JN (1985a) Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipids 38:287–298.PubMedGoogle Scholar
  41. Holm BA, Notter RH, Siegle JC, Matalon S (1985b) Pulmonary physiological and surfactant changes during injury and recovery from hyperoxia. J Appl Physiol 59:1402–1409.PubMedGoogle Scholar
  42. Holm BA, Matalon S, Notter RH (1988) Pulmonary surfactant effects and replacement in oxygen toxicity and other ARDS-type lung injuries. In: Lachmann B (ed). Surfactant replacement therapy in neonatal and adult respiratory distress syndrome. Springer, Berlin Heidelberg New York, pp 224–244.Google Scholar
  43. Holm BA, Cavanaugh C, Baker RR, Matalon S (1990) Effect of reactive oxygen metabolites on type II cell surfactant synthesis. Am Rev Respir Dis 142:A403.Google Scholar
  44. Holm BA, Keicher L, Liu M, Soholowski J, Enhorning G (1991) Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 71:317–321.PubMedGoogle Scholar
  45. Jacobs H, Jobe A, Ikegami M, Jones S (1982) Surfactant phosphatidylcholine source, fluxes, and turnover times in 3-day-old, 10-day-old, and adult rabbits. J Biol Chem 257:1805–1810.PubMedGoogle Scholar
  46. Jarstrand C (1984) Role of surfactant in the pulmonary defense system. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 187–201.Google Scholar
  47. Jones JG, Berry M, Hulands GH, Crawley JC (1978) The time course and degree of change in alveolar-capillary membrane permeability induced by aspiration of hydrochloric acid and hypotonic saline. Am Rev Respir Dis 118:1007–1013.PubMedGoogle Scholar
  48. Kapanci Y, Weibel ER, Kaplan HP, Robinson FR (1969) Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab Invest 20:101–118.PubMedGoogle Scholar
  49. Kimbrough RD, Gaines TB (1990) Toxicity of paraquat to rats and its effect on rat lung. Toxicol Appl Pharmacol 17:679–690.Google Scholar
  50. Kumura R, Traber LD, Herndon DN, Linares HA, Lüb-besmeyer HJ, Traber DL (1988) Increasing duration of smoke exposure induces more severe lung injury in sheep. J Appl Physiol 64:1107–1113.Google Scholar
  51. King RJ, Coalson JJ, Seidenfeld JJ, Anzueto AR, Smith BD, Peters JI (1989) O2-and pneumonia-induced lung injury. II. Properties of pulmonary surfactant. J Appl Physiol 67:357–365.PubMedGoogle Scholar
  52. Kobayashi T, Ganzuka M, Taniguchi J, Nitta K, Murakami S (1990) Lung lavage and surfactant replacement for hydrochloric acid aspiration in rabbits. Acta Anaesth Scand 34:216–221.PubMedGoogle Scholar
  53. Kunc L, Kuncova M, Holusa R, Soldan F (1978) Physical properties and biochemistry of lung surfactant following vagotomy. Respiration 35:192–197.PubMedGoogle Scholar
  54. Lachmann B, Bergmann KC, Vogel J (1973a) Experimentelles Atemnotsyndrom nach Injektion von Anti-Lungenserum. I. Atemmechanische, röntgenolo-gische and blutanalytische Befunde. Pädiatr Grenzgeb 12:347–364.PubMedGoogle Scholar
  55. Lachmann B, Bergmann KC, Winsel K, Eckert H, Wuthe H, Vogel J (1973b) Experimentelles Atemnotssyn-drom nach Injektion von Anti-Lungenserum. II. Morphologische, biochemische, physikochemische und immunologische Befunde. Pädiatr Grenzgeb 12:403–414.PubMedGoogle Scholar
  56. Lachmann B, Bergmann KC, Winsel K, Müller E, Petro W, Schäfer C, Vogel J (1975) Experimentelles Atem-notsyndrom nach Injektion von Anti-Lungenserum. III. Atemmechanische, blutgasanalytische, physikochemische und biochemische Befunde im chronischen Versuch; Therapieversuche. Pädiatr Grenzgeb 14:211–233.PubMedGoogle Scholar
  57. Lachmann B, Bergmann KC, Enders K, Friedel L, Gehlmann B, Grossmann G, Hoffmann D, Kuckelt W, Malmquist E, Robertson B, Seidel M, Vogel J, Winsel K (1977) Können pathologische Veränderungen im Surfactant-System der Lunge zu einer akuten respiratorischen Insuffizienz beim Erwachsenen führen? In: Danzmann E (ed) Anaesthesia 77. Proceedings of the 6th congress of the society of anaes-thesiology and resuscitation of the GDR, Society of Anaesthesiology and Resuscitation of the GDR, Berlin, pp 337-353.Google Scholar
