Advertisement

Modeling the Effects of Adsorbed Hydrolyzed Al(III)-Ions on Deep Bed Filtration

Conference paper

Abstract

A model for determining the effects of hydrolyzed aluminium ions on filtration of dilute suspensions by deep bed filters has been developed and experimentally tested in laboratory scale. The model relates solution conditions, especially pH and concentrations of Al(III), to the performance of clean filter beds. A surface precipitation model is used to describe surface properties of the suspended particles in terms of solution chemistry. This chemical model is combined with flow models and particle capture formulations within the filter bed to predict the filter performance. The complete model has been tested with experiments using suspensions of polystyrene latex particles with a diameter of 0.2 µm applied to filter media comprised of glass beads with a diameter of 0.4 mm. In the presence of Al(III), a favourable filtration region appeared in the middle of the pH range due to charge reversal of the particles. The width of the favourable pH region depended upon the concentrations of Al(III) and particle surface area. The present model can qualitatively explain the above observation.

Keywords

Aluminium Hydroxide Latex Particle Particle Deposition Aluminium Nitrate Bulk Precipitate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yao, K.M. (1968), Ph.D. dissertation, University of North Carolina, Chapel Hill, NCGoogle Scholar
  2. [2]
    Rajagopalan, R., Tien, C. (1979): Progress in Filtration and Separation, Vol. 1. In: Wakeman, R.J. (ed.), ElsevierGoogle Scholar
  3. [3]
    Ghosh, A.M., Jordan, TA., Porter, R.L. (1975), J. Environ. Eng. Div., Proc. ASCE, EE1, Vol. 71, pp.71Google Scholar
  4. [4]
    FitzPatric, JA. (1972), Ph.D. dissertation, Harvard University, Cambridge, Mass.Google Scholar
  5. [5]
    Kallay, R, Nelligan, J.D., Matijevic, E. (1983), J. Chem. Soc. Faraday Trans., Vol. 79, pp. 65Google Scholar
  6. [6]
    Gregory, J., Wishart, A J. (1980), Colloids and Surface, Vol. 1, pp. 313CrossRefGoogle Scholar
  7. [7]
    Derjaguin, B.V., Landau, L.D. (1941), Acta Physicochim., SSSR, Vol. 14, pp. 633Google Scholar
  8. [8]
    Verwey, EJ.W., Overbeek, J.Th.G. (1948): Theory of Stability of Lyophobic Colloids. Nth Holland, AmsterdamGoogle Scholar
  9. [9]
    Spielman, LA., Friedlander, S.K. (1974), J. Colloid Interface Sci., Vol. 46, pp. 22CrossRefGoogle Scholar
  10. [10]
    Ruckenstein, E., Prieve, D.C. (1974), J. Chem. Soc. Faraday II, Vol. 69, pp. 1522CrossRefGoogle Scholar
  11. [11]
    Onorato, F. (1979), Ph.D. dissertation, Syracuse University, Syracuse, New YorkGoogle Scholar
  12. [12]
    Wang, Z.S. (1986), Ph.D. dissertation, The Johns Hopkins UniversityGoogle Scholar
  13. [13]
    Payatakes, A.C., Tien, C., Turian, R.M. (1973), American Institute of Chemical Engineerings Journal, Vol. 19, pp. 58CrossRefGoogle Scholar
  14. [14]
    Happel, J. (1958), American Institute of Chemical Engineerings Journal, Vol. 4, pp. 197CrossRefGoogle Scholar
  15. [15]
    Spielman, LA., Goren, S.L. (1970), Environ. Sci. Technol., Vol. 4, pp. 135CrossRefGoogle Scholar
  16. [16]
    Hamaker, H.C. (1937), Physica (Utrecht), Vol. 4, pp. 1058CrossRefGoogle Scholar
  17. [17]
    Hogg, R., Healy, T.W., Furstenau, D.W. (1966), Trans. Faraday Soc, Vol. 66, pp. 1638CrossRefGoogle Scholar
  18. [18]
    Usui, S. (1973), J. Colloid Interface Sci., Vol. 44, pp. 107CrossRefGoogle Scholar
  19. [19]
    Chan, D., Healy, T.W., White, L.R. (1976), J. Chem. Soc. Faraday Trans. I, Vol. 72, pp. 2844CrossRefGoogle Scholar
  20. [20]
    Dukfcin, S.S., Lyklema, J. (1987), Langmuir, Vol. 3, pp. 94CrossRefGoogle Scholar
  21. [21]
    Spielman, LA., FitzPatric, S.K. (1973), J. Colloid Interface Sci., Vol. 42, pp. 607CrossRefGoogle Scholar
  22. [22]
    James, R.O., Parks, GA. (1982): Surface and Colloid Science, Vol. 12. In: Matijevic, E. (ed.), Plenum PressGoogle Scholar
  23. [23]
    Stumm, W., Kümmert, R., Sigg, L. (1980), Croat. Chem. Acta, Vol. 53, pp. 291Google Scholar
  24. [24]
    Westall, J., Zachary, J., Morel, F.M.M. (1976), Technical Note No. 18, Raiph M. Parsons Laborary, M.I.T., Cambridge, Mass.Google Scholar
  25. [25]
    Davis, JA., James, R.O., Leckie, J.O. (1978), J. Colloid Interface Sci., Vol. 63, pp. 480CrossRefGoogle Scholar
  26. [26]
    Stumm, W., Huang, C.P., Jenkins, S.R. (1970), Croat. Chem. Acta, Vol. 42, pp. 233Google Scholar
  27. [27]
    Iwasaki, T. (1935), J. AWWA, Vol. 29, pp. 1591Google Scholar
  28. [28]
    Levich, V.G. (1962): Physicochemical Hydrodynamics. Englewood Cliffs, NJ, Prentice HallGoogle Scholar
  29. [29]
    Rajagopalan, R., Tien, C. (1976), AIChE J., Vol. 22, pp. 523CrossRefGoogle Scholar
  30. [30]
    Prieve, D.C. (1986), personal communicationGoogle Scholar
  31. [31]
    Dahneke, B. (1974), J. Colloid Interface Sci., Vol. 48, pp. 520CrossRefGoogle Scholar
  32. [32]
    Rajagopalan, R., Kim, J.S. (1981), J. Colloid Interface Sci., Vol. 83, pp. 428CrossRefGoogle Scholar
  33. [33]
    Hayden, P.L., Rubin, AJ. (1974), in: Rubin, AJ. (ed.): Aqueous-Environmental Chemistry of Metals. Ann Arbor Science Inc., MichiganGoogle Scholar
  34. [34]
    Vermeiden, A.C., Geus, J.W., Stol, R J., De Bruyn, P.L. (1975), J. Colloid Interface Sci., Vol. 51, pp.449CrossRefGoogle Scholar
  35. [35]
    Brown, D.W., Hem, J.D. (1975), U.S. Geological Survey Paper, 1837-F, Washington, D.C.Google Scholar
  36. [36]
    Her, R.K. (1964), J. Amer. Ceram. Soc., Vol. 47, pp. 194CrossRefGoogle Scholar
  37. [37]
    Wiese, G.R., Healy, T.W. (1975), J. Colloid Interface Sci., Vol. 51, pp. 434CrossRefGoogle Scholar
  38. [38]
    Rubin, A J., Hanna, G.P., Environ. Sci. and Technol, Vol. 2, pp. 358Google Scholar
  39. [39]
    Managravite, FJ. et al. (1975), J. AWWA, Vol. 67, pp. 88Google Scholar
  40. [40]
    Matijevic, E., Managravite, FJ., Cassel, EA. (1971), J. Colloid Interface Sci., Vol. 35, pp. 560CrossRefGoogle Scholar
  41. [41]
    Stumm, W., Hohl, H., Dalang, F. (1976), Croat. Chem. Acta, Vol. 48, pp. 491Google Scholar
  42. [42]
    James, R.O., Healy, T.W. (1972), J. Colloid Interface Sci., Vol. 40, pp. 53CrossRefGoogle Scholar
  43. [43]
    Stumm, W., Morgan, J J. (1981): Aquatic Chemistry. Wiley- Interscience, New YorkGoogle Scholar
  44. [44]
    Wiese, G.R., Healy, T.W. (1975), J. Colloid Interface Sci., Vol. 51, pp. 427CrossRefGoogle Scholar
  45. [45]
    Matijevic, E., Bleier, A. (1977), Croat. Chem. Acta, Vol. 50, pp. 93Google Scholar
  46. [46]
    Black, A.P. (1967), in: Faust, S.D., Hunter, J.V. (eds.): Principles and Applications of Water Chemistry.Google Scholar
  47. [47]
    Bleam, W.F., McBride, M.B. (1985), J. Colloid Interface Sci., Vol. 110, pp. 335CrossRefGoogle Scholar
  48. [48]
    White, D.W. (1980), Ph.D. dissertation, Clarkson University, Potsdam, New YorkGoogle Scholar
  49. [49]
    James, R.O. (1981), in Anderson, M.S., Rubin, AJ. (eds.): Adsorption of Inorganics at Solid-Liquid Interface. Ann Arbor Science Publishers, Ann Arbor, Mich.Google Scholar
  50. [50]
    Letterman, R.D., Iyer, D.R. (1985), in: Gregory, J. (ed.): Solid-Liquid Separation.Google Scholar
  51. [51]
    Ottewill, R.H., Shaw, J.N. (1972), J. Electroanal. Chem., Vol. 37, pp. 133CrossRefGoogle Scholar
  52. [52]
    Stone-masui, J., Watillon, A. (1975), J. Colloid Interface Sci., Vol. 52, pp. 479CrossRefGoogle Scholar
  53. [53]
    Yates, D.E. (1975), Ph.D. dissertation, University of Melbourne, AustraliaGoogle Scholar
  54. [54]
    Schindler, P.W., Kamber, H.R. (1968), Helv. Chim. Acta, Vol. 51, pp. 1781CrossRefGoogle Scholar
  55. [55]
    Abendroth, R.P. (1970), J. Colloid Interface Sci., Vol. 34, pp. 591CrossRefGoogle Scholar
  56. [56]
    Bolt, G.H. (1957), J. Phys. Chem., Vol. 61, pp. 1161CrossRefGoogle Scholar
  57. [57]
    Her, R.K. (1979): The Chemistry of Silica.Google Scholar
  58. [58]
    Henry, D.C. (1948), Trans. Faraday Soc., Vol. 44, pp. 1021CrossRefGoogle Scholar
  59. [59]
    Penners, N.H.G. (1985): The Preparation and Stability of Homodisperse Colloidal Haematite.Google Scholar
  60. [60]
    Schull, K.E., Gutham, G.R. (1967), J. AWWA, Vol. 59, pp. 1456Google Scholar
  61. [61]
    Li, H.C., De Bruyn, P.L. (1966), Surface Sci., Vol. 5, pp. 203CrossRefGoogle Scholar
  62. [62]
    Gaudin, A.M., Fuerstenau, PA. (1955), Trans. A.I.M.E., Vol. 22, pp. 66Google Scholar
  63. [63]
    Zhang, Y., Kallay, N., Matijevic, E. (1985), Langmuir, Vol. 1, pp. 201CrossRefGoogle Scholar
  64. [64]
    Sigg, L. (1979), Ph.D. dissertation, ETH ZürichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Z. Wang
    • 1
  1. 1.Department of Environmental EngineeringThe Tsinghua UniversityBeijingChina

Personalised recommendations