Oligosaccharides Based on Sucrose (Sucrosyl Oligosaccharides)

  • O. Kandler
  • H. Hopf
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 13 / A)


Sucrosyl oligosaccharides represent the major portion of the so-called primary oligosaccharides, recently defined (Kandler and Hopf 1980a) as those oligosaccharides which are synthesized in vivo by the action of a glycosyl transferase from a mono- or oligosaccharide and a glucosyl donor. They occur freely in significant amounts in plants and are of metabolic relevance, whereas the so-called secondary oligosaccharides arise by the hydrolysis of higher oligosaccharides, polysaccharides, or heterosides and are usually not accumulated in the plant tissue. In all known cases the biosynthesis of the sucrosyl oligosaccharides is brought about by the transfer of a galactopyranosyl, glucopyranosyl, or fructofuranosyl residue to either the glucosyl or fructosyl moiety of sucrose. A survey of the mode of attachment of these residues to sucrose is shown in Fig. 1. The degree of polymerization (DP) normally ranges from three to nine. A set of homologous oligosaccharides is usually designated a series or family, e.g., the raffinose series (family) etc.


Cold Acclimation Frost Resistance Vegetative Part Glycosyl Donor Helianthus Tuberosus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albon N, Bell DJ, Blanchard PH, Gross D, Rundell JT (1953) Kestose: a trisaccharide formed from sucrose by yeast invertase. J Chem Soc 24–27Google Scholar
  2. Alden J, Hermann RK (1971) Aspects of the cold hardiness mechanism in plants. Bot Rev 37: 37–142CrossRefGoogle Scholar
  3. Archambault A, Courtois JE, Wickstrom A, Le Dizet P.( 1956 a) Recherches sur les galactosides du Lychnis dioica. I. Isolement du cinq galactosides nouveaux. Bull Soc Chim Biol 38: 1121–1131PubMedGoogle Scholar
  4. Archambault A, Courtois JE, Wickstrom A, Le Dizet P ( 1956 b) Recherches sur les galactosides du Lychnis dioica II. Etude de la structure du tetraholoside lychnose. Bull Soc Chim Biol 38: 1133–1141PubMedGoogle Scholar
  5. Aronsson A, Ingestad T, Lööf LG (1976) Carbohydrate metabolism and frost hardiness in pine and spruce seedlings grown at different photoperiods and thermoperiods. Physiol Plant 36: 127–132CrossRefGoogle Scholar
  6. Assarson A, Theander O (1958) The constituents of conifer needles. Acta Chem Scand 12: 1319–1322CrossRefGoogle Scholar
  7. Bacon JSD (1960) The oligofructosides. Bull Soc Chim Biol 42: 113–121Google Scholar
  8. Bacon JSD, Bell DJ (1953) A new trisaccharide produced from sucrose by mold invertase. J Chem Soc 2528–2530Google Scholar
  9. Beck E (1969) Isolierung und Identifizierung von Clusianose, einem 1-O-α-D-Galactopyrano-syl-Hamamelit. Z Pflanzenphysiol 61: 360–366Google Scholar
  10. Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA, Stepka W (1950) The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J Am Chem Soc 72: 1710–1718CrossRefGoogle Scholar
  11. Bridel M (1911) Variations dans la composition de la racine de gentiane au cours de la végétation d’une année. J Pharm Chim 3: 294–305Google Scholar
  12. Bridel M (1914) Sur la présence de la gentiopicrine et du gentianose dans les raciness fraîches de la gentiane pourprée (Gentiana purpurea L.). J Pharm Chim 10: 62–66Google Scholar
  13. Bridel M (1920) Sur la présence simultanée du gentianose et du saccharose dans les espèces du genre Gentiana. J Pharm Chim 21: 306–311Google Scholar
  14. Bourquelot E, Bridel M (1910) Sur un sucre nouveau, le verbascose, retiré de la racine de Molene ( Verbascum Thapsus L. ). CR Acad Sci 151: 760–762Google Scholar
  15. Bourquelot E, Nardin L (1898) Sur la préparation du gentianose. J Pharm Chim 7: 289–292Google Scholar
  16. Cerbulis J (1954) Sugars in Caracas cacao beans. Arch Biochem Biophys 49: 442–450PubMedCrossRefGoogle Scholar
  17. Cerbulis J (1955) Carbohydrates in cacao beans II. Sugars in Caracas cacao beans. Arch Biochem Biophys 58: 406–413PubMedCrossRefGoogle Scholar
  18. Colin H, Augem A (1927) Nature et métabolism des glucides chez les Iris. CR Acad Sci 185: 475–478Google Scholar
  19. Colowick SP, Kaplan NO (1955-1979) Methods in enzymology, vols 1–59. Academic Press, London New YorkGoogle Scholar
  20. Courtois JE, Ariyoshi U (1960) Les galactosides du saccharose des racines de Cucubalus baccifer (Caryophyllacées). Étude de leur structure. CR Acad Sci 250: 1369–1371Google Scholar
  21. Courtois JE, Petek F, Dong T (1961) Synthèse de plantéose par action transférate de l’a-galactosidase des graines de Plantago. Bull Soc Chim Biol 43: 1189–1196PubMedGoogle Scholar
  22. Cronquist A (1968) The evolution and classification of flowering plants. Nelson, LondonGoogle Scholar
  23. Crowden RK, Harborne JB, Heywood VH (1969) Chemosynthetics of the Umbelliferae- a general survey. Phytochemistry 8: 1963–1984CrossRefGoogle Scholar
  24. Dahlgren R (1975) A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot Not 128: 119–147Google Scholar
  25. Davy J, Courtois JE (1965) Isoelement de divers trisaccharides et tétrasaccharides de raciness de Silene inflata. CR Acad Sci 261: 3483–3485Google Scholar
  26. Dey PM (1980) Biochemistry of a-D-galactosidic linkages in the plant kingdom. Adv Carbohydr Chem Biochem 37: 283–372CrossRefGoogle Scholar
  27. Dey PM, Pridham JB (1972) Biochemistry of a-galactosidases. Adv Enzymol Relat Subj Biochem 39: 91–130Google Scholar
  28. Eagles CF (1967) Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata (cocksfoot) at different temperatures. Ann Bot 31: 645–651Google Scholar
  29. Edelman J, Dickerson AG (1966) The metabolism of fructose polymers in plants. Biochem J 98: 787–794PubMedGoogle Scholar
  30. Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67: 517–531CrossRefGoogle Scholar
  31. Franz G, Meier H (1972) Untersuchungen über Vorkommen und Physiologie des Trisaccharides Gentianose. Z Pflanzenphysiol 66: 433–439Google Scholar
  32. French D (1954) The raffinose family of oligosaccharides. Adv Carbohydr Chem 9: 149–184PubMedCrossRefGoogle Scholar
  33. French D (1955) Isolation and identification of planteose from tobacco seeds. J Am Chem Soc 77: 1024–1025CrossRefGoogle Scholar
  34. French D, Younquist RW, Lee A (1959) Isolation and crystallization of planteose from mint seeds. Arch Biochem Biophys 85: 471–473PubMedCrossRefGoogle Scholar
  35. Gonzales NS, Pontis HG (1963) Uridine diphosphate fructose and uridine diphosphate acetylgalactosamine from Dahlia tubers. Biochim Biophys Acta 69: 179–181CrossRefGoogle Scholar
  36. Gorenflat R, Bourdu R (1962) Critères biochimiques et taxonomie expérimentale du genre Planîago. Rev Cytol Biol Veg 25: 349–360Google Scholar
  37. Gross D, Blanchard PH, Bell DJ (1954) Neo-kestose: a trisaccharide formed from sucrose by yeast invertase. J Chem Soc 1727–1730Google Scholar
  38. Haq S, Adams GA (1962) Oligosaccharides of birch sap. Can J Biochem Physiol 40: 989–997PubMedCrossRefGoogle Scholar
  39. Hatanaka S (1959) Oligosaccharides in the seeds of Sesamum indicum L. Arch Biochem Biophys 82: 188–194PubMedCrossRefGoogle Scholar
  40. Heber U, Santarius KA (1973) Cell death by cold and heat, and resistance to extreme temperatures. Mechanism of hardening and dehardening. In: Precht HJ, Christopherson H, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 232–263Google Scholar
  41. Hederson RW, Morton RK, Rawlinson WA (1959) Oligosaccharide synthesis in the banana and its relationship to the transferase activity of invertase. Biochem J 72: 340–348Google Scholar
  42. Hegnauer R (1962–1973) Chemotaxonomie der Pflanzen, vols I–IV. Birkhäuser, Basel StuttgartGoogle Scholar
  43. Hegnauer R (1964) Chemotaxonomie der Pflanzen, vol III. Birkhäuser, Basel Stuttgart, pp 173–184Google Scholar
  44. Hegnauer R (1969) Chemotaxonomie der Pflanzen, vol V. Birkhäuser, Basel Stuttgart, pp 329–330Google Scholar
  45. Hegnauer R (1972) Chemical patterns and relationships of Umbelliferae. In: Heywood VH (ed) Biology and chemistry of the Umbelliferae. Suppl 1 Bot J Linn Soc 64: 267–277Google Scholar
  46. Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol VI. Birkhäuser, Basel Stuttgart, pp 554–629Google Scholar
  47. Henry RJ, Darbyshire B (1980) Sucrose: sucrose fructosyl-transferase and fructan: fructan fructosyltransferase from Allium cepa. Phytochemistry 19: 1017–1020CrossRefGoogle Scholar
  48. Hestrin S, Feingold DS, Avigad D (1956) The mechanism of polysaccharide production from sucrose. Biochem J 64: 340–351PubMedGoogle Scholar
  49. Hiller K (1969) Oligosaccharide in Eryngiumarten. Z Naturforsch 24b: 36–38Google Scholar
  50. Hiller K (1972) Chemosystematics of the Saniculoideae. In: Heywood VH (ed) Biology and chemistry of the Umbelliferae. Suppl 1 Bot J Linn Soc 64: 369–384Google Scholar
  51. Hopf H (1973) Biosynthese, Physiologie und Verbreitung von Oligosacchariden in Umbellifloren. Thesis, Univ MunichGoogle Scholar
  52. Hopf H, Kandier O (1974) Biosynthesis of umbelliferose in Aegopodium podagraria. Plant Physiol 54: 13–14PubMedCrossRefGoogle Scholar
  53. Hopf H, Kandier O (1976) Physiologie der Umbelliferose. Biochem Physiol Pflanz 169: 5–36Google Scholar
  54. Hopf H, Kandier O (1977) Characterization of the “reserve cellulose” of the endosperm of Carum carvi as a (1 — 4)-β-mannan. Phytochemistry 16: 1715–1717CrossRefGoogle Scholar
  55. Hopf H, Kandler O (1980 a) Oligosaccharides as taxonomie and phylogenetic markers in angiosperms. 2nd Int Congr Syst Evol Biol Univ Br C, Vancouver, p 237Google Scholar
  56. Hopf H, Kandler O (1980 b) O-β-D-Glucopyranosyl-(1 — 1)-myo-inositol (glucinol) in higher plants. Z Pflanzenphysiol 100: 189–195Google Scholar
  57. Hopf H, Kandler O (1982) Occurrence and biosynthesis of gentiobiose in ripening fruits of Hedera helix. Z Pflanzenphysiol (in press)Google Scholar
  58. Hopf H, Lanzendörfer B, Kandier O (1982) Investigation of the oligosaccharides in the seeds of Sesamum indicum L. Z Pflanzenphysiol (in press)Google Scholar
  59. Imhoff V (1973) Synthesis of galactosides by chloroplasts isolated from pea leaves. Hoppe-Seyler’s Z Physiol Chem 354: 1550–1554PubMedCrossRefGoogle Scholar
  60. Jeremias K (1962) Über den Einfluß der Temperatur auf die Speicherung der Raffinosezukker. Ber Dtsch Bot Ges 75: 313–332Google Scholar
  61. Jukes C (1978) The utilization of endogenous reserves in seeds of ash during maturation of the embryo and subsequent germination. Thesis Univ SheffieldGoogle Scholar
  62. Jukes C, Lewis DH (1974) Planteóse the major soluble carbohydrate of seeds of Fraxinus excelsior. Phytochemistry 13: 1519–1521CrossRefGoogle Scholar
  63. Kahl W, Roszkowsi A, Zurowska A (1969) The isolation of 6-kestose from the seeds of the horse chestnut ( Aesculus hippocastanum L. ). Carbohydr Res 10: 586–588CrossRefGoogle Scholar
  64. Kandler O (1967) Biosynthesis of poly- and oligosaccharides during photosynthesis in green plants. In: San Pietro A, Grear FA, Army TJ (eds). Harvesting the sun. Academic Press, London New York, pp 131–152Google Scholar
  65. Kandler O, Hopf H (1980) Occurrence, metabolism and function of oligosaccharides. In: Preiss J (ed) carbohydrates: structure and function Stumpf PK, Conn EE (eds) The biochemistry of plants, vol. III. Academic Press, London New York, pp 221–270Google Scholar
  66. Kandler O, Dover C, Ziegler P (1979) Kälteresistenz der Fichte. Ber Dtsch Bot Ges 92: 225–241Google Scholar
  67. Karrer W (1958) Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel StuttgartGoogle Scholar
  68. Karrer W, Cherbuliez E, Eugster C (1977) Supplement 1. Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel StuttgartGoogle Scholar
  69. Keller F, Franz G (1974) Bildung und Transport des Trisaccharides Gentianose in Gentianalutea L. Verh Schweiz Naturforsch Ges: 205–207Google Scholar
  70. King RW, Zeevart JAD (1974) Enhancement of phloem exudation by chelating agents. Plant Physiol 53: 96–103PubMedCrossRefGoogle Scholar
  71. Larcher W, Heber U, Santarius KA (1973) Temperature resistance and survival. In: Precht HJ, Christopherson H, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 195–292Google Scholar
  72. Lehle L, Tanner W (1973) The function of myo-inositol in the biosynthesis of raffinose. Eur J Biochem 38: 103–110PubMedCrossRefGoogle Scholar
  73. Lehle L, Tanner W, Kandier O (1970) myo-Inositol, a cofactor in the biosynthesis of raffinose. Hoppe-Seyler’s Z Physiol Chem 351: 1494–1498PubMedCrossRefGoogle Scholar
  74. Levitt J (1962) A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J Theoret Biol 3: 355–391CrossRefGoogle Scholar
  75. Levitt J (1966) Winterhardiness in plants. In: Meryman HT (ed) Cryobiology. Academic Press, London New York, pp 495–563Google Scholar
  76. Loiseau D (1876) Vorschlag des Namens Raffinose für Substanz aus Rübenzucker. Ber Dtsch Chem Ges 9: 732Google Scholar
  77. MacLeod AM, McCorquodale H (1958) Trisaccharides of Lolium and Festuca. Nature (London) 182:815–816CrossRefGoogle Scholar
  78. Matile P (1978) Biochemistry and function of vacuoles. Annu Rev Plant Physiol 29: 193–213CrossRefGoogle Scholar
  79. Meyer A (1882) Über Gentianose. Hoppe-Seyler’s Z Physiol Chem 6: 135–138Google Scholar
  80. Moreno A, Cardini CE (1966) A raffinose-sucrose transgalactosidase from wheat germ. Plant Physiol 41: 909–910PubMedCrossRefGoogle Scholar
  81. Morgenlie S (1970) A new tetrasaccharide of the stachyose type extracted from seeds of Festuca rubra L. Acta Chem Scand 24: 2149–2155CrossRefGoogle Scholar
  82. Murakami S (1941) Untersuchungen über Kohlenhydrate von den Labiaten. II. Über ein neues Hexasaccharid Ajugose aus den Wurzeln von Ajuga nipponensis (Makino). Acta Phytochimica 12: 97–114Google Scholar
  83. Nishimura M, Beevers H (1978) Hydrolases in vacuoles from Castor bean endosperm. Plant Physiol 62: 448Google Scholar
  84. Peel AJ (1975) Investigation with aphid stylets into the physiology of the sieve tubes. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 171–196Google Scholar
  85. Planta AV, Schulze E (1890) Über ein neues kristallisierbares Kohlenhydrat. Ber Dtsch Chem Ges 23: 1692–1699CrossRefGoogle Scholar
  86. Pontis HG (1966) Observations on the de novo synthesis of fructosans in vivo. Arch Biochem Biophys 116: 416–424PubMedCrossRefGoogle Scholar
  87. Pridham JB (1960) Oligosaccharides and associated glycosidases in aspen tissues. Biochem J 76: 13–17PubMedGoogle Scholar
  88. Pridham JB, Hassid WZ (1965) Biosynthesis of raffinose. Plant Physiol 40: 984–986PubMedCrossRefGoogle Scholar
  89. Reid JSG (1971) Reserve carbohydrate metabolism in germinating seeds of Trigonella foenum -graecum L. Planta 100: 131–142CrossRefGoogle Scholar
  90. Santarius KA, Milde H (1977) Sugar compartmentation of frosthardy and partially dehardened cabbage of leaf cells. Planta 136: 163–166CrossRefGoogle Scholar
  91. Satyanarayana MN (1976 a) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part I - Properties of a partially purified transfructosylase. Indian J Biochem Biophys 13: 261–266PubMedGoogle Scholar
  92. Satyanarayana MN (1976 b) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part II - Biosynthesis of oligosaccharides. Indian J Biochem Biophys 13: 398–407PubMedGoogle Scholar
  93. Satyanarayana MN (1976 c) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part III - Biosynthesis of fructans. Indian J Biochem Biophys 13: 408–412Google Scholar
  94. Saunders RM (1971) Fructosylraffinose, a tetrasaccharide in wheat bran. Phytochemistry 10: 491–493CrossRefGoogle Scholar
  95. Schlubach HH (1958) Der Kohlenhydratstoffwechsel der Gräser. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XV. Springer, Wien, pp 1–29Google Scholar
  96. Schlubach HH (1961) Der Kohlenhydratstoffwechsel im Roggen und Weizen. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XIX. Springer, Wien, pp 291–316Google Scholar
  97. Schlubach HH (1965) Der Kohlenhydratstoffwechsel in Gerste, Hafer und Rispenhirse. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XXIII. Springer, Wien, pp 46–61Google Scholar
  98. Schwarzmaier G (1973) Untersuchungen über den Stoffwechsel der Saccharosegalactoside bei Caryophyllaceen. Thesis, Univ MunichGoogle Scholar
  99. Scott RW, Jefford RG, Edelman J (1966) Sucrose fructosyltransferase from higher plant tissues. Biochem J 100: 23Google Scholar
  100. Sellmair J, Beck E, Kandier O, Kress A (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204CrossRefGoogle Scholar
  101. Senser M, Kandier O (1967) Galactinol, ein Galactosyldonor für die Biosynthese der Zucker der Rafflnosefamilie in Blättern. Z Pflanzenphysiol 57: 376–388Google Scholar
  102. Senser M, Dittrich P, Kandier O, Thanbichler A, Kuhn B (1971) Isotopenstudien über den Einfluß der Jahreszeit auf den Oligosaccharidumsatz bei Coniferen. Ber Dtsch Bot Ges 84: 445 - 455Google Scholar
  103. Shafizadeh F, Wolfrom ML (1958) Structure, properties and occurrence of the oligosaccharides. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol VI. Springer, Berlin Heidelberg New York, pp 63–85Google Scholar
  104. Somme R, Wickstrom A (1965) The reaction of ß-fructosidase with the monogalactosylsucroses extracted from plants. Acta Chem Scand 19: 537–540CrossRefGoogle Scholar
  105. Staesche K (1966) Die jahresperiodische Entwicklung des Wurzel- und Sproßsystems von Symphytum officinale L. und ihre Beziehung zu Speicherung und Verbrauch der Kohlenhydrate. Planta 71: 268–282CrossRefGoogle Scholar
  106. Stanek J, Cerny M, Pacak J (1965) The oligosaccharides. Academic Press, London New YorkGoogle Scholar
  107. Takhtajan A (1959) Die Evolution der Angiospermen. Fischer, JenaGoogle Scholar
  108. Takiura K, Nakagawa J (1963) Oligosaccharides IV. Separation of oligosaccharides and identification of disaccharides in gingseng root. J Pharm Soc Jpn 83: 298–300 (Chem Abstr 59:8849)Google Scholar
  109. Tanner W, Kandler O (1966) Biosynthesis of Stachyose in Phaseolus vulgaris. Plant Physiol 41: 1540–1542PubMedCrossRefGoogle Scholar
  110. Tanner W, Kandler O (1968) myo-Inositol, a cofactor in the biosynthesis of stachyose. Eur J Biochem 4: 233–239PubMedCrossRefGoogle Scholar
  111. Tanner W, Lehle L, Kandier O (1967) myo-Inositol, a cofactor in the biosynthesis of verbascose. Biochem Biophys Res Commun 29: 166–171PubMedCrossRefGoogle Scholar
  112. Tanner W, Seifarth H, Kandier O (1968) Der Umsatz der Oligosaccharide in reifenden und keimenden Samen von Phaseolus vulgaris. Z Pflanzenphysiol 58: 369–377Google Scholar
  113. Trip P, Nelson CD, Krotkov G (1965) Selective and preferential translocation of 14C-labeled sugars in white ash and lilac. Plant Physiol 40: 740–747PubMedCrossRefGoogle Scholar
  114. Umemura Y, Nakamura M, Funahashi S (1967) Isolation and characterisation of uridine diphosphate fructose from tubers of Jerusalem artichoke ( Helianthus tuberosus L. ). Arch Biochem Biophys 119: 240–252PubMedCrossRefGoogle Scholar
  115. Veno Y, Ishiguro K, Yamada M, Abe M, Kato K (1978) In: Symp Carbohydr Chem 9th, London, pp 53–54Google Scholar
  116. Wanner H (1958) Speicherung von Kohlenhydraten in unterirdischen Reserveorganen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol VI. Springer, Berlin Heidelberg New York, pp 855–870Google Scholar
  117. Wattiez N, Hans M (1943) A holoside extracted from the seeds of Plantago major L. and Plantago ovata Forsk. Bull Acad R Med Belg 8: 386–396Google Scholar
  118. Webb JA, Gorham PR (1964) Translocation of photosynthetically assimilated C14 in straight-necked squash. Plant Physiol 39: 663–672PubMedCrossRefGoogle Scholar
  119. Webb JA, Pathak S (1970) Biosynthesis of stachyose in Cucurbita. Suppl Plant Physiol 46: 27Google Scholar
  120. Whalley HCS (1952) Kestose and sugar losses. Int Sugar J 54: 127Google Scholar
  121. Whistler RL, Wolfrom ML (1962–1980) Methods in carbohydrate chemistry, vols I-VIII. Academic Press, London New YorkGoogle Scholar
  122. White ML, Secor GE (1953) Chromatographic evidence for the occurrence of a fructosyl raffinose in wheat flour and wheat. Arch Biochem Biophys 44: 244–245PubMedCrossRefGoogle Scholar
  123. Wickstrom A, Svendsen AB (1956) La structure d’un isomère du raffinose isolé des racines de Y Angelica archangelica L. subsp. norvégica ( Rupr.) Nordh. Acta Chem Scand 10: 1199–1207Google Scholar
  124. Wickstrom A, Courtois JE, Le Dizet P, Archambault A ( 1958 a) Recherches sur la structure du tétraholoside: Lychnose. CR Acad Sci 246: 1624–1626Google Scholar
  125. Wickstrom A, Courtois JE, Le Dizet P, Archambault A (1958 b) Étude de la structure des pentasaccharides de racines de Lychnis dioica. CR Acad Sci 247: 1911–1913Google Scholar
  126. Wild GM, French D (1952) The galactan series of oligosaccharides. Proc Iowa Acad Sci 59: 226–230Google Scholar
  127. Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13: 143–148CrossRefGoogle Scholar
  128. Ziegler H (1975) Nature of substances in phloem; nature of transported substances. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 59–100Google Scholar
  129. Ziegler P, Kandier O (1980) Tonoplast stability as a critical factor in frost injury and hardening of spruce (Picea abies L. Karst) needles. Z Pflanzenphysiol 99: 393–410Google Scholar
  130. Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve tube exudates. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 480–505Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • O. Kandler
  • H. Hopf

There are no affiliations available

Personalised recommendations