  58. Lachmann B, Robertson B, Gehlmann B, Enders K, Seidel M, Petro W, Vogel J (1978) Experimental respiratory distress induced by removal of alveolar surfactant with bronchial lavage. In: Georgiev GA (ed) Lung lipid metabolism, mechanisms of its regulation and alveolar surfactant. Proceedings of an international symposium, Varna, 19–12 May 1976. Publishing house of the bulgarian academy of sciences. Sofia, pp 303-313.Google Scholar
  59. Lachmann B, Robertson B, Vogel J (1980) In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol Scand 24:231–236.PubMedGoogle Scholar
  60. Lachmann B, Danzmann E, Haendly B, Jonson B (1982a) Ventilator setting and gas exchange in respiratory distress syndrome. In: Prakash O (ed) Applied physiology in clinical respiratory care. Nijhoff, The Hague, pp 141–176.Google Scholar
  61. Lachmann B, Jonson B, Lindroth M, Robertson B (1982b) Modes of artificial ventilation in severe respiratory distress syndrome. Lung function and morphology studied in rabbits after wash-out of alveolar surfactant. Crit Care Med 10:724–732.PubMedGoogle Scholar
  62. Lewis JF, Ikegami M, Jobe AH (1990) Altered surfactant function and metabolism in rabbits with acute lung injury. J Appl Physiol 69:2303–2310.PubMedGoogle Scholar
  63. Liang KY (1982) Pulmonary pathomorphological changes of both infused and non-infused dogs inflicted with cutaneous and respiratory burns. Bull 3rd Milit Med Coll Chongqing 4:33–38.Google Scholar
  64. Liau DF, Ryan SF (1991) Effects of human polymor-phonuclear leukocytes (PMN) proteases upon surfactant protein A in vitro. Am Rev Respir Dis 143:A 317.Google Scholar
  65. Liau DF, Barrett CR, Bell ALL, Ryan SF (1987) Functional abnormalities of lung surfactant in experimental acute alveolar injury in the dog. Am Rev Respir Dis 136:395–401.PubMedGoogle Scholar
  66. Liu M, Wang L, Li E, Enhorning G (1991) Pulmonary surfactant will secure free airflow through a narrow tube. J Appl Physiol 71:742–748.PubMedGoogle Scholar
  67. Magoon MW, Wright JR, Baritussio A, Williams MC, Goerke J, Benson GJ, Hamilton RL, Clements JA (1983) Subfractionation of lung surfactant: implications for metabolism and surface activity. Biochim Biophys Acta 750:18–31.PubMedGoogle Scholar
  68. Manktelow BW (1967) The loss of pulmonary surfactant in paraquat poisoning. Br J Exp Pathol 48:366–369.PubMedGoogle Scholar
  69. Matalon S, Egan EA (1981) Effects of 100% O2 breathing on permeability of alveolar epithelium to solute. J Appl Physiol 50:859–863.PubMedGoogle Scholar
  70. Matalon S, Egan EA (1984) Interstitial fluid volumes and albumin spaces in pulmonary oxygen toxicity. J Appl Physiol 57:1767–1772.PubMedGoogle Scholar
  71. Morgan DL, Wenzel DG (1985) Free radical species mediating the toxicity of ozone for cultured rat lung fibroblasts. Toxicology 36:243–251.PubMedGoogle Scholar
  72. Moss G, Stein AA (1976) The centrineurogenic etiology of the respiratory distress syndrome: protection by unilateral chronic pulmonary denervation in hemorrhagic shock. J Trauma 16:361–364.PubMedGoogle Scholar
  73. Müller B, Barth P, von Wichert P (1992) Structural and functional impairment of surfactant protein A after exposure to nitrogen dioxide in rats. Am J Physiol 263:L177–L184.PubMedGoogle Scholar
  74. Nieman GF, Clark WR, Wax SD, Webb WR (1980) The effect of smoke inhalation on pulmonary surfactant. Ann Surg 191:171–181.PubMedGoogle Scholar
  75. O’Neill S, Lesperance E, Klass JD (1984) Rat lung lavage surfactant enhances bacterial phagocytosis and in-tracellular killing by alveolar macrophages. Am Rev Respir Dis 130:225–230.PubMedGoogle Scholar
  76. Oosting RS, v. Greevenbroek J, Verhoef J, v Golde LMG, Haagsman HP (1991) Structural and functional change of surfactant protein A induced by ozone. Am J Physiol 261:L77–L83.PubMedGoogle Scholar
  77. Pappert DM, Gilliard N, Heldt G, Merritt TA, Wagner PD, Spragg RG (1991) Effect of N-nitroso-N-methyl-urethane on gas exchange, lung compliance and surfactant function of rabbits. Am Res Respir Dis 143:A727, 1991.Google Scholar
  78. Pariente R, Legrand M, Brouet G (1969) Pulmonary ultrastructure in oxygen poisoning at atmospheric pressure in rats. Poumon Coeur 25:219–230.PubMedGoogle Scholar
  79. Passi RD, Possmayer F (1981) Surfactant metabolism in acute pancreatitis (1981) Prog Respir Res 15:136–140.Google Scholar
  80. Phillips AW, Cope O (1962) Burn therapy II: the relevation of respiratory tract damage as a principal killer of the burned patient. Ann Surg 155:1–10.PubMedGoogle Scholar
  81. Prien T, Strohmaier W, Gasser H, Richardson JA, Traber DL, Schlag G (1989) Normal phosphatidylcholine composition of lung surfactant 24 h after inhalation injury. J Burn Care Rehabil 10:38–44.PubMedGoogle Scholar
  82. Rabinowitz JL, Basset DJP (1988) Effect of 2 ppm ozone exposure on rat lung lipid fatty acids. Exp Lung Res 14:477–489.PubMedGoogle Scholar
  83. Rensch H, von Seefeld H (1984) Surfactant-mucus interaction. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 203–214.Google Scholar
  84. Richardson P, Bose CL, Dayton V, Carlstrom JR (1986) Cardiopulmonary function of cats with respiratory distress syndrome induced in N-nitroso-N-methylurethane. Pediatr Pulmonol 2:296–302.PubMedGoogle Scholar
  85. Robertson B (1973) Paraquat poisoning as an experimental model of the idiopathic respiratory distress syndrome. Bull Physiopathol Resp 9:1433–1452.Google Scholar
  86. Royston D, Fleming JS, Krausz T (1986) The non-steroidal anti-inflammatory agent, indoprofen, does not protect against hydrochloric acid induced lung injury in the rat. Acta Anaesthesiol Scand 30:533–537.PubMedGoogle Scholar
  87. Rubin S, Davidson JT, Eyal Z (1971) The acute effect of acid aspiration on lung mechanics and gas exchange in the rabbit. Is J Med Sci 7:1271–1275.Google Scholar
  88. Ryan SF, Bell ALL, Barrett CR (1976) Experimental acute alveolar injury in the dog. Am J Pathol 82:353–372.PubMedGoogle Scholar
  89. Ryan SF, Liau DF, Bell ALL, Hashim SA, Barrett CR (1981) Correlation of lung compliance and quantities of surfactant phospholipids after acute alveolar injury from N-nitroso-N-methylurethane in the dog. Am Rev Respir Dis 123:200–204.PubMedGoogle Scholar
  90. Seeger W, Lepper H, Wolf RD, Neuhof H (1985a) Alteration of alveolar surfactant function after exposure to oxidative stress and to oxygenated and native arachidonic acid in vitro. Biochim Biophys Acta 835:58–67.PubMedGoogle Scholar
  91. Seeger W, Stöhr G, Wolfe HRD, Neuhof H (1985b) Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J Appl Physiol 58:326–338.PubMedGoogle Scholar
  92. Shelley S, Paciga JE, Paterson JF, Balis JU (1989) Ozone-induced alterations of lamellar body lipid and protein during alveolar injury and repair. Lipids 24:769–774.PubMedGoogle Scholar
  93. Smith RA, Venus B, Mathru M, Shirakawa J (1984) Hemodynamic alterations in canine acute lung injury induced by N-nitroso-N-methylurethane. Crit Care Med 12:576–578.PubMedGoogle Scholar
  94. Speer CP, Götze D, Curstedt T, Robertson B (1990) Phagocytic function and TNF secretion of human monocytes exposed to natural porcine surfactant. Pediatr Res 28:281.Google Scholar
  95. Spragg RG, Richman P, Gilliard N, Merritt TA (1988) The future for surfactant therapy of the adult respiratory distress syndrome. In: Lachmann B (ed) Surfactant replacement therapy in neonatal and adult respiratory distress syndrome. Springer, Berlin Heidelberg New York, pp 203–211.Google Scholar
  96. Stevens PA, Wright JR, Clements JA (1987) Changes in quantity, composition and surface activity of alveolar surfactant at birth. J Appl Physiol 63:1049–1057.PubMedGoogle Scholar
  97. Stinson MW, Hayden C (1979) Secretion of phospholipase C by pseudomonas aeruginosa. Infect Immun 25:558–564.PubMedGoogle Scholar
  98. Strohmaier W, Leichtfried G, Schlag G (1989) In vitro effects of natural and artificial surfactant on polymor-phonuclear neutrophils. Abstractbook ‘60 years of surfactant research’, floating congress on the river Rhine, 11–17 Nov 1989.Google Scholar
  99. Strohmaier W, Redl H, Schlag G (1990) Studies of the potential role of a semisynthetic surfactant preparation in an experimental aspiration trauma in rabbits. Exp Lung Res 16:101–110.PubMedGoogle Scholar
  100. Strohmaier W, Kneidinger R, Redl H, Müller B, Schlag G (1991) Natural surfactant phospholipids are required to decrease in vitro adherence of human PMNL by pulmonary SP-A. Am Rev Respir Dis 143:A315.Google Scholar
  101. Suzuki Y, Kogishi K, Fujita Y, Kina T, Nishikawa S (1986) A monoclonal antibody to the 15000 dalton protein associated with porcine pulmonary surfactant. Exp Lung Res 11:61–73.PubMedGoogle Scholar
  102. Suzuki Y, Robertson B, Fujita Y, Grossmann G (1988) Respiratory failure in mice caused by a hybridoma making antibodies to the 15 kDA surfactant apoprotein. Acta Anaesthesiol Scand 32:283–289.PubMedGoogle Scholar
  103. Tenner AJ, Robinson SL, Borchelt J, Wright JR (1989) Human pulmonary surfactant protein A (SP-A) a protein structurally homologous to C1q, can enhance FcR-and CR1-mediated phagocytosis. J Biol Chem 264:13923–113928.PubMedGoogle Scholar
  104. Tooley WR, Gardner R, Jhung N, Finley T (1961) Factors affecting the surface tension of lung extracts. Fed Proc 20:428.Google Scholar
  105. Vijeyaratnam GS, Corrin B (1971) Experimental paraquat poisoning: a histological and electron-optical study of the changes in the lung. J Pathol 103:123–129.PubMedGoogle Scholar
  106. Van Iwaarden F, Welmors B, Verhoef J, Haagsman HP, von Golde LMG (1990) Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2:91–98.PubMedGoogle Scholar
  107. Van Iwaarden JF, Strijp JAG, Ebskamp MJ, Welmers AC, Verhoef J, von Golde LMG (1991) Surfactant protein A is opsonin in phagocytosis of herpes simplex virus type 1 by rat alveolar macrophages. Am J Physiol 261:L204–L209.PubMedGoogle Scholar
  108. Welty KE, Fracica PJ, Piantadosi CA, Crapo JD (1991) Hyperbaric pulmonary oxygen toxicity. Am Rev Respir Dis 143:A 727.Google Scholar
  109. Whitsett JA, Ohning BL, Ross G, Meuth J, Weaver T, Holm BA, Shapiro DL, Notter RH (1986) Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts for replacement therapy. Pediatr Res 20:460–467.PubMedGoogle Scholar
  110. Wilsher ML, Hughes DA, Haslam PL (1988) Immuno-regulatory properties of pulmonary surfactant: effect of lining fluid on proliferation of human blood lymphocytes. Thorax 43:354–359.PubMedGoogle Scholar
  111. Winsel K, Lunkenheimer K, Dauberschmidt R, Kuckelt W (1981) Neue Aspekte des biochemischen und biophysikalischen Mechanismus der Aspirationspneumonie. Dtsch Gesundheitswes 36:536–544.Google Scholar
  112. Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 134:426–444.Google Scholar
  113. Wright JR, Youmans DC (1991) Surfactant protein SP-A stimulates migration of alveolar macrophages. Am Rev Respir Dis 143:A 314.Google Scholar
  114. Wright JR, Wager RE, Hawgood S, Dobbs LG, Clements JA (1987) Surfactant apoprotein M 26000–36000 enhances uptake of liposomes by type II cells. J Biol Chem 262:2888–2894.PubMedGoogle Scholar
  115. Wynne WJ (1982) Aspiration pneumonitis: correlation of experimental models with clinical disease. Clin Chest Med 3:25–34.PubMedGoogle Scholar
  116. Zhi-yuan L, Ngao L, Pei-Feng C, Chong Cheng Y, Jintang S (1986) Pulmonary surfactant activity after severe steam inhalation injury in rabbits. Burns 12:330–336.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. Strohmaier
    • 1
  • G. Schlag
    • 1
  1. 1.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria

Personalised recommendations