Advertisement

Approximate Solution of Integral Equations and Differential Equations

  • Hua Loo Keng
  • Wang Yuan

Abstract

If \( \sum\limits_{i = 1}^s {\sum\limits_{j = 1}^s {{\alpha_{ij}}{x_i}{x_j}\left( {{\alpha_{ij}} = {\alpha_{ji}}} \right)} } \) is a semi-positive definite quadratic form, then
$$ 0 \leqslant \det \left( {{\alpha_{ij}}} \right) \leqslant \prod\limits_{i = 1}^s {{\alpha_{ii}}} $$
.

Keywords

Integral Equation Approximate Solution Dirichlet Problem Fourier Coefficient Fredholm Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg and Science Press. Beijing 1981

Authors and Affiliations

  • Hua Loo Keng
    • 1
  • Wang Yuan
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingThe People’s Republic of China

Personalised recommendations