Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds

  • Stephen E. Schwartz
Conference paper
Part of the NATO ASI Series book series (volume 6)


Reactions of gases in liquid-water clouds are potentially important in the transformation of atmospheric pollutants affecting their transport in the atmosphere and subsequent removal and deposition to the surface. Such processes consist of the following sequence of steps: Mass-transport of the reagent gas or gases to the air-water interface; transfer across the interface and establishment of solubility equilibria locally at the interface; mass-transport of the dissolved gas or gases within the aqueous phase; aqueous-phase chemical reaction(s); mass-transport of reaction product(s) and possible subsequent evolution into the gas-phase. Description of the rate of the overall process requires identification of the rate-limiting step (or steps) and evaluation of the rate of such step(s). Identification of the rate-limiting step may be achieved by evaluation and comparison of the characteristic times pertinent to the several processes and may be readily carried out by methods outlined herein, for known or assumed reagent concentrations, drop size, and fundamental constants as follows: gas- and aqueous-phase diffusion coefficients; Henry’s law coefficient and other pertinent equilibrium constants; interfacial mass-transfer accommodation coefficient; aqueous-phase reaction rate constants(s). A graphical method is described whereby it may be ascertained whether a given reaction is controlled solely by reagent solubility and intrinsic chemical kinetic or is mass-transport limited by one or another of the above processes. In the absence of mass-transport limitation, reaction rates may be evaluated uniformly for the entire liquid-water content of the cloud using equilibrium reagent concentrations. In contrast, where appreciable mass-transport limitation is indicated, evaluation of the overall rate requires knowledge of and integration over the drop-size distribution characterizing the cloud.


Mass Transport Drop Size Cloud Droplet Liquid Water Content Drop Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, A.W. (1973), A Textbook of Physical Chemistry. Academic Press, New York.Google Scholar
  2. Andrew, S.P.S. (1955), A Simple Method of Measuring Gaseous Diffusion Coefficients. Chem Eng. Sci. 4, pp. 269–272.CrossRefGoogle Scholar
  3. Baboolal, L.B., H.R. Pruppacher, J.H. Topalian (1981), A Sensitivity Study of a Theoretical Model of SO2 Scavenging by Water Drops in Air. J. Atmos. Sci. 38, pp. 856–870.CrossRefGoogle Scholar
  4. Beilke, S., G. Gravenhorst (1978), Heterogeneous SO2 Oxidation in the Droplet Phase. Atmos. Environ. 12, pp. 231–239.CrossRefGoogle Scholar
  5. Blair, E.W., W. Ledbury (1925), The Partial Formaldehyde Vapor Pressures of Aqueous Solutions of Formaldehyde, Part I. J. Chem. Soc. 1925, pp. 26–40.Google Scholar
  6. Briner, E., E. Perrottet (1939), Determination des Solubilités de l’Ozone dans l’Eau et dans une Solution Aqueuse de Chlorure de Sodium; Calcul des Solubilités de l’Ozone Atmosphérique dans les Eaux. Helv. Chim. Acta 22, pp. 397–404.CrossRefGoogle Scholar
  7. Brock, J.R., J.L. Durham (1984), Aqueous Aerosol as a Reactant in the Atmosphere, In: SO 2 , NO, and NO 9 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., pp. 209–250, Butterworth, Boston.Google Scholar
  8. Chameides, W.L. (1985), Photochemistry in the Atmospheric Aqueous Phase. This volume.Google Scholar
  9. Chameides, W.L., D.D. Davis (1982), The Free Radical Chemistry of Cloud droplets and its Impact Upon the Composition of Rain. J. Geophys. Res. 87, pp. 4863–4977.CrossRefGoogle Scholar
  10. Chameides, W.L., D.D. Davis (1983), Aqueous-Phase Source of Formic Acid in Clouds. Nature 304, pp. 427–429.CrossRefGoogle Scholar
  11. Chang, R., E.J. Davis (1976), Knudsen Aerosol Evaporation. J. Colloid Interface Sci. 54, pp. 352–363.CrossRefGoogle Scholar
  12. Chapman, S., T.G. Cowling (1939), The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge.Google Scholar
  13. Chapman, S., T.G. Cowling (1970), The Mathematical Theory of Non-Uniform Gases, 3rd ed. Cambridge University Press, Cambridge.Google Scholar
  14. Crank, J. (1975), The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford.Google Scholar
  15. Dahneke, B. (1983), Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols. In: Theory of Dispersed Multiphase Flow. R.E. Meyer, ed., Academic Press, Inc., New York, pp. 97–133.Google Scholar
  16. Danckwerts, P.V. (1970), Gas-Liquid Reactions. McGraw-Hill, New York.Google Scholar
  17. Daum, P.H., S.E. Schwartz, L. Newman (1984), Acidic and Related Constituents in Liquid Water Clouds. J. Geophys. Res., 89, pp. 1447–1485CrossRefGoogle Scholar
  18. Davis, E.J. (1983), Transport Phenomena with Single Aerosol Particles. Aerosol Sci. Technol. 2, pp. 121–144.Google Scholar
  19. Freiberg, J.E., S.E. Schwartz (1980), Oxidation of SO2 in Aqueous Droplets: Mass Transport Limitation in Laboratory Studies and the Ambient Atmosphere. Atmos.Environ. 15, pp. 1145–1154.Google Scholar
  20. Fuchs, N.A., A.G. Sutugin (1971), High-Dispersed Aerosols. In: Topics in Current Aerosol Research, G.M. Hidy, J.R. Brock, eds., pp. 1–60, Pergamon, Oxford.Google Scholar
  21. Fuller, E.N., D. Schettler, J.C. Giddings (1966), A New Method for Predictation of Binary Gas-Phase Diffusion Coefficient. Ind. Eng. Chem. 58 (5), pp. 19–27.CrossRefGoogle Scholar
  22. Gill, P.S., T.E. Graedel, C.J. Weschler (1983), Organic Films on Atmospheric Aerosol Particles, Fog Droplets, Cloud Droplets, Raindrops, and Snowflakes. Rev. Geophys. Space. Phys. 21, pp. 903–920CrossRefGoogle Scholar
  23. Graedel, T.E., P.S. Gill, C.J. Weschler (1983), Effects of Organic Surface Films on the Scavenging of Atmospheric Gases by Raindrops and Aerosol Particles. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. 1, H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 417 - 430, Elsevier, New York.Google Scholar
  24. Harvey, E.A., W. Smith (1959), The Absorption of Carbon Dioxide by a Quiescent Liquid. Chem. Eng. Sci. 10, pp. 274–280.CrossRefGoogle Scholar
  25. Hegg, D.A., P.V. Hobbs (1983), Preliminary Measurements on the Scavenging of Sulfate and Nitrate by Clouds. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 79–89, Elsevier, New York.Google Scholar
  26. Heikes, B.G. and A.M. Thompson (1983), Effects of Heterogeneous Processes on NO3, HONO and HNO3 Chemistry in the Troposphere. J. Geophys. Res., 88, pp 10883–10895Google Scholar
  27. Hertz, H. (1882), Ueber die Verdunstung der Fluessigkeiten, insbesondere des Quecksilbers, im luftleeren Räume. Ann. Phys. 17, pp. 177–193.CrossRefGoogle Scholar
  28. Hidy, G.M., J.R. Brock (1970), The Dynamics of Aerocolloidal Systems. Pergamon, Oxford.Google Scholar
  29. Himmelblau, P.M. (1964), Diffusion of Dissolved Gases in Liquids. Chem. Rev. 64, pp. 527–550.CrossRefGoogle Scholar
  30. Johnstone, H.F., P.W. Leppla (1934), The Solubility of Sulfur Dioxide. J. Am. Chem. Soc. 56, pp. 2233–2238.CrossRefGoogle Scholar
  31. Knollenberg, R.G. (1981), Techniques for probing cloud microstructure. In: Clouds - Their Formation, Optical Properties, and Effects, P.V. Hobbs, A. Deepak, eds., pp. 15–91, Academic Press, New York.Google Scholar
  32. Knudsen, M. (1915), Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 47, pp. 697–708.CrossRefGoogle Scholar
  33. La Mer, V.K. (162), Retardation of Evaporation by Monolayers: Transport Processes. Academic Press, New York.Google Scholar
  34. Langmuir, I. (1913), The Vapor Pressure of Metallic Tungsten. Phys. Rev. 2, pp. 329–342.CrossRefGoogle Scholar
  35. Lazrus, A.L., Haagenson, P.L., Kok, G.L., Huebert, B.J., Kreitzberg, C.W., Likens, G.E., Mohnen, V.A., Wilson, W.E., Winchester, J.W. (1983), Acidity in air and water in a case of warm frontal precipitation. Atmos. Environ. 17, pp. 581–591.CrossRefGoogle Scholar
  36. Leaitch, W.R., J.W. Strapp, H.A. Wiebe, G.A. Isaac (1983), Measurements of Scavenging and Transformation of Aerosol Inside Cumulus, In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. h H.R. Pruppacher, R.G. Semonin, W.C.N. Slinn, eds., pp. 53–69, Elsevier, New York.Google Scholar
  37. Lee, Y.-N., S.E. Schwartz (1981a), Reaction Kinetics of Nitrogen Dioxide with Liquid Water at Low Partial Pressure. J. Phys. Chem. 85, pp. 840–848.CrossRefGoogle Scholar
  38. Lee, Y.-N. and S.E. Schwartz, (1981b), Evaluation of the Rate of Uptake of Nitrogen Dioxide by Atmospheric and Surface Liquid Water, J. Geophys.Res. 86, pp. 11971–11983.CrossRefGoogle Scholar
  39. Lee, Y.-N., G.I. Senum, J.S. Gaffney (1983), Peroxyacetyl Nitrate (PAN) Stability, Solubility, and Reactivity - Implications for Tropospheric Nitrogen Cycles and Precipitation Chemistry. Fifth International Conference of the Commission on Atmospheric Chemistry and Global Pollution; Symposium on Tropospheric Chemistry, Oxford, England, August 28September 2, 1983.Google Scholar
  40. Littlewood, R., E. Rideal (1956), On the Evaporation Coefficient. Trans. Faraday Soc. 52, pp. 1598–1608.CrossRefGoogle Scholar
  41. Loomis, A.G. (1928), Solubilities of Gases in Water. In: International Critical Tables, Vol. III, pp. 255–261, McGraw-Hill, New York.Google Scholar
  42. Lugg, G.A. (1968), Diffusion Coefficients of Some Organic and Other Vapors in Air. Anal. Chem. 40, pp. 1072–1077.CrossRefGoogle Scholar
  43. Maa, J.R. (1967), Evaporation Coefficient of Liquids. Ind. Eng. Chem. Fundam. 6, pp. 504–518.CrossRefGoogle Scholar
  44. Maa, J.R. (1970), Rates of Evaporation and Condensation between Pure Liquids and Their Own Vapors. Ind. Eng. Chem. Fundam. 9, pp. 283–287.CrossRefGoogle Scholar
  45. Marrero, T.R., E.A. Mason (1972), Gaseous Diffusion Coefficients. J. Phys. Chem. Ref. Data pp. 3–118.Google Scholar
  46. Martin, L.R. (1984), Kinetic Studies of Sulfite Oxidation in Aqueous Solution. In: SO2, NO, and NO2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., 63–100, Butterworth, Boston.Google Scholar
  47. Martin L.R., D.E. Damschen (1981), Aqueous Oxidation of Sulfur Dioxide by Hydrogen Peroxide at Low pH. Atmos. Environ. 15, pp. 1615–1621.CrossRefGoogle Scholar
  48. Mason, B.J. (1971), The Physics of Clouds, 2nd ed. Clarendon Press, Oxford.Google Scholar
  49. Maxwell, J.C. (1877), Diffusion, In: Encyclopedia Britannica, Vol. 2. p. 82. Reprinted in: The Scientific Papers of James Clerk Maxwell, W.D. Niven, ed., Dover, New York, Vol. 2, pp. 625–646.Google Scholar
  50. Mohnen, V. (1969), Die Radioaktiv-Markierung von Aerosolen. Z. Phys. 229, pp. 109–122.CrossRefGoogle Scholar
  51. Munger, J.W., D.J. Jacob, J.M. Waldman, M.R. Hoffmann (1983), Fogwater Chemistry in an Urban Atmosphere. J. Geophys. Res. 88, pp. 5109–5121.CrossRefGoogle Scholar
  52. Paul, B. (1962), Compilation of Evaporation Coefficients. Amer. Rocket. Soc. J. 32, pp. 1321–1328.Google Scholar
  53. Pruppacher, H.R., J.D. Klett (1978), Microphysics of Clouds and Precipitation. D. Reidel Publishing Co., Boston, MA.Google Scholar
  54. Radke, L.F. (1983), Preliminary Measurements of the Size Distribution of the Cloud Interstitial Aerosol. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 71–78, Elsevier, New York.Google Scholar
  55. Raimondi, P., H.L. Toor (1959), Interfacial Resistance in Gas Absorption. Am. Inst. Chem. Eng. J. 5, pp. 86–92.Google Scholar
  56. Rogers, R.R. (1979), A Short Course in Cloud Physics, 2nd ed. Pergamon Press, Oxford.Google Scholar
  57. Schwartz, S.E. (1984b), Gas- and Aqueous-Phase Chemistry of HO2 in Liquid- Water Clouds. Geophys. Res. 89, pp/ 11589–11598CrossRefGoogle Scholar
  58. Schwartz, S.E., (1984), Gas-Aqueous Reactions of Sulfur and Nitrogen Oxides in Liquid-Water Clouds. In: SO2, NO, and NO2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., pp. 173–208, Butterworth, Boston.Google Scholar
  59. Schwartz, S.E., J.E. Freiberg (1981), Mass-Transport Limitation to the Rate of Reaction in Liquid Droplets: Application to Oxidation of SO2 in Aqueous Solutions. Atmos. Environ. 15, pp. 1129–1144.CrossRefGoogle Scholar
  60. Schwartz, S.E., W.H. White (1981), Solubility Equilibria of the Nitrogen Oxides and Oxyaeids in Dilute Aqueous Solution, In: Advances in Environmental Science and Engineering, Vol. J.R. Pfafflin and E.N. Ziegler, eds., pp. 1–45, Gordon and Breach, New York.Google Scholar
  61. Schwartz, S.E., W.H. White (1983), Kinetics of Reactive Dissolution of Nitrogen Oxides into Aqueous Solution. In: Advances in Environmental Science and Technology, Vol. 12, S.E. Schwartz, ed., pp. 1–116, John Wiley and Sons, Inc., New York.Google Scholar
  62. Seinfeld, J.H. (1980), Lectures in Atmospheric Chemistry, American Institute of Chemical Engineers, Monograph Series, No. 12, Vol. 76, New York.Google Scholar
  63. Sherwood, T.K., R.L. Pigford, C.R. Wilke (1975), Mass Transfer. McGraw-Hill, New York.Google Scholar
  64. van Krevelen, D.W., P.J. Hoftijzer, F.J. Huntens (1949), Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide and Hydrogen Sulphide. Recueil Trav. Chim. Pays Bas 68, pp. 191–216.CrossRefGoogle Scholar
  65. Wagner, P.E. (1982), Aerosol Growth by Condensation. In: Aerosol Microphysics II: Chemical Physics of Microparticles, W.H. Marlow, ed., Springer- Verlag, Berlin, pp. 129–178.Google Scholar
  66. Warneck, P. (1985), The Equilibrium Distribution of Atmospheric Gases between the Two Phases of Liquid Water Clouds. This volume.Google Scholar
  67. Wilke, C.R., P. Chang (1955), Correlation of Diffusion Coefficients in Dilute Solutions, Am. Inst. Chem. Eng. J. 1, pp. 264–270.Google Scholar
  68. Wilke, C.R., C.Y. Lee (1955), Estimation of Diffusion Coefficients for Gases and Vapors, Ind. Eng. Chem. 47, pp. 1253–1257.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Stephen E. Schwartz
    • 1
  1. 1.Environmental Chemistry Division, Department of Applied ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations