Functional Significance of the Basic Cerebellar Circuit in Motor Coordination

  • R. Llinás
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Probably the most striking example of uniformity in the neuronal fabric of the brain is that present in the cerebellar cortex. Its connectivity and neuronal circuitry have an almost crystal-like structural organization. An example of the former is the precise distribution of the synaptic inputs onto the soma and dendrites of the cerebellar cortical neurons at the most superficial stratum, the molecular layer (cf. Palay and Chan-Palay 1974). At the neuronal circuit level the parallel fibers course in parallel to the cerebellar surface, the basket cell axons run orthogonally with respect to the direction of the parallel fibers, and all dendrites in the molecular layer run radially towards the surface of the cortex. This organization gives the cerebellar cortex a tridimensional matrix structure. As observed from the surface, the x axis is the direction of the parallel fibers, the y axis the direction of the basket cell axons, and the z axis the direction of the Purkinje cell dendrites (Ramón y Cajal 1911). In addition, since the descriptions by Ramón y Cajal (1888) it has been well known that the Purkinje cell dendrites are close to isoplanar and that the dendritic plane is oriented orthogonally with respect to the parallel fibers (Fig. 1).


Purkinje Cell Granule Cell Cerebellar Cortex Mossy Fiber Inferior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus JS (1958) A theory of cerebellar function. Math Biosci 10: 25–61CrossRefGoogle Scholar
  2. Armstrong DM (1974) Functional significance of the inferior olive. Physiol Rev 54: 358–417PubMedGoogle Scholar
  3. Barmack NH (1979) Immediate and sustained influence of visual olivocerebellar activity on eye movement. In: Talbot RE, Humphrey DR (eds) Posture and movement: perspective for integration sensory and motor research on the mammalian nervous system. Raven Press, New YorkGoogle Scholar
  4. Bell MM, Kawasaki R (1972) Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol 35: 155–169PubMedGoogle Scholar
  5. Benedetti F, Montarolo PG, Rabacchi S, Savio, T (1983a) Long-term functional changes in the Purkinje cell to climbing fibre deprivation. Neurosci lett Suppl (in press)Google Scholar
  6. Benedetti F, Montarolo PG, Strata P, Tempia F (1983b) Inferior olive inactivation decreased the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol 340: 195–208PubMedGoogle Scholar
  7. Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of physiology, vol H. Motor control. Williams & Wilkins, Baltimore, pp 735–830Google Scholar
  8. Bloedel JR, Ebner TJ, Yu QX (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J Neurophysiol 50: 220–239PubMedGoogle Scholar
  9. Bloedel JR, Roberts WJ (1971) Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol 34: 17–31PubMedGoogle Scholar
  10. Bower J, Llinas R (1983) Simultaneous sampling of the responses of multiple, closely adacent, Purkinje cells responding to climbing fiber activation. Soc Neurosci Abstr 9: 607Google Scholar
  11. Bower JM, Woolston DC, Gibson JM (1980) Congruence of spatial patterns of receptive field projections to Purkinje cell and granule cell layers in the cerebellar cortex of the rat. Soc Neurosci Abstr 6: 511Google Scholar
  12. Braitenberg V, Atwood RP (1958) Morphological observations in the cerebellar cortex. J Comp Neurol 109: 1–34PubMedCrossRefGoogle Scholar
  13. Brand S, Dahl A-L, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and elctron microscopic study. Exp Brain Res 26: 39–58PubMedGoogle Scholar
  14. Brodai A, Hoivik B (1964) Site and termination of primary vestibulo cerebellar fibers in the cat: An experimental study with silver impregnation methods. Arch Ital Biol 102: 1–21Google Scholar
  15. Bruggencate G ten, Teichmann R, Weller E (1972) Neuronal activity in the lateral vestibular nucleus of the cat. III. Inhibitory actions of cerebellar Purkinje cells evoked via mossy and climbing fibre afferents. Pflueger’s Arch 337: 147–162CrossRefGoogle Scholar
  16. Crill WE (1970) Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol 33: 199–209PubMedGoogle Scholar
  17. Desclin JC, Escubi J (1974) Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res 77: 349–364PubMedCrossRefGoogle Scholar
  18. Dow RS (1939) Cerebellar action potentials in response to stimulation of various afferent connections. J Neurophysiol 2: 543–555Google Scholar
  19. Ebner TJ, Bloedel JR (1981) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. J Neurophysiol 45: 933–947PubMedGoogle Scholar
  20. Eccles JC, Lliniis R, Sasaki K (1966a) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182: 268–296PubMedGoogle Scholar
  21. Eccles JC, Llinâs R, Sasaki K (1966b) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1: 17–39PubMedGoogle Scholar
  22. Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Faber D, Murphy J (1969) Axonal branching in the climbing fiber pathway to the cerebellum. Brain Res 15: 262–267PubMedCrossRefGoogle Scholar
  24. Hess R, Simpson JI (1978) Visual and somatosensory messages to the rabbit’s cerebellar flocculus. Neurosci Lett Suppl 1: 146Google Scholar
  25. Ito M, Simpson JI (1971) Discharges in Purkinje cell axons during climbing fiber activation. Brain Res 31: 215–219PubMedCrossRefGoogle Scholar
  26. Ito M, Orlov I, Shimoyama I (1978) Reduction of the cerebellar stimulus effect on rat Deiters’ neurones after chemical destruction of the inferior olive. Exp Brain Res 33: 143–145PubMedCrossRefGoogle Scholar
  27. Ito M, Nisimaru N, Shibuki K (1979) Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature (London) 227: 568–569CrossRefGoogle Scholar
  28. Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324: 113–134PubMedGoogle Scholar
  29. King JS, Andrezik JA, Falls WM, Martin GF (1976) Synaptic organization of cerebello-olivary circuit. Exp Brain Res 26: 159–170PubMedCrossRefGoogle Scholar
  30. Leonard C, Simpson JI (1982) Effects of suspending climbing fiber activity on the discharge patterns of floccular Purkinje cells. Soc Neurosci Abstr. 8: 830Google Scholar
  31. Llinâs R (1969a) Functional aspects of interneuronal evolution in the cerebellar cortex. In: Brazier MAB (ed) The interneuron, UCLA Forum in Med Sci Vol XI. Univ Cal Press, Los Angeles, pp 329–347Google Scholar
  32. Llinâs R (1969b) Editor, Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago )Google Scholar
  33. Llinàs R (1970) Neuronal operations in cerebellar transactions. In: Schmitt FO (ed), The neurosciences: second study program, Rockefeller Univ Press, New York, pp 409–426Google Scholar
  34. Llinâs R (1974) 18th bowditch lecture: motor aspects of cerebellar control. Physiologist 17: 1946Google Scholar
  35. Llinâs R (1979) The role of calcium in neuronal function. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program, MIT Press, Cambridge, pp 555–571Google Scholar
  36. Llinâs R, Simpson JI (1981) Cerebellar control of movement. In: Towe A, Luschei E (eds) Handbook of behavioral neurobiology, Vol II. Plenum Press, New York, pp 171–195Google Scholar
  37. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305: 171–195PubMedGoogle Scholar
  38. Llinâs R, Sugimori M (1982) Functional significance of the climbing fiber input to Purkinje cells: An in vitro study in mammalian cerebellar slices. Exp Brain Res Supp1 6: 402–411Google Scholar
  39. Llinas R, Volkind R (1973) The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18: 69–87PubMedCrossRefGoogle Scholar
  40. Llinâs R, Walton K (1977) Significance of the olivo-cerebellar system in compensation of ocular position following unilateral labyrinthectomy. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier/North Holland Biomedical Press, Amsterdam, pp 399–408Google Scholar
  41. Llinâs R, Walton.K (1979) The role of the olivo-cerebellar system in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning. Raven Press, New York, pp 17–36Google Scholar
  42. Llinâs R, Yarom Y (1980) Electrophysiological properties of mammalian inferior olivary cells in vitro. In: Courville J, Montigny de C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press New York, pp 379–388Google Scholar
  43. Llinâs R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315: 569–584PubMedGoogle Scholar
  44. Llinâs R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37: 560–571PubMedGoogle Scholar
  45. Llinâs R, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: Its role in motor learning. Science 190: 1230–1231PubMedCrossRefGoogle Scholar
  46. Maekawa K, Takeda T (1975) Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res 98: 590–595PubMedCrossRefGoogle Scholar
  47. Marr D (1969) A theory of cerebellar cortex. J Physiol 202: 437–470PubMedGoogle Scholar
  48. Marshall KC, Hendelnan WJ (1982) Morphophysiological studies of a culture model of the cerebellum. Exp Brain Res Supp1 6: 69–74Google Scholar
  49. Moatomed F (1966) Cell frequencies in the human inferior nuclear complex. J Comp Neurol 128: 109–116CrossRefGoogle Scholar
  50. Montarolo PG, Raschi F, Strata P (1981) Are the climbing fibres essential for the Purkinje cell inhibitory action? Exp Brain Res 42: 215–218PubMedCrossRefGoogle Scholar
  51. Montigny de C, Lamarre C 1973 ) Rhythmic activity induced by harmaline in the olivo-cerebellobulbar system of the cat. Brain Res 53: 81–95PubMedCrossRefGoogle Scholar
  52. Mugnaini E (1972) The histology and cytology of the cerebellar cortex: In: Larsell O, Jahnsen J (eds), The comparative anatomy and histology of the cerebellum: human cerebellum, cerebellar connections and cerebellar cortex, Univ Minnesota Press, Minneapolis, pp 201–262Google Scholar
  53. Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, Montigny de C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology, Raven Press New york, pp 279–289Google Scholar
  54. Oscarsson O, Sjölund B (1977a) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28: 469–486PubMedGoogle Scholar
  55. Oscarsson O, Sjölund B (1977b) The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res 28: 505–520PubMedGoogle Scholar
  56. Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer Berlin Heidelberg New YorkGoogle Scholar
  57. Palkovits M, Magyar P, Szentagothai J (1971) Quantitative histological analysis of the cerebellar cortex in the cat. II. Structural organization of the molecular layer. Brain Res 34: 1–18PubMedCrossRefGoogle Scholar
  58. Pellionisz A, Llinas R (1980) Tensorial approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience 5: 1125–1136PubMedCrossRefGoogle Scholar
  59. Pellionisz A, Llinas R (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7: 2949–2970PubMedCrossRefGoogle Scholar
  60. Precht W (1978) Neuronal operations in the vestibular system. Springer Berlin Heidelberg New YorkGoogle Scholar
  61. Precht W, Llinas R (1969) Comparative aspects of the vestibular input to the cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago) pp 677–702Google Scholar
  62. Ram6n y Cajal S (1888) Estructura de los centros nerviosos de las ayes. Rev Trimest Histol Norm Patol 1: 305–315Google Scholar
  63. Ramtin y Cajal S (1911) Histologie du systeme nerveux de l’homme et des vertebres, vols I and I I. Mgloine, ParisGoogle Scholar
  64. Schaeffer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea-pig. A simple model of learning. In: Zippel HZ (ed) Memory and transfer of information. Plenum Press New York, pp 203–232Google Scholar
  65. Shambes GM, Gibson JM, Welker W (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15: 94–140PubMedCrossRefGoogle Scholar
  66. Shinoda Y, Yoshida K (1975) Neural pathways form the vestibular labyrinths to the flocculus in the cat. Exp Brain Res 22: 97–111PubMedCrossRefGoogle Scholar
  67. Simpson JI, Precht W, Llinäs R (1974) Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum. Pflueger’s Arch 351: 183–193CrossRefGoogle Scholar
  68. Sotelo C, Llinas R, Baker R (1974) Structural study of the inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37: 541–559PubMedGoogle Scholar
  69. Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago) pp 493–514Google Scholar
  70. Walton K (1980) Vestibular compensation in the rat. A model for motor learning. Doctoral Diss, New York Univ Med Ctr, NYGoogle Scholar
  71. Wilson VJ, Maeda M, Franck JI (1975) Input from neck afferents to the cat flocculus. Brain Res 89: 133–138PubMedCrossRefGoogle Scholar
  72. Wilson WC, Magoun HW (1945) The functional significance of the inferior olive in the cat. J Comp Neurol 83: 69–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. Llinás
    • 1
  1. 1.Dept. of Physiology and BiophysicsNew York University Medical CenterNew YorkUSA

Personalised recommendations