Individual and Bulk Analysis of the Optical Properties of Marine Particulates: Examples of Merging these Two Scales of Analysis

  • R. Iturriaga
  • A. Morel
  • C. Roesler
  • D. Stramski
Part of the NATO ASI Series book series (volume 27)


In recent years cytofluorometric and microphotometric techniques have significantly contributed to the field of biological and optical oceanography. Such determinations have enabled us to better understand the composition of some natural phytoplankton communities. We can now discriminate between Synechococcus clone types in the ocean, sort and analyze minute prochlorophytes, follow microalgae cell cycles, and determine the spectral absorption properties of individual cells as well as detrital particulates of field samples. Analysis at the individual level constitutes another valuable tool for the study of phytoplankton cells and detrital particulates in aquatic systems.


Spectral Absorption Fluorescence Excitation Spectrum Bulk Analysis Spectral Absorption Coefficient Blank Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidigare R, Ondrusek ME, Morrow JH, Kiefer DA (1990) In vivo absorption properties of algal pigments, p. 290–302. In Ocean Optics X, Proc. SPIE 1302, BellinghamGoogle Scholar
  2. Bricaud A, Bedhomme AL, Morel A (1988) Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation. J Plankton Res 10:851–873CrossRefGoogle Scholar
  3. Bricaud A, Stramski D (1990) Spectral absorption coefficient of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea. Limnol Oceanogr 35:562–582CrossRefGoogle Scholar
  4. Iturriaga R, Siegel D (1988) Microphotometric distinction of phytoplankton and detrital absorption properties, p. 277–287. In Ocean Optics IX, Proc. SPIE 925, BellinghamGoogle Scholar
  5. Iturriaga R, Siegel D (1989) Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnol Oceanogr 34:1706–1726CrossRefGoogle Scholar
  6. Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642Google Scholar
  7. Mitchell BG, Kiefer DA (1984) Determination of absorption and fluorescence excitation spectra for phytoplankton, p. 157–169. In O. Holm-Hansen et al. [eds.]. Marine phytoplankton and productivity. SpringerGoogle Scholar
  8. Mitchell BG, Kiefer DA (1988) Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep-Sea Res 35:639–663CrossRefGoogle Scholar
  9. Morel A, Bricaud A (1986) Inherent optical properties of algal cells including picoplankton: theoretical and experimental results, p. 521–559. In T. Piatt and W.K.W. Li [eds.]. Can Bull Fish Aquat Sci 214Google Scholar
  10. Morrow JH, Chamberlin WS, Kiefer DA (1989) A two-component description of spectral absorption by marine particles. Limnol Oceanogr 34:1500–1509CrossRefGoogle Scholar
  11. Roesler C, Perry MJ, Carder K (1989) Modelling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr 34:1510–1523CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R. Iturriaga
    • 1
  • A. Morel
    • 2
  • C. Roesler
    • 3
  • D. Stramski
    • 1
  1. 1.Department of Biological SciencesUniversity of Southern CaiforniaLos AngelesUSA
  2. 2.Laboratoire de Physique et Chime MarineVillefranche-sur-MerFrance
  3. 3.Oceanography WB-10University of WashingtonSeattleUSA

Personalised recommendations