Skip to main content

Abstract

Salt and fluid homeostasis in vertebrates involves two important peptide hormones with well-defined systemic sites of action: 8Arg-vasopressin/vasotocin (AVP/AVT) and 5I1e-/5Val-angiotensin II (ANG II). Neuronal systems producing AVP/AVT are, however, not confined to the hypothalamo-neurohypophyseal system but establish numerous extrahypothalamic connections (Zimmerman 1981; Berk et al. 1982). More recently ANG II has also been identified as a neuropeptide by biochemical and immunocytochemical techniques (Ganong 1984; Lind et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson B, Leksell LG, Rundgren M (1984) Regulation of body fluids: Intake and output. In: Staub NC, Taylor AE (eds) Edema, Raven Press New York, pp 299–318

    Google Scholar 

  • Berk ML, Reaves TA, Hayward JN, Finkelstein JA (1982) The localization of vasotocin and neurophysin neurons in the diencephalon of the pigeon Columba livia. J Comp Neurol 204: 392–406

    Article  PubMed  CAS  Google Scholar 

  • Butler DG (1984) Endocrine control of the nasal salt gland. J Exp Zool 232: 725–736

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF (1975) Bulk flow of cerebral extracellular fluid as possible mechanism of CSF-brain exchange. In: Cserr HF, Fenstermacher JD, Fend V (eds) Fluid environment of the brain. Academic Press, New York, pp 215–236

    Google Scholar 

  • Eriksson J, Simon-Oppermann C, Gray DA, Simon E (1987) Effects of hypertonic and AVP microinfusions into the third ventricle on water intake and hormonal control in osmoregulation of conscious dogs. Wiss Zeitschrift Karl-Marx-Univ Leipzig, Mathemat-Naturw Reihe (in press)

    Google Scholar 

  • Fitzsimons JT (1980) Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87: 117–167

    Article  PubMed  CAS  Google Scholar 

  • Ganong FW (1984) The brain renin angiotensin system. Ann Rev Physiol 6: 17–31.

    Article  Google Scholar 

  • Gerstberger R, Gray DA, Simon E (1984a) Circulatory and osmoregulatory effects of angiotensin II perfusion of the third ventricle in a bird with salt glands. J Physiol (Lond) 349: 167–182

    CAS  Google Scholar 

  • Gerstberger R, Simon E, Gray DA (1984b) Salt gland and kidney respones to intracerebral osmotic stimulation in salt-and water-loaded ducks. Am J Physiol 248: F663–667

    Google Scholar 

  • Gerstberger R, Healy DP, Hammel HT (1987) Possible role of periventricular angiotensin II receptors in regulation of salt gland function in salt-water acclimated ducks. Wiss Zeitschr Karl-Marx-Univ Leipzig, Mathemat-Naturw Reihe (in press)

    Google Scholar 

  • Gray DA, Simon E (1983) Mammalian and avian antidiuretic hormone: Studies related to possible species variation in osmoregulatory systems. J Comp Physiol 151: 241–246

    CAS  Google Scholar 

  • Gray DA, Simon E (1985) Control of plasma angiotensin II in a bird with salt glands, Anas platyrhynchos. Gen Comp Endocrinol 60: 1 - 13

    Article  PubMed  CAS  Google Scholar 

  • Hawthorn J, Ang VTY, Jenkins JS (1980) Localization of vasopressin in the rat brain. Brain Res 197: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Takei Y (1982) Mechnisms for induction of drinking with special reference to angiotensin II. Comp Biochem Physiol 71A: 485–494

    CAS  Google Scholar 

  • Korf HW (1984) Neuronal organization of the avian paraventricular nucleus: Intrinsic, afferent and efferent connections. J Exp Zool 232: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds), Neuroglia I. Hdb mik Anat Menschen. Vol 4/10, Springer, Berlin Heidelberg New York, pp 177–666

    Google Scholar 

  • Lind WR, Swanson WL, Ganten D (1985) Organization of angiotensin immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24

    Article  PubMed  CAS  Google Scholar 

  • Montani JP, Liard JF, Schoun J, Möhring J (1980) Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs. Circulation Res 47: 346–355

    PubMed  CAS  Google Scholar 

  • Ramsay DJ (1982) Effects of circulating angiotensin II on the brain. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Raven Press, New York, pp 263–285

    Google Scholar 

  • Reid I (1984) Endocrine regulation of body fluid balance. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, pp 363–369

    Google Scholar 

  • Simon-Oppermann C, Gray DA, Simon E (1986) Independent osmoregulatory control of central and systemic angiotensin II concentrations in dogs. Am J Physiol 250: R918–925

    PubMed  CAS  Google Scholar 

  • Simon-Oppermann C, Gray DA, Szczepanska-Sadowska E, Simon E (1983) Vasopressin in blood and third ventricle CSF of dogs in chronic experiments. Am J Physiol 245: R541–548

    PubMed  CAS  Google Scholar 

  • Speth RC, Wamsley JK, Gehlert DR, Chernicky CL, Barnes KL, Ferrario CM (1985) Angiotensin II receptor localization in the canine CNS. Brain Res 326: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Simon-Oppermann C, Gray DA, Simon E (1984) Plasma and cerebrospinal fluid vasopressin and osmolality in relation to thirst. Pflügers Arch 400: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Sobocinski J, Sadowski B (1982) Central dipsogenic effect of vasopressin. Am J Physiol 242: R372–379

    PubMed  CAS  Google Scholar 

  • Tennyson VM, Hou-You A, Nilaver G, Zimmerman EA (1985) Immunohistochemical studies of vasotocin and mesotocin in the hypothalamo-hypophyseal system of the chicken. Cell Tissue Res 239: 279–291

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, Nistal-Herrera JF, Keil LC, Ramsay DJ (1981) Satiety and inhibition of vasopressin secretion after drinking in dehydrated dogs. Am J Physiol 240: E394–401

    PubMed  CAS  Google Scholar 

  • Wilson JX, Butler DG (1983) Catecholamine-mediated pressor responses to angiotensin II in the Pekin duck Anas platyrhynchos. Gen Comp Endocrinol 51: 477–489

    Article  PubMed  CAS  Google Scholar 

  • Wilson JX, Pham DV, Tan-Wilson HI (1985) Angiotensin and converting enzyme regulate extrarenal salt excretion in ducks. Endocrinology 117: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman EA (1981) The organization of oxytocin and vasopressin pathways. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 63–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simon, E., Eriksson, S., Gerstberger, R., Gray, D.A., Simon-Oppermann, C. (1987). Comparative Aspects of Osmoregulation. In: Scharrer, B., Korf, HW., Hartwig, HG. (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72886-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72886-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72888-4

  • Online ISBN: 978-3-642-72886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics