Skip to main content

Chemical Neuroanatomy of the Honeybee Brain

  • Conference paper
Neurobiology and Behavior of Honeybees

Abstract

This review provides a brief survey of the major neuropiles in the brain of the worker honeybee. The distribution of putative neurotransmitters was investigated in these neuropiles with antisera raised against GABA- and serotonin-protein conjugates. Immunocytochemistry revealed new cell types, pathways, and homologies to neurons of other insect species. The pattern of GABA-immunoreactivity suggests that GABA is more important in mediating local interactions rather than more distant neural ones. Serotonin-immunoreactive neurons interconnect and cover large areas within and between neuropiles. Release of serotonin from these neurons may thus help to coordinate neural activity between several neuropiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, G.; Masson, C.; and Budharugsa, S. 1985. Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone ( Apis mellifera ). Cell Tissue Res 242: 593–605.

    Article  Google Scholar 

  2. Bicker, G.; Schafer, S.; and Kingan, T.G. 1985. Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360; 394–397.

    Article  PubMed  CAS  Google Scholar 

  3. Bjorklund, A., and Hokfelt, T. (eds.) 1984. Handbook of Chemical Neuroanatomy. Vol. 11, III Amsterdam: Elsevier Science Publications.

    Google Scholar 

  4. Bullock, T.H., and Horridge, G.A. 1965. Structure and function in the nervous system of invertebrates, Vol. II. San Francisco: Freeman

    Google Scholar 

  5. Callec, J.J. 1974. Synaptic transmission in the central nervous system of insects. In Insect Neurobiology, ed. J.E. Treherne, pp. 119–185. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  6. Delcomyn, F. 1980. Neural basis of rhythmic behavior in animals. Science 210: 492–498.

    Article  PubMed  CAS  Google Scholar 

  7. Dujardin, T. 1850. Memoire sur le systeme nerveaux des insects. Ann. Sci. Nat B 14: 195–206.

    Google Scholar 

  8. Emson, P.C.; Burrows, M.; and Fonnum, F. 1974. Levels of glutamate decarboxylase, acetyltransferase, and acetylcholine esterase in identified motor neurons of the locust. J. Neurobiol. 5: 33–42.

    Article  PubMed  CAS  Google Scholar 

  9. Erber, J., and Homberg, U. 1986. Neurophysiology of the bee brain. In this volume.

    Google Scholar 

  10. Falck, B.; Hillarp, N.A.; Thieme, G.; and Torp, A. 1962. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10: 348–354.

    Article  CAS  Google Scholar 

  11. Fox, P.M., and Larsen, J.R. 1972. Glutamic acid decarboxylase and the GABA shunt in the supraesophageal ganglion of the honeybee, Apis mellifera. J Insect Physiol 18: 439–457.

    Article  CAS  Google Scholar 

  12. Frisch, K.v. 1967. The Dance Language and Orientation of Bees. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  13. Frontali, N. 1964. Brain glutamic acid decarboxylase and synthesis of GABA in vertebrate and invertebrate species. In Comparative Neurochemistry, ed. D. Richter, pp. 185–192. Oxford: Pergamon Press.

    Google Scholar 

  14. Gaide, M. 1983. Die Projektionen des Labial- und Maxillarnerven im Unterschlundganglion der Biene. Diplomarbeit, Freie Universität, Berlin.

    Google Scholar 

  15. Goodman, L.J. 1981. Organization and physiology of the insect dorsal ocellar system. In Handbook of Sensory Physiology, Vol. VII/6C, ed. H. Autrum, pp. 201–286. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  16. Goodman, L.J. 1986. Motion sensitive descending interneurons, ocellar L-neurons and neck motoneurons in the bee: A neural substrate for visual course control in Apis mellifera. In this volume.

    Google Scholar 

  17. Hertel, H., and Maronde U. 1986. In this volume.

    Google Scholar 

  18. Homberg, U. 1984. Processing of antennal information in extrinsic mushroom body neurons in the bee brain. J. Comp. Physiol. A. 154: 825–836.

    Article  Google Scholar 

  19. Homberg, U. 1985. Interneurons of the central complex in the bee brain (Apis mellifera, L.). J. Insect Physiol. 31 (3): 251–264.

    Article  Google Scholar 

  20. Homberg, U., and Erber, J. 1979. Response characteristics and identification of extrinsic mushroom body neurons in the bee. Z. Naturforsch. 34c: 612–615.

    Google Scholar 

  21. Jawlowski, H. 1957. Nerve tracts in bee (Apis mellifica) running from the light and antennal organs to the brain. Annales Univ. Mariae Curie-Sklodowska Lublin (D). XII /22: 307–323.

    Google Scholar 

  22. Jonescu, C.n. 1909. Vergleichende Untersuchungen über das Gehirn der Honigbiene. Z. Naturwiss. 45: 11–180.

    Google Scholar 

  23. Kenyon, F.G. 1896. The brain of the bee. A preliminary contribution to the nervous system of the Arthropoda. J. Comp. Neurol. 6: 133–210.

    Google Scholar 

  24. Kerkut, G.A.; Pitman, R.M.; and Walker, R.J. 1969. Sensitivity of neurones of the insect central nervous system to iontophorectically applied acetylcholine or GABA. Nature 222: 1075–1076.

    Article  PubMed  CAS  Google Scholar 

  25. Klemm, N. 1976. Histochemistry of putative transmitter substances in the insect brain. Prog. Neurobiol. 7: 99–167.

    Google Scholar 

  26. Masson, C. 1982. Basic mechanisms of sensory antennal information processing in insects, with special reference to social insects. In The Biology of Social Insects, eds. M.D. Breed, C.D. Michener, and H.E. Evans, pp. 380–384 Boulder, Colorado: Westview Press.

    Google Scholar 

  27. Menzel, R. 1983. Neurobiology of learning and memory: the honey bee as a model system. Naturwiss. 70: 504–511.

    Article  PubMed  CAS  Google Scholar 

  28. Mercer, A.R. 1986. Biogenic amines in the bee brain. In this volume.

    Google Scholar 

  29. Mercer, A.R., and Menzel, R. 1982. The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee (Apis mellifera). J. Comp. Physiol. 145: 363–368.

    Article  CAS  Google Scholar 

  30. Mercer, A.; Mobbs, P.; Davenport, A.P.; and Evans, P.D. 1983. Biogenic amines in the brain of the honeybee (Apis mellifera). Cell Tissue Res 234: 655–677,

    Article  PubMed  CAS  Google Scholar 

  31. Meyer, E.P.; Matute, C.; Streit, P.; and Nässei, D.R. 1986. Insect optic lobe neurons identifiable with monoclonal antibodies to GAB A. Histochem 84: 207–216.

    Article  CAS  Google Scholar 

  32. Mobbs, P.G. 1982. The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil. Trans. R. Soc. (B) 298: 309–354.

    Google Scholar 

  33. Mobbs, P.G. 1984. Neural networks in the mushroom bodies of the honeybee. J. Insect Physiol. 30 (1): 43–58.

    Article  Google Scholar 

  34. Nässei, D.R.; Meyer, E.P.; and Klemm, N. 1985. Mapping the ultrastructure of, serotonin-immunoreactive neurons in the optic lobes of three insect species. J. Comp. Neurol. 232: 190–204.

    Google Scholar 

  35. Nässei, D.R., and Elekes, K. 1985. Serotonergic terminals in the neural sheath of the blowfly nervous system: electron microscopical immunocytochemistry and 5,7-dihydroxytryptamine labelling. Neuroscience 15: 293–307.

    Article  Google Scholar 

  36. Noble, M., and Goodman, L.J. Immunohistochemical localization of gastrin/CCK-like peptide in the brain of the honeybee. In this volume.

    Google Scholar 

  37. Oertel, W.H.; Schmechel, D.E.; Mugnaini, E.; Tappaz, M.L.; and Kopin, I.J. 1981. Immunocytochemical localization of glutamate decarbxylase in rat cerebellum with a new antiserum. Neuroscience 6: 2715–2735.

    Article  PubMed  CAS  Google Scholar 

  38. Pareto, A. 1972. Die zentrale Verteilung der Fühlerafferenzen bei Arbeiterinnen der Honigbiene, Apis mellifera L. Z. Zellforsch. 131: 109–140.

    Google Scholar 

  39. Rehder, V.; Bicker, G.; and Hammer, M. 1986. Serotonin-immunoreactive neurons in the antennal lobes and suboesophageal ganglion of the honeybee. Cell Tissue Res., in press.

    Google Scholar 

  40. Ribi, W.A. 1975. The neurons of the first optic ganglion of the bee (Apis mellifera). Adv. Anat. Embryol. Cell. Biol. 50 (4): 1–43.

    PubMed  CAS  Google Scholar 

  41. Ribi, W.A. 1986. In this volume.

    Google Scholar 

  42. Ribi, W.A., and Scheel, M. 1981. The second and third optic ganglia in the worker bee. Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res. 221: 17–43.

    Article  PubMed  CAS  Google Scholar 

  43. Schäfer, S., and Bicker, G. 1986. Distribution of GABA-like immunoreactivity in the brain of the honeybee. J. Comp. Neurol. 246: 287–300.

    Article  PubMed  Google Scholar 

  44. Schäfer, S., and Bicker, G. 1987. Common projection areas of 5-HT- and GABA-like immunoreactive fibers in the visual system of the honeybee. Brain Res., in press.

    Google Scholar 

  45. Scheidler, A.; Kaulen, P.; Brüning, G.; and Erber, J. 1986. Autoradiographic localization of octopamine and serotonin binding sites in the brain of the honeybee (Apis mellifera L.). Verh. Dtsch. Zool. Ges. 79: in press.

    Google Scholar 

  46. Schürmann, F.W. 1974. Bemerkungen zur Funktion der Corpora Pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp. Brain Res. 19: 406–432.

    Article  PubMed  Google Scholar 

  47. Schürmann, F.W., and Elekes, K. Synaptic connectivity in the mushroom bodies of the honeybee brain: Electron microscopy and immunocytochemistry of neuroactive compounds. In this volume.

    Google Scholar 

  48. Schürmann, F.W., and Klemm, N. 1984. Serotonin-immunoreactive neurons in the brain of the honeybee. J. Comp. Neurol. 225: 570–580.

    Article  PubMed  Google Scholar 

  49. Storm-Mathisen, J.; Leknes, A.K.; Bore, A.T.; Vaaland, J.L.; Edminson, P.; Haug, F.S.; and Ottersen, O.P. 1983. First visualization of glutamate and GAB A in neurons by immunocytochemistry. Nature 301: 517–520.

    Article  PubMed  CAS  Google Scholar 

  50. Strausfeld N.J., and Bacon, J.P. 1983. Multimodal convergence in the central nervous system of dipterous insects. Fortschritte der Zoologie 28: 47–76.

    Google Scholar 

  51. Snodgrass, R.E. 1956. The Anatomy of the Honeybee. Ithaca, NY: Comstock Publishing Associates.

    Google Scholar 

  52. Suzuki, H. 1975. Antennal movements induced by odor and central projections of the antennal neurones in the honey bee. J. Insect Physiol. 6: 168–179.

    Google Scholar 

  53. Tyrer, N.M.; Turner, J.D.; and Altman, J.S. 1984. Identifiable neurons in the Locust central nervous system that react with antibodies to serotonin. J. Comp. Neurol. 227: 313–330.

    Article  PubMed  CAS  Google Scholar 

  54. Vowles, D.M. 1955. The structure and connection of the corpora pedunculata in bees and ants. Quart. J. micr. Sci. 96: 239–255.

    Google Scholar 

  55. Witthöft, W. 1967. Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morphol. Tiere 61: 160–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heildelberg

About this paper

Cite this paper

Bicker, G., Schäfer, S., Rehder, V. (1987). Chemical Neuroanatomy of the Honeybee Brain. In: Menzel, R., Mercer, A. (eds) Neurobiology and Behavior of Honeybees. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71496-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71496-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71498-6

  • Online ISBN: 978-3-642-71496-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics