Clone: A Monte-Carlo Computer Simulation of B Cell Clonal Expansion, Somatic Mutation, and Antigen-Driven Selection

  • M. J. Shlomchik
  • P. Watts
  • M. G. Weigert
  • S. Litwin
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 229)

Abstract

During clonal expansion of antigen (Ag)-stimulated B lymphocytes, the immunoglobulin (Ig) variable region (V) genes undergo point mutation at a high rate (McKean et al. 1984; Clarke et al. 1985). Somatic diversity results from the sequential accumulation of such mutations (Clarke et al. 1985; McKean et al. 1984; Cumano and Rajewsky 1986; Jacob et al. 1991b). These mutations, and selection of them by Ag, have important consequences for the kinetics, quality, and size of the resulting immune response. Hence, somatic mutation is a dynamic system and in this sense is distinct from mechanisms that shape the preimmune repertoire such as combinatorial joining and gene conversion.

Keywords

Somatic Mutation Germinal Center Clonal Expansion Burst Size Primary Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel M, Berek C (1990) Somatic mutations in antibodies expressed by germinal centre B cells early after primary immunization. Int Immunol 2:813–819PubMedCrossRefGoogle Scholar
  2. Berek C, Milstein C (1987) Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 96:23–41PubMedCrossRefGoogle Scholar
  3. Betz AG, Rada C, Pannell R, Milstein C, Neuberger MS (1993) Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci USA 90:2385–2388PubMedCrossRefGoogle Scholar
  4. Celada F, Seiden PE (1992) A computer model of cellular interactions in the immune system (review). Immunol Today 13:56–62PubMedCrossRefGoogle Scholar
  5. Cesari IM, Weigert M (1973) Mouse λ-chain sequences. Proc Natl Acad Sci USA 70:2112–2116PubMedCrossRefGoogle Scholar
  6. Chang B, Casali P (1994) The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 15:367–373PubMedCrossRefGoogle Scholar
  7. Chang B, Casali P (1995) A sequence analysis of human germline Ig VH and VL genes. The CDR1s of a major proportion of VH, but not VL, genes display a high inherent susceptibility to amino acid replacement. Ann NY Acad Sci 764:170–179PubMedCrossRefGoogle Scholar
  8. Claflin JL, Berry J, Flaherty D, Dunnick W (1987) Somatic evolution of diversity among anti-phosphocholine antibodies induced with Proteus morganii. J Immunol 138:3060–3068PubMedGoogle Scholar
  9. Clarke SH, Huppi K, Ruezinsky D, Staudt L, Gerhard W, Weigert M (1985) Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med 161:687–704PubMedCrossRefGoogle Scholar
  10. Cumano A, Rajewsky K (1986) Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J 5:2459–2468PubMedGoogle Scholar
  11. Dilosa R, Maeda K, Masuda A, Szakal AK, Tew JG (1991) Germinal center B cells and antibody production in the bone marrow. J Immunol 146:4071–4077PubMedGoogle Scholar
  12. Griffiths GM, Berek C, Kaartinen M, Milstein C (1984) Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312:271–275PubMedCrossRefGoogle Scholar
  13. Han S, Kathcock K, Zheng B, Kepler TB, Hodes R, Kelsoe G (1995) Cellular interaction in germinal centers. J Immunol 155:556–567PubMedGoogle Scholar
  14. Ikematsu H, Ichiyoshi Y, Schettino E, Nakamura M, Casali P (1993a) VH and Vκ segment structure of anti-insulin IgG autoantibodies in patients with insulin-dependent diabetes mellitus. J Immunol 152:1430–1441Google Scholar
  15. Ikematsu H, Kasaian MT, Schettino EW, Casali P (1993b) Structural analysis of the VH-D-JH segments of human polyreactive IgG mAb. Evidence for somatic selection. J Immunol 151:3604–3616PubMedGoogle Scholar
  16. Insel RA, Varade WS (1994) Bias in somatic hypermutation of human VH genes. Int Immunol 6:1437–1443PubMedCrossRefGoogle Scholar
  17. Jacob J, Kelsoe G (1992) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 176:679–687PubMedCrossRefGoogle Scholar
  18. Jacob J, Kassir R, Kelsoe G (1991a) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 173:1165–1175PubMedCrossRefGoogle Scholar
  19. Jacob J, Kelsoe G, Rajewsky K, Weiss U (1991b) Intraclonal generation of antibody mutants in germinal centres. Nature 354:389–392PubMedCrossRefGoogle Scholar
  20. Jacob J, Przylepa J, Miller C, Kelsoe G (1993) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J Exp Med 178:1293–1307PubMedCrossRefGoogle Scholar
  21. Kabat EA (1966) Structure and heterogeneity of antibodies. Acta Haematol 36:198–238PubMedCrossRefGoogle Scholar
  22. Kabat EA (1967) Comparison of invariant residues in the variable and constant regions of human κ, human λ, and mouse κ Bence-Jones proteins. Proc Natl Acad Sci USA 58:229–233PubMedCrossRefGoogle Scholar
  23. Kabat EA (1970) Heterogeneity and structure of antibody-combining sites. Ann NY Acad Sci 169:43–54PubMedCrossRefGoogle Scholar
  24. Kepler TB, Perelson AS (1993) Somatic hypermutation in B cells: an optimal control treatment. J Theor Biol 164:37–64PubMedCrossRefGoogle Scholar
  25. Kepler TB, Perelson AS (1995) Modeling and optimization of populations subject to time-dependent mutation. Proc Natl Acad Sci USA 92:8219–8223PubMedCrossRefGoogle Scholar
  26. Kroese FGM, Wubbena AS, Seijen H, Nieuwenhuis P (1987) Germinal centers develop oligoclonally. Eur J Immunol 17:1069–1072PubMedCrossRefGoogle Scholar
  27. Kuppers R, Zhao M, Rajewsky K, Hansmann ML (1993) Detection of clonal B cell populations in paraffin-embedded tissues by polymerase chain reaction. Am J Pathol 143:230PubMedGoogle Scholar
  28. Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC (1991) Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol 21:2951–2962PubMedCrossRefGoogle Scholar
  29. Liu YJ, de Bouteiller O, Arpin C, Briere F, Galibert L, Ho S, Martinez-Valdez H, Banchereau J, Lebecque S (1996) Normal human IgD+ IgM- germinal center B cells can express up to 80 mutations in the variable region of their IgD transcripts. Immunity 4:603–613PubMedCrossRefGoogle Scholar
  30. MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745PubMedCrossRefGoogle Scholar
  31. MacLennan ICM (1994) From the dark zone to the light. Curr Biol 4:70–72PubMedCrossRefGoogle Scholar
  32. Madnel TE, Phipps RP, Abbott A, Tew JG (1980) The follicular dendritic cell: long-term antigen retention during immunity. Immunol Rev 53:29–59CrossRefGoogle Scholar
  33. McKean D, Huppi K, Bell M, Straudt L, Gerhard W, Weigert M (1984) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci USA 81:3180–3184PubMedCrossRefGoogle Scholar
  34. Nossal GJV, Ada GL, Austin CM, Pye J (1965) Antigens in immunity VIII. localization of 125I-labelled antigens in the secondary response. Immunology 9:349–357PubMedGoogle Scholar
  35. Pascimi V, Liu Y-J, Magalski A, de Bouteiller O, Banchereau J, Capra JD (1994) Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 180:329–339CrossRefGoogle Scholar
  36. Shan H, Shlomchik MJ, Marshak-Rothstein A, Pisetsky DS, Litwin S, Weigert MG (1994) The mechanism of autoantibody production in an autoimmune MRL/lpr mouse. J Immunol 153:5104–5120PubMedGoogle Scholar
  37. Shlomchik MJ, Litwin S, Weigert M (1990) The influence of somatic mutation on clonal expansion. Prog Immunol Proc 7th Int Cong Immunol 7:415–423Google Scholar
  38. Shlomchik MJ, Aucoin AH, Pisetsky DS, Weigert MG (1987a) Structure and function of anti-DNA antibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA 84:9150–9154PubMedCrossRefGoogle Scholar
  39. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG (1987b) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811PubMedCrossRefGoogle Scholar
  40. Siekevitz M, Kocks C, Rajewsky K, Dildrop R (1987) Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48:757–770PubMedCrossRefGoogle Scholar
  41. Smith DS, Creadon G, Jena PK, Portanova JP, Kotzin BL, Wysocki LJ (1996) Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol 156:2642–2652PubMedGoogle Scholar
  42. Smith KGC, Hewitson TD, Nossal GJV, Tarlinton DM (1996) The phenotype and fate of the antibody-forming cells of the splenic foci. Eur J Immunol 26:444–448PubMedCrossRefGoogle Scholar
  43. Valbuena O, Marcu KB, Weigert M, Perry RP (1978) Multiplicity of germline genes specifying a group of related mouse κ chains with implications for the generation of immunoglobulin diversity. Nature 276:780–784PubMedCrossRefGoogle Scholar
  44. Weber JS, Berry J, Manser T, Claflin JL (1994) Mutations in Ig V(D)J genes are distributed asymmetrically and independently of the position of V(D)J. J Immunol 153:3594–3602PubMedGoogle Scholar
  45. Weigert MG, Cesari IM, Yonkovich SJ, Colin M (1970) Variability in the λ light chain sequences of mouse antibody. Nature 228:1045–1047PubMedCrossRefGoogle Scholar
  46. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250PubMedCrossRefGoogle Scholar
  47. Ziegner M, Steinhauser G, Berek C (1994) Development of antibody diversity in single germinal centers: selective expansion of high-affinity variants. Eur J Immunol 24:2393–2400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. J. Shlomchik
    • 1
  • P. Watts
    • 2
  • M. G. Weigert
    • 3
  • S. Litwin
    • 2
  1. 1.Department of Laboratory MedicineYale University School of MedicineNew HavenUSA
  2. 2.Department of BiostatisticsFox Chase Cancer CenterPhiladelphiaUSA
  3. 3.Department of Molecular Biology, Schultz LaboratoriesPrinceton UniversityPrincetonUSA

Personalised recommendations