Snake Venoms pp 751-824 | Cite as

Immunological Properties of Snake Venoms

  • P. Boquet
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 52)

Abstract

The study of humoral immunity has been enriched in recent decades by a considerable number of observations concerning the origin, structure and specifity of antibodies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R.: Evolution de la structure des protéines. Bull. Soc. chim. Biol. (Paris) 49, 609–611 (1967)Google Scholar
  2. Acher, R.: L’évolution moléculaire au niveau des protéines. Biochimie 56, 1–19 (1974)PubMedGoogle Scholar
  3. Adler, F.L.: Antibody formation after injection of heterologous immunoglobulin — II. Competition of antigens. J. Immunol. 78, 201–210 (1957)PubMedGoogle Scholar
  4. Adler, F.L., Moller, G.: Antigenic competition. 1st International Congress of Immunology, Washington. In: Amos, B. (Ed.): Progress in Immunology, pp. 1511–1514. New York: Academic 1971Google Scholar
  5. Aharonov, A., Gurari, D., Fuchs, S.: Immunochemical characterization of Naja siamensis toxin and of a chemically modified toxin. Europ. J. Biochem. 45, 297–303 (1974)PubMedGoogle Scholar
  6. Ajdukovic, A.D., Muic, N.: Double diffusion analysis of the Vipera ammodytes venom. Arch. Hig. Rada. Toksikol. 14, 107–110 (1963)Google Scholar
  7. Akatsuka, K.: Immunological studies of snake venoms. Jap. J. exp. Med. 14, 147–183 (1936)Google Scholar
  8. Aleksiev, B., Shipolini, R.: Further investigations on the fractionation and purification of the toxic components from the venom of the Bulgarian viper (Vipera ammodytes ammodytes). Hoppe-Seylers Z. physiol. Chem. 352, 1183–1188 (1971)PubMedGoogle Scholar
  9. Allison, A.C.: The effect of adjuvants on different cell types and their interaction in immune responses. In: Immunopotentation (Ciba Foundation Symposium No. 18), pp. 73–79. Amsterdam: North-Holland 1973Google Scholar
  10. Allison, A. C., Davies, A. J. S.: Requirement of thymus-dependent lymphocytes for potentiation by adjuvants of antibody formation. Nature (Lond.) 233, 330–332 (1971)Google Scholar
  11. Allison, A. C., Harington, J. S., Birbeck, M.: An examination of cytotoxic effects of silica on macrophages. J. exp. Med. 124, 141–153 (1966)PubMedGoogle Scholar
  12. Aloof-Hirsch, S., deVries, A., Berger, A.: The direct lytic factor of cobra venom; purification and chemical characterization. Biochim. biophys. Acta (Amst.) 154, 53–60 (1968)Google Scholar
  13. Amies, C.R.: The use of topically formed calcium alginate as a depot substance in active immunization. J. Path. Bact. 77, 435–442 (1959)PubMedGoogle Scholar
  14. Angeletti, R.H.: Studies of the nerve growth factor (NGF) from snake venoms. Gel filtration patterns of crude venoms. J. Chromatogr. 36, 535–537 (1968)PubMedGoogle Scholar
  15. Angeletti, R.H.: Nerve growth factor from cobra venom. Proc. nat. Acad. Sci. (Wash.) 65, 668 – 674(1970)Google Scholar
  16. Angeletti, R.H., Frazier, W.A., Jacobs, J.W., Niall, H.D., Bradshaw, R.A.: Purification, characterization and partial amino acid sequence of nerve growth factor from cobra venom. Biochem. istry 15, 26–34(1976)Google Scholar
  17. Arnberg, H., Eaker, D., Fryklund, L., Karlsson, E.: Amino acid sequence of oxiana α, the main neurotoxin of the venom of Naja naja oxiana. Biochim. biophys. Acta (Amst.) 359, 222–232 (1974)Google Scholar
  18. Arnon, R., Sela, M.: Studies on the chemical basis of the antigenicity of proteins. II. Antigenic specificity of polytyrosyl gelatin. Biochem. J. 75, 103–109 (1960)Google Scholar
  19. Arthus, M.: De la spécificité des sérums antivenimeux. Sérum anticobraïque et venins d’Hamadryas (Naja bungarus) et de Krait (Bungarus coeruleus). C.R. Acad. Sci. [D] (Paris) 153, 394–397 (1911a)Google Scholar
  20. Arthus, M.: De la spécificité des sérums antivenimeux. Sérum anticobraïque, antibothropique et anticrotalique. Venins de Lachesis lanceolatus, de Crotalus terrificus et de Crotalus adamanteus. C.R. Acad. Sci. [D] (Paris) 153, 1504–1507 (1911 b)Google Scholar
  21. Arthus, M.: Etudes sur le venin de serpents. III. Envenimation et anaphylaxie. Int. Arch. Physiol. 12, 271–288(1912)Google Scholar
  22. Arthus, M.: Venin de Daboïa et extraits d’organes. C.R. Soc. Biol. (Paris) 82, 1156–1158 (1919)Google Scholar
  23. Arthus, M.: Les anavenins. II. Immunisation par les anavenins. J. Physiol. Path. Gén. 28, 773 – 788 (1930a)Google Scholar
  24. Arthus, M.: Les anavenins. III. Anaphylaxie engendrée par les anavenins. J. Physiol. Pathol. Gén. 28, 800–815 (1930 b)Google Scholar
  25. Arthus, M., Stawska, B.: Venins et antivenins. C.R. Acad. Sci. (Paris) 153, 355–357 (1911)Google Scholar
  26. Asherson, G.L., Stone, S.H.: Selective and specific inhibition of 24hours skin reactions in the guinea pig. I. Immune deviation: description of the phenomenon and the effect of splenectomy. Immunology 9, 205–217 (1965)PubMedGoogle Scholar
  27. Askonas, B.A., Jaroskova, L.: Macrophages as helper cells in antibody induction. In: Sterzl J., Riha, I. (Eds.): Developmental Aspect of Antibody Formation and Structure, Vol. II, pp. 531–546. New York: Academic 1970Google Scholar
  28. Atassi, M.Z.: Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structure of proteins. Immunochemistry 12, 423–438 (1975)PubMedGoogle Scholar
  29. Atassi, M.Z., Habeeb, A.F.S.A., Rydstedt, L.: Lack of immunochemical cross-reaction between lysozyme and α lactalbumin and comparison of their conformations. Biochim. biophys. Acta (Amst.) 200, 184–187 (1970)Google Scholar
  30. Atassi, M.Z., Saplin, B.J.: Immunochemistry of sperm-whale myoglobin. I. The specific interaction of some tryptic peptides and of peptides containing all the reactive region of the antigen. Biochemistry 7, 688–698 (1968)PubMedGoogle Scholar
  31. Augustyn, J.M., Elliott, W.B.: Isolation of a phospholipase A from Agkistrodon piscivorus venom. Biochim. biophys. Acta (Amst.) 206, 98–108 (1970)Google Scholar
  32. Axen, R., Porath, J., Ernback, S.: Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature (Lond.) 214, 1302–1304 (1967).Google Scholar
  33. Bailey, G.S., Banks, B.E.C., Carstairs, J.R., Edwards, D.C., Pearce, F.L., Vernon, C.A.: Immunological properties of nerve growth factors. Biochim. biophys. Acta (Amst.) 437, 259–263 (1976)Google Scholar
  34. Ballow, M., Cochrane, C.G.: Two anticomplementary factors in cobra venom: Hemolysis of guinea pig erythrocytes by one of them. J. Immunol. 103, 944–952 (1969)PubMedGoogle Scholar
  35. Balozet, L.: Les antigènes des venins de Cerastes et de Lebetine étudiés par la précipitation en milieu gélifié. Arch. Inst. Pasteur Algér.37, 292–296 (1959)PubMedGoogle Scholar
  36. Banks, B.E.C., Miledi, R., Shipolini, R.A.: The primary sequences and neuromuscular effects of three neurotoxic polypeptides from the venom of Dendroaspis viridis. Europ. J. Biochem. 45, 457–468 (1974)PubMedGoogle Scholar
  37. Barrio, A.: Alergia al veneno de serpiente cascabel (Crotalus terrificus terrificus). Rev. Inst. Malbran 16, 219–223 (1954)Google Scholar
  38. Barrio, A., Miranda, M. E.: Estudio comparativo morfologico e immunologico entre las differentes entidades del genero Micrurus wagler (Ophidia Elapidae) de la Argentina. Mem. Inst. Butantan 33, 869–879 (1966)PubMedGoogle Scholar
  39. Baxter, E.H., Gallichio, H. A.: Cross-neutralization by tiger snake (Notechis scutatus) antivenene and sea snake (Enhydrina schistosa) antivenene against several sea snake venoms. Toxicon 12, 273–278 (1974)PubMedGoogle Scholar
  40. Bechis, G., Granier, C., Van Reitschoten, J., Jover, E., Rochat, H., Miranda, F.: Purification of six neurotoxins from the venom of Dendroaspis viridis. Primary structure of two long toxins. Europ. J. Biochem. 68, 445–456 (1976)PubMedGoogle Scholar
  41. Behring, E., von, Kitasato, S.: Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Tieren. Deutsch. med. Wschr. 16, 1113–1114 (1890)Google Scholar
  42. Benjamini, E., Michaeli, D., Young, J.D.: Antigenic determinants of proteins of defined sequences. In: Current Topics in Microbiology and Immunology, No.58, pp. 85–134. Berlin: Springer 1972Google Scholar
  43. Bergeot-Poilleux, G., Boquet, P.: Remarques à propos de trois neurotoxines du venin de Naja melanoleuca. C.R. Acad. Sci. [D] (Paris) 280, 1757–1759 (1975)Google Scholar
  44. Bier, O.: Inactivation de l’alexine par le venin de Bothrops. Z. Immun.-Forsch. 77, 187–194 (1932)Google Scholar
  45. Bitter-Suermann, D., Dietrich, M., König, W., Hadding, U.: By pass-activation of the complement system starting with C3.I. Generation and function of an enzyme from a factor of guinea pig serum and cobra venom. Immunology 23, 267–281 (1972)PubMedGoogle Scholar
  46. Björk, W.: Partial purification of phosphodiesterase, 5′-nucleotidase, lecithinase A, and acetylcholine esterase from Ringhals cobra venom. Biochim. biophys. Acta (Amst.) 49, 195–204 (1961)Google Scholar
  47. Blass, J.: A propos de l’absence des taches de tyrosine sur les chromatogrammes des hydrolysats acides des anatoxines. Ann. Inst. Pasteur 101, 687–702 (1961)Google Scholar
  48. Blass, J., Bizzini, B., Raynaud, M.: Etude sur le mécanisme de la détoxification des toxines protéiques par le formol. II. Fixation quantitative du formol. Ann. Inst. Pasteur 116, 501–521 (1969)Google Scholar
  49. Blombäck, B., Blombäck, M., Nilsson, I. M.: Coagulation studies on “reptilase”, an extract of the venom of Bothrops jararaca. Thrombos. Diathes. haemorrh. (Stuttg.) 1, 76 (1957)Google Scholar
  50. Boche, R.D., Russell, F. E.: Passive hemagglutination studies with snake venom and antivenin. Toxicon 6, 125–130(1968)PubMedGoogle Scholar
  51. Bolaños, R., Cerdas, L., Taylor, R.: The production and characteristics of a coral snake (Micrurus mipartitus hertwigi) antivenin. Toxicon 13, 139–142 (1975)Google Scholar
  52. Boman, H.G.: On the specificity of the snake venom phosphodiesterase. Ann. N.Y. Acad. Sci. 81, 800–803 (1959)PubMedGoogle Scholar
  53. Boman, H.G., Kaletta, U.: Chromatography of rattle snake venom. A separation of three phosphodiesterases. Biochim. biophys. Acta (Amst.) 24, 619–631 (1957)Google Scholar
  54. Bon, C., Changeux, J.P.: Ceruleotoxin: an acidic neorotoxin from the venom of Bungarus caerulus which blocks the response to a cholinergic agonist without binding to the cholinergic receptor site. FEBS Letters 52, 212–216 (1975)Google Scholar
  55. Bonilla, C.A., Fiero, M.K., Frank, L.P.: Isolation of a basic protein neurotoxin from Crotalus adamanteus venom. In: deVries, A., Kochva, E. (Eds.): Toxin of Animal and Plant Origin, Vol. I, pp. 343–359. London: Gordon and Breach 1971Google Scholar
  56. Boquet, P.: Rôle du cuivre en quantités infinitésimales dans l’atténuation des venins de Vipera aspis et de Naja tripudians et d’une toxine végétale, la ricine, par le peroxyde d’hydrogène. Ann. Inst. Pasteur 66, 379–396 (1941)Google Scholar
  57. Boquet, P., Detrait, J., Farzanpay, R.: Recherches biochimiques et immunologiques sur le venin des serpents. III. Etude des analogues de l’antigène α du venin de Naja nigricollis. Ann. Inst. Pasteur 116, 522–542 (1969)Google Scholar
  58. Boquet, P., Dumarey, C., Bergeot, G., Ronsseray, A.M.: Immunological properties of some proteins of snake venoms. 4th International Symposium on Animal, Plant, and Microbial toxins. Tokyo 1974Google Scholar
  59. Boquet, P., Dumarey, C., Izard, Y.: Studies on the immunogenic activity of toxin α of Naja nigricollis venom. In: Kaiser, E. (Ed.): Animal and Plant Toxins, pp. 211–217. Munich: Goldmann 1973 aGoogle Scholar
  60. Boquet, P., Izard, Y., Detrait, J.: Recherche sur le facteur de diffusion des venins de serpents. C.R. Soc. Biol. (Paris) 152, 1363–1365 (1958)Google Scholar
  61. Boquet, P., Izard, Y., Jouannet, M., Meaume, J.: Recherches biochimiques et immunologiques sur les venins de serpents. I. Essais de séparation des antigènes du venin de Naja nigricollis par filtration sur Sephadex. Ann. Inst. Pasteur 111, 719–732 (1966a)Google Scholar
  62. Boquet, P., Izard, Y., Jouannet, M., Meaume, J.: Etude de deux antigènes toxiques du venin de Naja nigricollis. C.R. Acad. Sci. [D] (Paris) 262, 1134–1137 (1966b)Google Scholar
  63. Boquet, P., Izard, Y., Meaume, J., Jouannet, M.: Recherches biochimiques et immunologiques sur le venin de serpents. II. Etude des propriétés enzymatiques et toxiques des fractions obtenues par filtration du venin de Naja nigricollis sur Sephadex. Ann. Inst. Pasteur 112, 213–235 (1967)Google Scholar
  64. Boquet, P., Izard, Y., Ronsseray, A.M.: Essai de classification des protéines toxiques extraites des venins de serpents. C.R. Acad. Sci. [D] (Paris) 271, 1456–1459 (1970)Google Scholar
  65. Boquet, P., Poilleux, G., Dumarey, C., Izard, Y., Ronsseray, A.M.: An attempt to classify the toxic proteins of Elapidae and Hydrophiidae venoms. Toxicon 11, 333–340 (1973 b)PubMedGoogle Scholar
  66. Boquet, P., Saint Girons, H.: Étude immunologique des glandes salivaires du vestibule buccal de quelques Colubridae opistoglyphes. Toxicon 10, 635–644 (1972)PubMedGoogle Scholar
  67. Boquet, P., Vendrely, R.: Influence du pH sur la transformation du venin de cobra en anavenin par l’aldehyde formique; préparation d’un anavenin. solide. C.R. Soc. Biol. (Paris) 137, 179 – 180(1943)Google Scholar
  68. Boquet, P., Jr.: Action de la toxine γ du venin de Naja nigricollis sur les cellules KB cultivées “in vitro”. C.R. Acad. Sci. (Paris) 271, 2422–2425 (1970)Google Scholar
  69. Bordet, J. (1899): Quoted in: Bordet, J.: Traité de l’Immunité. Paris: Masson 1920Google Scholar
  70. Botes, D.P.: Purification and amino acid sequence of three neurotoxins from the Cape Cobra (Naja nivea). Toxicon 8, 125–126 (1970)Google Scholar
  71. Botes, D.P.: The amino acid sequences of toxin α and ß from Naja nivea venom and the disulfide bonds of toxin a. J. biol. Chem. 246, 7383–7391 (1971)PubMedGoogle Scholar
  72. Botes, D. P.: Snake venom toxins. The amino acid sequences of toxins b and d from Naja melanoleuca venom. J. biol. Chem. 247, 2866–2871 (1972)PubMedGoogle Scholar
  73. Botes, D.P.: Snake venom toxins. The reactivity of the disulphide bonds of Naja nivea toxins. Biochim. biophys. Acta (Amst.) 359, 242–247 (1974)Google Scholar
  74. Botes, D.P., Strydom, D. J.: A neurotoxin, toxin α, from Egyptian cobra (Naja haje haje) venom. J. biol. Chem. 244, 4147–4157 (1969)PubMedGoogle Scholar
  75. Botes, D.P., Strydom, D.J., Anderson, C.G., Christensen, P.A.: Snake venom toxins. Purification and properties of three toxins from Naja nivea (Linneus) (Cape cobra) venom and the amino acid sequence of toxin δ. J. biol. Chem. 246, 3132–3139 (1971 a)PubMedGoogle Scholar
  76. Botes, D.P., Strydom, D. J., Strydom, A.J.C., Joubert, F. J., Christensen, P.A., Anderson, C.G.: The purification and amino acid sequence of three neurotoxins from the Cape cobra (Naja nivea) venom. In: deVries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. I, pp. 281–292. London: Gordon and Breach 1971 bGoogle Scholar
  77. Botes, D.P., Viljoen, C.C.: Purification of phospholipase A from Bitis gabonica venom. Toxicon 12, 611–619(1974)PubMedGoogle Scholar
  78. Botes, D. P., Viljoen, C.C.: The amino acid sequences of three noncurarimimetic toxins from Naja nivea venom. Biochim. biophys. Acta (Amst.) 446, 1–9 (1976)Google Scholar
  79. Bourgeois, J.P., Tsuji, S., Boquet, P., Pillot, J., Ryter, A., Changeux, J.P.: Localization of the cholinergic receptor protein by immunofluorescence in cell electroplax. FEBS Letters 16, 92–94 (1971)PubMedGoogle Scholar
  80. Brade, V., Vogt, W.: Immunization against cobra venom. Experientia (Basel) 27, 1338 (1971)Google Scholar
  81. Braganca, B.M., Patel, N.T., Badrinath, P.G.: Isolation and properties of a cobra venom factor selectively cytotoxic to Yoshida sarcoma cells. Biochim. biophys. Acta (Amst.) 136, 508–520 (1967)Google Scholar
  82. Braun, W., Nakano, M.: Antibody formation: stimulation by polyadenylic and polycitidylic acids. Science 157, 819–821 (1967)PubMedGoogle Scholar
  83. Brew, K., Vanaman, T.C., Hill, R.L.: Comparison of the amino acid sequence of bovine lactalbumin and hen egg white lysozyme. J. biol. Chem. 242, 3747–3749 (1967)PubMedGoogle Scholar
  84. Brunton, T.L., Fayrer, J.: On the nature and physiological action of the poison of Naja tripudiam and other Indian venomous snakes. Proc. roy. Soc. Lond. [Biol.] 22, 68–133 (1874)Google Scholar
  85. Burnet, F.N.: The Clonal Selection Theory of Acquired Immunity. Nashville, Ten.: Vanderbilt University Press 1959Google Scholar
  86. Calmette, A.: L’immunisation artificielle des animaux contre le venin des serpents et la thérapeutique expérimentale des morsures venimeuses. C.R. Acad. Sci. [D] (Paris) 118, 720 (1894 a)Google Scholar
  87. Calmette, A.: Contribution á l’étude du venin des serpents. Immunisation des animaux et traitements de l’envenimation. Ann. Inst. Pasteur 8, 275–291 (1894 b)Google Scholar
  88. Calmette, A.: Sur l’action hémolytique de venin de cobra. C.R. Acad. Sci. [D] (Paris) 134, 1446 – 1447 (1902)Google Scholar
  89. Calmette, A.: Les Venins, les Animaux Venimeux et la Sérothéraphie Antivenimeuse. Paris: Masson 1907Google Scholar
  90. Calmette, A., Massol, L.: Les précipitines du sérum antivenimeux vis à vis-du-venin de cobra. Ann. Inst. Pasteur 23, 155–165 (1909)Google Scholar
  91. Carey, J.E., Wright, E.A.: Isolation of the neurotoxic component of the venom of the sea snake “Enhydrina schistosa”. Nature (Lond.) 185, 103–104 (1960)Google Scholar
  92. Carey, J.E., Wright, E.A.: Studies on the fractions of the venom of the sea snake “Enhydrina schistosa”. Aust. J. exp. Biol. med. Sci. 40, 427–435 (1962)PubMedGoogle Scholar
  93. Carlsson, F.H.: Snake venom toxins. The primary structure of protein S4C11. A neurotoxin homologue from the venom of forest cobra (Naja melanoleuca). Biochim. biophys. Acta (Amst.) 400, 310–321 (1975)Google Scholar
  94. Carlsson, F.H.: Snake venom toxins. The primary structures of two novel cytotoxin homologues from the venom of forest cobra (Naja melanoleuca). Biochem. biophys. Res. Commun. 59, 269–275 (1974)PubMedGoogle Scholar
  95. Carlsson, F.H., Joubert, F.J.: The isolation and purification of three cytotoxin homologues from the venom of forest (Naja melanoleuca) and the complete amino acid sequence of toxin V111. Biochim. biophys. Acta (Amst.) 336, 453–469 (1974)Google Scholar
  96. Celada, F.: The cellular basis of immunologic memory. Prog. Allergy (Basel) 15, 223–267 (1971)Google Scholar
  97. Cesari, E., Boquet, P.: Recherches sur les antigènes des venins et les anticorps des sérums antivenimeux. I. Venin de Vipera aspis et sérums antivipérins (V.aspis). Ann. Inst. Pasteur 55, 307–330(1935)Google Scholar
  98. Cesari, E., Boquet, P.: Recherches sur les antigènes des venins et les anticorps des sérumss antivenimeux. II. Venin de Cerastes cornutus et sérums antiviperins (C.cornutus). Ann. Inst. Pasteur 56, 171–196 (1936a)Google Scholar
  99. Cesari, E., Boquet, P.: Recherches sur les antigènes des venins et les anticorps des sérums antivenimeux. III. Venin de Naja tripudians et sérum anti-cobraique. Ann. Inst. Pasteur 56, 511 – 535 (1936b)Google Scholar
  100. Cesari, E., Boquet, P.: Détoxication du venin de Vipera aspis par le ricinoléate de soude; vaccination du lapin par le venin détoxiqué. C.R. Soc. Biol. 125, 231–234 (1937)Google Scholar
  101. Cesari, E., Boquet, P.: Sur le mécanisme de la détoxication du venin de Vipera aspis par l’aldéhyde formique. C.R. Soc. Biol. (Paris) 130, 19–22 (1939)Google Scholar
  102. Chang, C.C.: Immunological studies on fluorescein-thiocarbamylated and reduced S-carboxy-methylated cobrotoxin. J. Biochem. (Tokyo) 67, 343–352 (1970)Google Scholar
  103. Chang, C.C., Hayashi, K.: Chemical modification of the tryptophan residue in “Cobrotoxin”. Biochem. biophys. Res. Commun. 37, 841–846 (1969)PubMedGoogle Scholar
  104. Chang, C.C., Lee, C.Y.: Cholinesterase and anticholinesterase activities in snake venoms. J. Formosan med. Ass. 54, 103–112 (1955)Google Scholar
  105. Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their mode of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963)PubMedGoogle Scholar
  106. Chang, C.C., Yang, C.C.: Immunochemical studies on “Cobrotoxin”. J. Immunol. 102, 1437 – 1444(1969)PubMedGoogle Scholar
  107. Chang, C., Yang, C.C.: Immunochemical studies on the tryptophan-modified cobrotoxin. Biochim. biophys. Acta (Amst.) 295, 595–604 (1973)Google Scholar
  108. Chang, C.C., Yang, C.C., Hamaguchi, K., Nakai, K., Hayashi, K.: Studies on the status of tyrosyl residues in cobrotoxin. Biochim. biophys. Acta (Amst.) 236, 164–173 (1971)Google Scholar
  109. Changeux, J.P., Kasai, M., Lee, C.Y.: Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. nat. Acad. Sci. (Wash.) 67, 1241–1247 (1970)Google Scholar
  110. Chaudhury, D. K.: Studies on Cholinesterase. Ann. Biochem. exp. Med. 6, 91 (1946)Google Scholar
  111. Chedid, L., Audibert, F., Bona, C.: Activités adjuvantes et mitogènes de lipopolysaccharides détoxifiées. C.R. Acad. Sci. [D] (Paris) 280, 1197–1200 (1975)Google Scholar
  112. Cheng, H.C., Ouyang, C.: Isolation of coagulant and anticoagulant principles from the venom of Agkistrodon acutus. Toxicon 4, 235–243 (1967)PubMedGoogle Scholar
  113. Chicheportiche, R., Rochat, C., Sampieri, F., Lazdunski, M.: Structure—function relationships of neurotoxins isolated from Naja haje venom. Physico-chemical properties and identification of the active site. Biochemistry 11, 1681–1691 (1972)PubMedGoogle Scholar
  114. Chicheportiche, R., Vincent, J.P., Kopeyan, C., Schweitz, H., Lazdunski, M.: Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry 14, 2081–2091 (1975)PubMedGoogle Scholar
  115. Christensen, P.A.: Formol detoxication of Cape cobra (Naja flava) venom. S. Afr. J. med. Sci. 12, 71–75 (1947)Google Scholar
  116. Christensen, P.A.: Problems of antivenene standardization revealed by the flocculation reaction. Bull. Wld Hlth Org. 9, 353–370 (1953)Google Scholar
  117. Christensen, P.A.: South African Snake Venoms and Antivenoms. Johannesburg: S. Afr. Inst. med. Res. 1955 aGoogle Scholar
  118. Christensen, P.A.: The ability of antivenom to inhibit the skin reaction and various “in vitro” reactions caused by venom. In: S. Afr. Snake Venoms and Antivenoms. Johannesburg: S. Afr. Inst. Med. Res. 1955 bGoogle Scholar
  119. Christensen, P.A.: Venom and antivenom potency estimation. Mem. Inst. Butantan 33 (I), 305 – 326 (1966 a)Google Scholar
  120. Christensen, P.A.: The preparation and purification of antivenoms. Mem. Inst. Butantan 33 (I), 245–250 (1966 b)Google Scholar
  121. Christensen, P.A.: Venoms of central and south African snakes. In: Bucherl, W., Buckley, E., Delofeu, V. (Eds.): Venomous Animals and their Venoms, Vol. I, pp. 437–461. New York: Academic 1968Google Scholar
  122. Christensen, P.A., Anderson, C.G.: Observations on Dendroaspis venoms. In: Russell, F.E., Saunders, P. R. (Eds.): Animals’ Toxins, pp. 223–234. New York: Pergamon 1967Google Scholar
  123. Clark, D.G., MacMurchie, D.D., Elliott, E., Wolcott, R.G., Landel, A.M., Raftery, M.A.: Elapid neurotoxins. Purification, characterization, and immunochemical studies of α bungarotoxin. Biochemistry 11, 1663–1668 (1972)PubMedGoogle Scholar
  124. Coca, A.F.: A study of anticomplementary action of yeast of certain bacteria and of cobra-venom. Z. Immun.-Forsch. 21, 604–622 (1914)Google Scholar
  125. Cochrane, C.G., Müller-Eberhard, H.J., Aikin, B.S.: Depletion of plasma complement “in vivo” by a protein of cobra venom: its effect on various immunologic reactions. J. Immunol. 105, 55–69 (1970)PubMedGoogle Scholar
  126. Cochrane, C.G., Müller-Eberhard, H. J., Fjellstrom, K.E.: Capacity of a cobra venom protein to inactivate the third component (C′3) and to inhibit immunologic reactions. J. clin. Invest. 47, 21a (1968)Google Scholar
  127. Cohen, I., Djaldetti, M., Sanbank, U., Klibansky, C., de Vries, A.: Fluorescein staining of guinea pig lymphocytes induced by Echis color ata venom. Experientia (Basel) 22, 662 (1966)Google Scholar
  128. Cohen, I., Zur, M., Kaminsky, E., de Vries, A.: Isolation and characterization of kinin releasing enzyme of Echis coloratus venom. Toxicon 7, 3–4 (1969)PubMedGoogle Scholar
  129. Cohen, P., Berkeley, W.H., Seligmann, E.B., Jr.: Coral snake venoms: “in vitro” relation of neutralizing and precipitating antibodies. Amer. J. trop. Med. Hyg. 20, 646–649 (1971)Google Scholar
  130. Cohen, P., Seligmann, E.B., Jr.: Immunologic studies of coral snake venom. Mem. Inst. Butantan 33, (1) 339–347(1966)Google Scholar
  131. Coles, E., McIlwain, D.L., Rapport, M. M.: The activity of pure phospholipase A2 from Crotalus atrox venom on myelin and pure phospholipids. Biochim. biophys. Acta (Amst.) 337, 68–78 (1974)Google Scholar
  132. Collins, J. P., Jones, J.G.: Studies on the active site of IRC-50 Arvin, the purified coagulant enzyme from Agkistrodon rhodostoma venom. Europ. J. Biochem. 26, 510–517 (1972)PubMedGoogle Scholar
  133. Condrea, E.: Membrane-active polypeptides from snake venoms; cardiotoxins and haemocytoto-xins. Experientia (Basel) 30, 121–129 (1974)Google Scholar
  134. Coutinho, A., Moller, G.: Thymus-independent B-cell induction and paralysis. Advance Immunol. 21, 133–236 (1975)Google Scholar
  135. Criley, B.R.: Development of a multivalent antivenin for the family of Crotalidae venoms. In: Buckley, E., Porges, N. (Eds.): Venoms, pp. 373–380. Amer. Ass. Adv. Sci., pub. No.44. Washington 1956Google Scholar
  136. Crumpton, M.J., Wilkinson, J.M.: The immunological activity of some of the chymotryptic peptides of sperm-whale myoglobin. Biochem. J. 94, 545–556 (1965)PubMedGoogle Scholar
  137. Cunningham, D.D.: The physiological action of snake venoms. Sci. Mem. med. Offs. India, 9, (1895) (quoted by Phisalix, M.: Les Animaux Venimaux et les Venins. Paris: Masson (1922)Google Scholar
  138. Deems, R. A., Dennis, E. A.: Characterization and physical properties of the major form of phospholipase A2 from cobra venom (Naja naja naja) that has a molekular weight of 11000. J. biol. Chem. 250, 9008–9012 (1975)PubMedGoogle Scholar
  139. De Garilhe, M.P., Laskowski, M.: Chromatographic purification of phosphodiesterase from rattle snake venom. Fed. Proc. 14, 200 (1955 a)Google Scholar
  140. De Garilhe, M.P., Laskowski, M.: Studies of the phosphodiesterase from rattlesnake venom. Biochim. biophys. Acta (Amst.) 18, 370–378 (1955 b)Google Scholar
  141. De Kok, A., Rawitch, A.B.: Studies on L-amino acid oxidase. II. Dissociation and characterization of its subunits. Biochemistry 8, 1405–1411 (1969)Google Scholar
  142. Delezenne, C., Ledebt, S.: Action du venin de cobra sur le sérum de cheval. Ses rapports avec l’hémolyse. C.R. Acad. Sci. [D] (Paris) 152, 790–792 (1911 a)Google Scholar
  143. Delezenne, C., Ledebt, S.: Formation de substances hémolytiques et toxiques aux dépens du vitellus de l’oeuf soumis à l’action du venin de cobra. C.R. Acad. Sci. [D] (Paris) 153, 81–84 (1911b)Google Scholar
  144. Delezenne, C., Morel, H.: Action catalytique des venins de serpents sur les acides nucléiques. C.R. Acad. Sci. [D] (Paris) 168, 244–246 (1919)Google Scholar
  145. Delori, P.: Isolement, purification et étude d’une phospholipase A2 toxique du venin de Vipera berus. Biochimie 53, 941–942 (1971)PubMedGoogle Scholar
  146. Delori, P.: Purification et propriétés physicochimiques, chimiques et biologiques d’une phospholipase A2 toxique isolée du venin de serpent Viperidae: Vipera berus. Biochimie 55, 1031 – 1045 (1973)PubMedGoogle Scholar
  147. Delori, P., Miranda, F., Rochat, H.: Recent progress in immunological study of scorpions and snakes venoms and toxins (Abstract). 4th International Symposium on Animal, Plant and Microbial Toxins. Tokyo 1974Google Scholar
  148. Detrait, J., Boquet, P.: Séparation des constituants du venin de Naja naja par électrophorèse. C.R. Acad. Sci. [D] (Paris) 246, 1107–1109 (1958)Google Scholar
  149. Detrait, J., Boquet, P.: Isolement des anticorps antitoxine α1 du venin de Naja nigricollis au moyen du Sépharose. C.R. Acad. Sci. [D] (Paris) 274, 1765–1767 (1972)Google Scholar
  150. Detrait, J., Izard, Y., Boquet, P.: Séparation par électrophorèse des constituants toxiques des venins de Naja naja et de Naja nigricollis. C.R. Soc. Biol. (Paris) 153, 1722–1724 (1959)Google Scholar
  151. Deutsch, H.F., Diniz, C.R.: Some proteolytic activities of snake venoms. J. biol. Chem. 216, 17 – 26(1955)PubMedGoogle Scholar
  152. Diener, E., Feldman, M.: Relationships between antigen and antibody induced suppression of immunity. Transplant Rev. 8, 76–102 (1972)PubMedGoogle Scholar
  153. Dimitrov, G., Kankonkar, R. C.: Fractionation of Vipera russellii venom by gel filtration. Toxicon 5, 213–221(1968)PubMedGoogle Scholar
  154. Doery, H.M., Pearson, J.E.: Haemolysins in venoms of Australian snakes. Observations on the haemolysins of the venoms of some Australian snakes and the separation of phospholipase A from the venom of Pseudechis porphyriacus. Biochem. J. 78, 820–827 (1961)PubMedGoogle Scholar
  155. Dresser, D.W.: Specific inhibition of antibody production. III. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 5, 378–388 (1962)PubMedGoogle Scholar
  156. Dresser, D.W., Mitchison, N.A.: The mechanism of immunological paralysis. Advanc. Immunol. 8, 129–181 (1968)Google Scholar
  157. Dresser, D.W., Phillips, J.M.: The cellular target for the action of adjuvants: T adjuvant. In: Immunopotentation (Ciba Foundation Symposium no. 18). pp. 2–28. Amsterdam: North-Holland 1973Google Scholar
  158. Dubnoff, J. W., Russell, F.E.: Isolation of a lethal protein and peptide from Crotalus viridis helleri venom. Proc. West Pharmacol. Soc. 13, 98 (1970)Google Scholar
  159. Dukor, P., Schumann, G., Gisles, R.H., Dierich, M., König, W., Hadding, U., Bitter-Suermann, D.: Complement-dependent B-cell activation by cobra factor and other mitogens. J. exp. Med. 139, 337–354(1974)PubMedGoogle Scholar
  160. Dumarey, C.: Recherches biochimiques et immunologiques sur le venin des serpents. IV. Action de l’aldéhyde formique sur la toxine alpha du venin de Naja nigricollis Ann. Inst. Pasteur 121, 675–688(1971)Google Scholar
  161. Dumarey, C., Boquet, P.: Pouvoir immunogène de la toxine α du venin de Naja nigricollis polymérisée par l’aldéhyde formique. C.R. Acad. Sci. [D] (Paris) 275, 3053–3055 (1972)Google Scholar
  162. Dumarey, C., Sket, D., Joseph, D., Boquet, P.: Étude d’une phospholipase basique du venin de Naja nigricollis. C.R. Acad. Sci. [D] (Paris) 280, 1633–1635 (1975)Google Scholar
  163. Duran-Reynals, F.: Content in spreading factor and toxins in organs and poisonous secretions of snakes. Proc. Soc. exp. Biol. (N.Y.) 38, 763–766 (1938)Google Scholar
  164. Dutton, W., Falkoff, R., Hirst, J.A., Hoffmann, M., Kappler, J.W., Kettman, J.R., Lesley, J.F., Vann, D.: Is there evidence for a non-antigen specific diffusable chemical mediator from the thymus-derived cell in the initiation of the immune response? (1 st International Congress of Immunology). In: Amos, B. (Ed.): Progress in Immunology, pp. 355–368. New York: Academic 1971Google Scholar
  165. Eagle, H.: The coagulation of blood by snake venoms and its physiologic significance. J. exp. Med 65, 613–639(1937)PubMedGoogle Scholar
  166. Eaker, D.: Snake venom toxins reacting post and pre-synaptically at the neuromuscular junction. Bull. Inst. Pasteur 74, Abstr. 9 (1976)Google Scholar
  167. Eaker, D., Halpert, J., Fohlman J., Karlsson, E.: Structural nature of presynaptic neurotoxins from the venoms of the Australian tiger snake (Notechis scutatus scutatus) and Taipan (Oxyuranus scutellatus scutellatus). 4th International Symposium an Animal, Plant, and Microbial Toxins, Tokyo 1974Google Scholar
  168. Eaker, D., Porath, J.: The amino acid sequence of a neurotoxin from Naja nigricollis venom. (Abstract) Jap. J. Microbiol. 11, 353–355 (1967)Google Scholar
  169. Efrati, P., Reif, L.: Clinical and pathological observations on sixtyfive cases of viper bites in Israel. Am. J. trop. Med. Hyg. 2, 1085–1108 (1953)PubMedGoogle Scholar
  170. Egberg, N., Blombäck, M., Johnsson, H.: Clinical and experimental studies on reptilase. Thrombosis (Suppl.) 47, 379–387 (1971)Google Scholar
  171. Elliot, R.H.: An account of some researches into the nature and action of snake venoms. Brit. Med. J. 1900 I, 309–313Google Scholar
  172. Elliot, R.H.: A contribution to the study of the action of India cobra. Phil. Trans. B 197, 361 – 406 (1905)Google Scholar
  173. Elliott, W.B., McLean, R.L., Massaro, E. J.: Immunological identity of esterases present in elapid venoms. In: Kaiser, E. (Ed.): Animal and Plant Toxins, pp. 104–110. Munich: Goldmann 1973Google Scholar
  174. Epstein, D.: The pharmacology of the venom of the Cape cobra (Naja flava). Q.J. exp. Physiol. 20, 7–19 (1930)Google Scholar
  175. Esnouf, M.P., Tunnah, G.W.: The isolation and properties of the thrombin-like activity from Agkistrodon rhodostoma venom. Brit. J. Haematol. 13, 581–590 (1967)Google Scholar
  176. Essex, H.E., Markowitz, J.: The physiologic action of rattlesnake venom (Crotalin) III. The influence of crotalin on blood, “in vitro” and “in vivo”. Amer. J. Physiol. 92, 335–341 (1930)Google Scholar
  177. Fayrer, J.: On the action of cobra poison, Edinb. med. J. 14, 522–529, 915–923, 966–1011 (1868–1869)Google Scholar
  178. Feldman, M.: Cell interaction in the immune response “in vitro”. II. The requirement for macrophages in lymphoid cell collaboration. J. exp. Med. 135, 1049–1058 (1972)Google Scholar
  179. Feldman, M., Unanue, E.R.: Macrophages: Their role in the induction of immunity. In: Amos, B. (Ed.): Progress in Immunology, pp. 1379–1382. New York: Academic 1971Google Scholar
  180. Felix, F., Potter, J. L., Laskowski, M.: Action of venom phosphodiesterase on deoxyribonu-cleotides carrying a mono-esterified phosphate on carbon 3′. J. biol. Chem. 235, 1150 (1960)PubMedGoogle Scholar
  181. Ferreira, S.H., Bartelt, D.C., Greene, L.J.: Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583–2593 (1970)PubMedGoogle Scholar
  182. Flexner, S., Noguchi, H.: Snake venom in relation to haemolysis, bacteriolysis and toxicity. J. Exp. Med. 6, 277–301(1902)PubMedGoogle Scholar
  183. Flowers, H.H.: Effects of X-irradiation on the antigenic character of Agkistrodon piscivorus (cotton mouth moccassin) venom. Toxicon 3, 301–304 (1966)PubMedGoogle Scholar
  184. Fohlman, J., Eaker, D.: Isolation and characterization of a lethal myotoxic phospholipase A from the venom of the common sea snake Erhydrina schistosa causing myoglobinuria. Toxicon 15, 385–394 (1977)PubMedGoogle Scholar
  185. Fohlmann, J., Eaker, D., Karlsson, E., Thesleff, S.: Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake Taipan (Oxyuranus scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Europ. J. Biochem. 68, 457–469(1976)Google Scholar
  186. Fraenkel-Conrat, H., Olcott, H.S.: Reaction of formaldehyde with protein. VI. Cross-linking of amino groups with phenol, imidazole, or indole groups. J. biol. Chem. 174, 827–843 (1948)PubMedGoogle Scholar
  187. Fraenkel-Conrat, H., Singer, B.: Fractionation and composition of “Crotoxin”. Arch, biochem. Biophys. 60, 64–73(1956)Google Scholar
  188. Fraser, T.R.: The rendering of animals immune against the venom of the Cobra and other serpents and on the antidotal properties of the blood serum of the immunized animals. Brit. Med. J. 1895a I, 1309–1312Google Scholar
  189. Fraser, T.R.: The treatment of snake poisoning with antivenin derived from animals protected against serpent’s venom. Brit. med. J. 1895 b II, 416Google Scholar
  190. Frischauf, A. M., Eckstein, F.: Purification of a phosphodiesterase from Bothrops atrox venom by affinity chromatography. Europ. J. Biochem. 32, 479–485 (1973)PubMedGoogle Scholar
  191. Frost, P., Lance, E.M.: The relation of lymphocyte trapping to the mode of action of adjuvants. In: Immunopotentation (Ciba Foundation Symposium No. 18), pp. 29–45. Amsterdam: North-Holland 1973Google Scholar
  192. Fryklund, L., Eaker, D.: Complete amino acid sequence of the non neurotoxic hemolytic protein from the venom of Hemachatus haemachatus (African ringhals cobra). Biochemistry 12, 661 – 667(1973)PubMedGoogle Scholar
  193. Fryklund, L., Eaker, D.: The complete amino acid sequence of cardiotoxin from the venom of Naja naja (Cambodian cobra). Biochemistry 14, 2860–2865 (1975 a)PubMedGoogle Scholar
  194. Fryklund, L., Eaker, D.: The complete covalent structure of a cardiotoxin from the venom of Naja nigricollis (African black-necked spitting cobra). Biochemistry 14, 2865–2871 (1975b)PubMedGoogle Scholar
  195. Fryklund, L., Eaker, D., Karlsson, E.: The amino acid sequences of the two principal neurotoxins of Enhydrina schistosa venom. Biochemistry 11, 4633–4640 (1972)PubMedGoogle Scholar
  196. Furukawa, Y., Matsunaga, Y., Hayashi, K.: Purification and characterization of a coagulant protein from the venom of Russell’s viper. Biochem. biophys. Acta 453, 48–61 (1976)PubMedGoogle Scholar
  197. Gabel, D., Rasse, D., Scheraga, H.A.: Search for low-energy conformations of a neurotoxic protein by means of predicative rules, test for hard sphere overlaps and energy minimization. Int. J. Pept. Prot. Res. 8, 237–252 (1976)Google Scholar
  198. Gall, D.: The adjuvant activity of aliphatic nitrogenous bases. Immunology 11, 369–386 (1966)PubMedGoogle Scholar
  199. Georgatsos, J.G., Laskowski, M.: Purification of an endonuclease from the venom of Bothrops atrox. Biochemistry 1, 288–295 (1962)PubMedGoogle Scholar
  200. Gerson, R.K., Kondo, K.: Antigenic competition between heterologous lymphocytes. J. Immunol. 106, 1524–1531;Google Scholar
  201. Gerson, R.K., Kondo, K.: Antigenic competition between heterologous lymphocytes. J. Immunol. 106, 1532–1539 (1971)Google Scholar
  202. Ghosh, B.N.: Enzymes in snake venom. I. Action on hemoglobin and on protein solutions of different pH. J. Indian chem. Soc. 13, 450–455 (1936)Google Scholar
  203. Ghosh, B.N., De, S.S.: Investigation on the isolation of the neurotoxin and haemolysin of cobra (Naja naja) venom. Indian J. med. Res. 25, 779–786 (1938)Google Scholar
  204. Githens, T. S., Wolff, N. O’C.: The polyvalency of crotalidic antivenins. II. Comparison of polyvalent crotalidic antivenin with monovalent Crotalus d. durissus antivenin. J. Immunol. 37, 41 – 45 (1939)Google Scholar
  205. Gitter, S., Levi, G., Kochwa, S., de Vries, A., Rechnic, J., Casper, J.: Studies on the venom of “Echis colorata”. Amer. J. trop. Med. Hyg. 9, 391–399 (1960)Google Scholar
  206. Götze, O., Müller-Eberhard, H. J.: Lysis of erythrocytes by complement in the absence of antibody. J.’exp. Med. 132, 898–915 (1970)Google Scholar
  207. Götze, O., Müller-Eberhard, H.J.: The C3 activation system; an alternate pathway of complement activation. J. exp. Med. 134, 90–108 (1971)PubMedGoogle Scholar
  208. Gonçalves, J.M.: Purification and properties of Crotamine. In: Buckley, E., Porges, N. (Eds.): Venoms, pp. 261–274. Amer. Ass. Adv. Sci., pub. No. 44. Washington 1956aGoogle Scholar
  209. Gonçalves, J. M.: Estudos sobre venenos de serpentes brasileiras. II. Crotalus terrifiais crotaminicus subspecie biologica. Ann. Acad. Brasil. Cienc.(Buenos Aires) 28, 365–367 (1956 b)Google Scholar
  210. Goucher, C.R., Flowers, H. H.: The chemical modification of necrogenic and proteolytic activities of Agkistrodon piscivorus venom and the use of EDTA to produce a venom toxoid. Toxicon 2, 139–147(1964)Google Scholar
  211. Grabar, P., Williams, C.A.: Methode immuno-électrophorétique d’analyse de mélanges de substances antigéniques. Biochim. biophys. Acta (Amst.) 17, 67–74 (1955)Google Scholar
  212. Grafius, M.A., Edwards, H.N.: An electrophoretic study of the antibody production in rabbits immunized against rattlesnake venom. Naval. Med. Field Res. Lab. 8, 133–154 (1958)Google Scholar
  213. Grasset, E.: Sur les rapports de spécificité des antigènes venimeux dans la polyvalence et le titrage des sérums antivenimeux. Bull. Org. Hyg., S.D.N. 5, 407–431 (1936)Google Scholar
  214. Grasset, E.: Anavenoms and their use in the preparation of antivenomous sera. Polyvalent anti-Bitis arietansNaja fiava serum and specific antivenenes against African viperine and colubrine venoms. Trans, roy. Soc. trop. Med. Hyg. 38, 463–468 (1945)Google Scholar
  215. Grasset, E., Pongratz, E., Brechbuhler, T.: Analyse immunochimique des constituants des venins de serpents par la méthode de précipitation en milieu gélifié. Ann. Inst. Pasteur 91, 162–186 (1956)Google Scholar
  216. Grasset, E., Schaafsma, A.: Recherches sur les venins des Colubridés opisthoglyphes africains. I. Dispholidus typus. Bull. Soc. Path. Exot. 33, 114–131 (1940)Google Scholar
  217. Grasset, E., Zoutendyk, A.: Méthode rapide de préparation de sérums antivenimeux polyvalents-antivipéridés et cobras au moyen des anavenins formolés. C.R. Soc. Biol. (Paris) 111, 432 – 444(1932)Google Scholar
  218. Grishin, E.V., Sukhikh, A.P., Adamovich, T.B., Ovchinnikov, Yu.A., Yukelson, L.Ya.: The isolation and sequence determination of a cyotoxin from the venom of the middle Asian cobra Naja naja oxiana. FEBS Letters 48, 179–183 (1974a)PubMedGoogle Scholar
  219. Grishin, E.V., Sukhikh, A.P., Ovchinnikov, Yu.A.: Structural studies of the toxic components of the cobra Naja naja oxiana venom. (Abstract). 4 th International Symposium on Animal, Plant, and Microbial Toxins, Tokyo, 1974 bGoogle Scholar
  220. Grishin, E.V., Sukhikh, A.P., Lukyanchud, N.N., Slobodyan, L.N., Lipkin, V.M., Ovchinnikov, Yu.A.: Amino acid sequence of neurotoxin II from Naja naja oxiana venom. FEBS Letters 36, 77–78(1973)PubMedGoogle Scholar
  221. Grotto, L., Moroz, C., de Vries, A., Goldblum, N.: Isolation of Vipera palestinae hemorrhagin and distinction between its hemorrhagic and proteolytic activities. Biochim. biophys. Acta (Amst.) 133, 356–362 (1967)Google Scholar
  222. Gulland, J.M., Jackson, E. M.: Phosphoesterases of bone and snake venoms. Biochem. J. 32, 590–596 (1938 a)PubMedGoogle Scholar
  223. Gulland, J.M., Jackson, E.M.: 5-Nucléotidase. Biochem. J. 32, 597–601 (1938b)PubMedGoogle Scholar
  224. Gumaa, K.A., Osman, O.H., Kertesz, G.: Distribution of I125-labelled Bitis arietans venom in the rat. Toxicon 12, 565–568 (1974)PubMedGoogle Scholar
  225. Habermann, E., Rübsamen, K.: Biochemical and pharmacological analysis of the so-called crotoxin. In: De Vries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. I, pp. 333–341. London: Gordon and Breach 1971Google Scholar
  226. Hachimori, Y., Wells, M.A., Hanahan, D.J.: Observations on the phospholipase A2 of Crotalus atrox. Molecular weight and other properties. Biochemistry 10, 4084–4089 (1971)PubMedGoogle Scholar
  227. Haimovich, J., Hurwitz, E., Novik, N., Sela, M.: Preparation of protein bacteriophage conjugates and their use in detection of anti-protein antibodies. Biochim. biophys. Acta (Amst.) 207, 115–124(1970)Google Scholar
  228. Halpert, J., Eaker, D.: Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). J. biol. Chem. 250, 6990–6997 (1975)PubMedGoogle Scholar
  229. Hamberg, U., Rocha e Silva, M.: Release of bradykinin as related to the esterase activity of trypsin and of the venom of Bothrops jararaca. Experientia (Basel) 13, 489–490 (1957)Google Scholar
  230. Hanna, M.G., Jr., Francis, M.W., Peters, L.C.: Localization of 125I-labelled antigen in germinal centres of mouse spleen: effects of competitive injection of specific or non-cross-reacting antigen. Immunology 15, 75–91 (1968)PubMedGoogle Scholar
  231. Hanna, M.G., Peters, L.C.: The effect of antigen competition on both the primary and secondary immune capacity in mice. J. Immunol. 104, 166–177 (1970)PubMedGoogle Scholar
  232. Hauert, J., Maire, M., Sussmann, A., Bargetzi, J.P.: The major lethal neurotoxin of the venom of Naja naja philippinensis. Int. J. Pept. Prot. Res. 6, 201–222 (1974)Google Scholar
  233. Hayashi, K., Takechi, M., Sasaki, T.: Amino acid sequence of cytotoxin I from the venom of the Indian cobra (Naja naja). Biochem. biophys. Res. Commun. 45, 1357–1362 (1971)PubMedGoogle Scholar
  234. Hayashi, K., Takechi, M., Sasaki, T., Lee, C.Y.: Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra. Biochem. biophys. Res. Commun. 64, 360–366 (1975)PubMedGoogle Scholar
  235. Heinrikson, L.H., Krueger, E.E., Keim, F. S.: Amino acid sequence of phospholipase A2 from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J. biol. Chem. 252, 4913–4921 (1977)PubMedGoogle Scholar
  236. Henriques, O.B., Lavras, A.A.C., Fichman, M., Mandelbaum, F.R., Henriques, S.B.: The proteolytic activity of the venom of “Bothrops jararaca”. Biochem. J. 68, 597–605 (1958)PubMedGoogle Scholar
  237. Henriques, O. B., Mandelbaum, F.R., Henriques, S. B.: Proteolytic enzymes of Bothrops venom. Mem. Inst. Butantan 33, 359–369 (1966)PubMedGoogle Scholar
  238. Heremans, J.F.: Les Globulines Sériques du Système γ. Brussels: Arscia 1960Google Scholar
  239. Heremans, J.F.: Les Globulines Sériques du Système γ. Paris: Masson 1960Google Scholar
  240. Heymans, C.: Sur l’anaphylaxie du coeur isolé du lapin. C.R. Soc. Biol. (Paris) 85, 419–420 (1921)Google Scholar
  241. Hirschfeld, L., Klinger, R.: The inactivation of the serum by cobra poison. Biochem. Z. 70, 398 (1915)Google Scholar
  242. Horst, J., Hendon, R.A., Fraenkel-Conrat, H.: The active components of Crotoxin. Biochem. biophys. Res. Commun. 46, 1042–1045 (1972)PubMedGoogle Scholar
  243. Houssay, B.A., Negrete, J.: Propriedades precipitantes espicifícas de los sueros antiofidicos. Rev. Inst. Bact. (Buenos Aires) 1, 15–31 (1917)Google Scholar
  244. Houssay, B.A., Negrete, J.: Esdutios sobre venenos de serpientes. III. Accion de los venenos de serpientes sobre las substancias proteicas. Rev. Inst. Bact. (Buenos Aires) 1, 335–370 (1918)Google Scholar
  245. Houssay, B.A., Negrete, J.: Spécificité de l’action antitoxique des serums antivenimeux. C.R. Soc. Biol. (Paris) 89, 454–455 (1923)Google Scholar
  246. Houssay, B.A., Sordelli, A.: Action des venins sur la coagulation sanguine. J. Physiol. Path. Gén. 18, 781–811(1919)Google Scholar
  247. Howard, J.C., Mitchison, N.A.: Immunological tolerance. Prog. Allergy 18, 43–96 (1975)PubMedGoogle Scholar
  248. Howard, J.C., Scott, M.T., Christie, G.H.: Cellular mechanism underlying the adjuvant activity of Corynebacterium parvum; interaction of activated macrophages with T and B lymphocytes. In: Immunopotentiation, G.E. Wolstenholme, J. Knight (Eds.), (Ciba Foundation Symposium N. 28), pp. 101–120. Amsterdam: North-Holland 1973Google Scholar
  249. Howard, N.L.: Phospholipase A2 from puff adder (Bitis arietans) venom. Toxicon 13, 21–30 (1975)PubMedGoogle Scholar
  250. Huang, J. S., Liu, S.S., Ling, K.H., Chang, C.C., Yang, C.C.: Iodination of “Cobrotoxin”. Toxicon 11, 39–45(1973)PubMedGoogle Scholar
  251. Hunsicker, L.G., Ruddy, S., Austen, K.F.: Alternate complement pathway: factors involved in cobra venom factor (Co VF) activation of the third component of complement (C′3). J. Immunol. 110, 128–138 (1973)PubMedGoogle Scholar
  252. Iizuka, K., Murata, Y., Satake, M.: Studies on snake venom. X. On the antigen-antibody reaction of Formosan and Japanese snake venoms with commercial antiserum. J. Pharm. Soc. Jap. 80, 1035–1039 (1960)Google Scholar
  253. Ivanov, V.T.: Synthetic studies of α “Bungarotoxin” (Abstract). 4th International Symposium on Animal, Plant, and Microbial Toxins, Tokyo, 1974Google Scholar
  254. Iwaguchi, I., Takechi, M., Hayashi, K.: Cytocidal activity of cytotoxin from Indian cobra venom and its derivatives against experimental tumors (Abstract). 4 th International Symposium on Animal, Plant, and Microbial Toxins, Tokyo, 1974Google Scholar
  255. Iwanaga, S., Omori, I., Oshima, G., Suzuki, T.: Studies on snake venoms XVI. Demonstration of a proteinase with hemorrhagic activity in the venom of Agkistrodon halys blomhoffli. J. Biochem. (Tokyo) 57, 392–401 (1965)Google Scholar
  256. Iyengar, N.K., Sehra, H.B., Mukergi, B., Chopra, R.N.: Choline esterase in cobra venom. Curr. Sci. Ind. 7, 51–53(1938)Google Scholar
  257. Izard, Y., Boquet, M., Ronsseray, A.M., Boquet, P.: Isolement d’une protéine toxique du venin de Naja nigricollis: la toxine gamma. C.R. Acad. Sci. [D] (Paris) 269, 96–97 (1969)Google Scholar
  258. Jerne, N. K., Wood, E. C.: The validity and meaning of the results of biological assays. Biometrics 5, 273–299(1949)PubMedGoogle Scholar
  259. Johnson, A. G., Schmidtke, J., Meritt, K., Han, I.: Enhancement of antibody formation by nucleic acids and their derivatives. In: Plescia, O. J., Braun, W. (Eds.): Nucleic Acids in Immunology, pp. 379–385. Berlin-New York: Springer 1968Google Scholar
  260. Jolies, P., Paraf, A.: Chemical and Biological Basis of Adjuvants. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  261. Joubert, F.J.: Snake venom toxins from Ophiophagus hannah (king cobra venom.) Biochim. Biophys. Acta (Amst.) 317, 85–98 (1973)Google Scholar
  262. Joubert, F. J.: Naja melanoleuca (forest cobra) venom. The amino acid sequence of phospholipase A fractions DEI, DEII, DEIII. Biochim. biophys. Acta (Amst.) 379, 229–359 (1975 a)Google Scholar
  263. Joubert, F.J.: Hemachatus haemachatus venom. The amino acid sequence of phospholipase A. Europ. J. Biochem. 52, 539–544 (1975 b)PubMedGoogle Scholar
  264. Joubert, F. J.: The amino acid sequence of three toxins (CM 10, CM 12, CM 14) from Naja haje annulifera. Hoppe Seylers Z. physiol. Chem. 356, 52–72 (1975 c)Google Scholar
  265. Joubert, F.J.: The amino acid sequence of three toxins (CM 8, CM 11, and CM 13 a) from Naja haje annulifera (Egyptian cobra). Europ. J. Biochem. 64, 219–232 (1976 a)PubMedGoogle Scholar
  266. Joubert, F.J.: The amino acid sequences of three toxins (CM 2c, CM4 a, and CM 7) from the venom of Naja haje annulifera (Egyptian cobra) venom. Hoppe-Seylers Z. physiol. Chem. 357, 1735–1750 (1976 b)PubMedGoogle Scholar
  267. Joubert, F. J.: Naja mossambica mossambica venom. Purification, some properties and amino acid sequences of three phospholipases A (CM I, CM II, CM III). Biochim. biophys. Acta (Amst.) 477, 216–227(1977)Google Scholar
  268. Joubert, F. J., Van der Walt, S. J.: Naja melanoleuca (Forest Cobra) venom. Purification and some properties of phospholipases A. Biochim. biophys. Acta (Amst.) 379, 317–328 (1975)Google Scholar
  269. Kabat, E. A.: Precipitin reaction. In: Kabat, E. A., Mayer, M. (Eds.): Experimental Immuno-chem-istry, 2nd Ed., pp. 22–96. Springfield, Ill.: Thomas 1961Google Scholar
  270. Kamenskaya, M., Thesleff, S.: The neuromuscular blocking action of an isolated toxin from the Elapidae Oxyuranus scutellatus. Acta physiol. scand. 90, 716–724 (1974)PubMedGoogle Scholar
  271. Kaneda, N., Sasaki, T., Hayashi, K.: Primary structure of cardiotoxin analogs II and IV from the venom of Naja naja atra. Biochim. biophys. Acta (Amst.) 491, 53–66 (1977)Google Scholar
  272. Karlsson, E., Arnberg, H., Eaker, D.: Isolation of the principal neurotoxins of two Naja naja subspecies. Europ. J. Biochem. 21, 1–16 (1971)PubMedGoogle Scholar
  273. Karlsson, E., Eaker, D., Drevin, H.: Modification of the invariant tryptophan residue of two Naja naja neurotoxins. Biochim. biophys. Acta (Amst.) 328, 510–519 (1973)Google Scholar
  274. Karlsson, E., Eaker, D., Fryklund, L., Kadin, S.: Chromatographic separation of Enhydrina schistosa common sea snake) venom and the characterization of two principal neurotoxins. Biochemistry 11, 4628–4633 (1972a)PubMedGoogle Scholar
  275. Karlsson, E., Eaker, D., Ponterius, G.: Modification of amino groups in Naja naja neurotoxins and the preparation of radioactive derivatives. Biochim. biophys. Acta (Amst.) 257, 235–248 (1972b)Google Scholar
  276. Karlsson, E., Eaker, D., Porath, J.: Purification of a neurotoxin from venom of Naja nigricollis. Biochim. biophys. Acta (Amst.) 127, 505–520 (1966)Google Scholar
  277. Karlsson, E., Eaker, D., Rydén, L.: Purification of a presynaptic neurotoxin from the venom of the Australian tiger snake (Notechis scutatus scutatus). Toxicon 10, 405–413 (1972c)PubMedGoogle Scholar
  278. Kato, H., Suzuki, T.: Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffii. Isolation of five bradykinin potentiators and the amino acid sequence of two of them, potentiators B and C. Biochemistry 10, 972–980 (1971)PubMedGoogle Scholar
  279. Katz, D.H., Paul, W.E., Benacerraf, B.: Carrier function in anti-hapten antibody responses. VI. Establishment of experimental conditions for either inhibitory or enhancing influences of carried-specific cells on antibody production. J. Immunol. 110, 107–117 (1973)PubMedGoogle Scholar
  280. Kauffman, M.: Les Vipères de France. Paris: Asselin & Houzeau 1893Google Scholar
  281. Kawauchi, S., Samejima, Y., Iwanaga, S., Suzuki, T.: Amino acid compositions of snake venom phospholipase A2. J. Biochem. (Tokyo) 69, 433–437 (1971)Google Scholar
  282. Keegan, H.L., Whittemore, F.W., Flanigan J.F.: Heterologous antivenin in neutralization of north American coral snake venom. Public. Hlth Rep. (Wash.) 76, 540–542 (1961)Google Scholar
  283. Kellaway, C.H.: Snake venoms. I. Their constitution and therapeutic applications. II. Their peripheral action. III. Immunity. Bull. Johns Hopkins Hosp. 60, 1–17 (1937);Google Scholar
  284. Kellaway, C.H.: Snake venoms. I. Their constitution and therapeutic applications. II. Their peripheral action. III. Immunity. Bull. Johns Hopkins Hosp. 60, 18–39 (1937);Google Scholar
  285. Kellaway, C.H.: Snake venoms. I. Their constitution and therapeutic applications. II. Their peripheral action. III. Immunity. Bull. Johns Hopkins Hosp. 60, 159–177 (1937)Google Scholar
  286. Kelly, R.B., Brown, F.R.: Biochemical and physiological properties of a purified snake venom neurotoxin which acts presynaptically. J. Neurobiol. 5, 135–150 (1974)PubMedGoogle Scholar
  287. Kerbel, R.S., Eidinger, D.: New hypothesis on antigenic competition based on cell interactions in the immune response. Nature (Lond.) 232, 26–28 (1971 a)Google Scholar
  288. Kerbel, R.S., Eidinger, D.: Further studies on antigenic competition. III. A model to account for the phenomenon based on a deficiency of cell to cell interaction in immune lymphoid cell populations. J. exp. Med. 133, 1043–1073 (1971b)PubMedGoogle Scholar
  289. Ketusinh, O., Puranamanda, C.: A preliminary electrophoretic study of unimmunized and immunized horse sera using haemotoxic and neurotoxic antigens. Proc. Symp. Diamon. Jubilée, Haffkine Inst. 14, 131–134 (1959)Google Scholar
  290. Keung, W.M., Yip, T.T., Kong, Y.C.: The chemistry and biological effects of cardiotoxin from the Chinese cobra (Naja naja Linn.) on hormonal responses in isolated cell system. Toxicon 13, 239–251 (1975)PubMedGoogle Scholar
  291. Klobusitzky, D. von: Biochemische Studien über die Gifte der Schlangengattung Bothrops. I. Die blutgerinnungsfördernde Wirkung und die Reinigung der Giftdrüsensekrete der Bothrops jararaca. Arch. exp. Path. Pharmak. 179, 205–216 (1935)Google Scholar
  292. Kocholaty, W.F.: Detoxification of Crotalus atrox venom by photooxidation in the presence of methylene blue. Toxicon 3, 175–186 (1966)PubMedGoogle Scholar
  293. Kocholaty, W.F., Ashley, B.D., Billings, T.A.: An immune-serum against the North american coral snake (Micrurus fulvius fulvius) venom obtained by photooxidative detoxification. Toxicon 5, 43–46 (1967)Google Scholar
  294. Kocholaty, W.F., Goetz, J.C., Ashley, B.D., Billings, T.A., Ledford, E.B.: Immunogenic response of the venoms of fer-de-lance, Bothrops atrox asper, and la cascabella, Crotalus durissus durissus, following photooxidative detoxification. Toxicon 5, 153–158 (1968 a)PubMedGoogle Scholar
  295. Kocholaty, W.F., Ledford, E.B., Billings, T.A., Goetz, J.C., Ashley, B.D.: Immunization studies with Naja naja venom detoxified by photooxidation. Toxicon 5, 159–163 (1968 b)PubMedGoogle Scholar
  296. Kochwa, S., Gitter, S., Strauss, A., de Vries, A., Leffkowitz, M.: Immunologic study of Vipera xanthina palestinae venom and preparation of potent antivenin in rabbits. J. Immunol. 82, 107 – 115 (1959 a)PubMedGoogle Scholar
  297. Kochwa, S., Izard, Y., Boquet, P., Gitter, S.: Sur la préparation d’un immun-sérum équin antivenimeux au moyen des fractions neurotoxiques isolées du venin de Vipera xanthina palestinae. Ann. Inst. Pasteur 97, 370–376 (1959 b)Google Scholar
  298. Kondo, H., Kondo, S., Sadahiro, S., Yamauchi, K., Murata, R.: Standardization of Trimeresurus flavoviridis (Habu) antivenin. Jap. J. med. Sci. Biol. 24, 323–327 (1971a)PubMedGoogle Scholar
  299. Kondo, H., Kondo, S., Sadahiro, S., Yamauchi, K., Ohsaka, A., Murata, R.: Preparation and immunogenicity of Habu (Trimer esurus flavoviridis) toxoid. In: deVries, A., Kochra, E. (Eds.): Toxins of Animal and Plant Origin, Vol. III, pp. 845–862. London: Gordon and Breach 1973Google Scholar
  300. Kondo, S., Sadahiro, S., Yamauchi, K., Kondo, H., Murata, R.: Preparation and standardization of toxoid from the venom of Trimer esurus flavoviridis (Habu). Jap. J. med. Sci. Biol. 24, 281 – 294 (1971b)PubMedGoogle Scholar
  301. Kook, A.I., Trainin, N.: Hormone like activity of a thymus humoral factor on the induction of immune competence in lymphoid cells. J. exp. Med. 139, 193–207 (1974)PubMedGoogle Scholar
  302. Kook, A.I., Trainin, N.: The control exerted by thymic hormone (THF) on cellular cAMP levels and immune reactivity of spleen cells in the MLC assay. J. Immunol. 115, 8–14 (1975)PubMedGoogle Scholar
  303. Kopeyan, C., Miranda, F., Rochat, H.: Amino acid sequence of toxin III of Naja haje: Europ. J. Biochem. 58, 117–122 (1975)Google Scholar
  304. Kopeyan, C., Van Rietschofen, J., Martinez, G., Rochat, H., Miranda, F.: Characterization of five neurotoxins isolated from the venom of two Elapidae snakes Naja haje and Naja nigricollis. Europ. J. Biochem. 35, 244–250 (1973)Google Scholar
  305. Kornalik, F., Taborska, E.: Individual interspecies variability in the composition of some Viperi-dae venoms. In: Kaiser, E. (Ed.): Symposium on Animal and Plant Toxins, pp. 98–103. Munich: Goldman 1973Google Scholar
  306. Kramar, R., Lambrechter, R., Kaiser, E.: The release of acid hydrolase from lysosomes by animal venoms. Toxicon 9, 125–129 (1971)PubMedGoogle Scholar
  307. Kraus, R.: Zur Serumtherapie der Bisse durch europäische Vipern. Wien. klin. Wschr. 39, 744 – 745 (1926)Google Scholar
  308. Kulkarni, M. E., Rao, S. S.: Antigenic composition of the venoms of poisonous snakes of India. In: Buckley, E., Porges, N. (Eds.): Venoms, pp. 175–180. Amer. Ass. Adv. Sci., pub. No.44. Washington 1956Google Scholar
  309. Kumar, V., Elliott, W.B.: The acetylcholinesterase of Bungarus fasciatus venom. Europ. J. Biochem. 34, 586–592 (1973)PubMedGoogle Scholar
  310. Lamb, G.: On the action of snake venom on the coagulability of the blood. Indian, med. Gaz. 36, 443–455 (1901)Google Scholar
  311. Lamb, G.: On the precipitin of cobra venom. A means of distinguishing between the proteins of different snake poisons. Lancet 1902 II, 431Google Scholar
  312. Lamb, G.: On the precipitin of cobra venom. Lancet 1904 I, 916Google Scholar
  313. Landsteiner, K.: The Specificity of Serological Reactions. Springfield, Ill.: Thomas 1936Google Scholar
  314. Larsen, P.R., Wolf, J.: The basic proteins of cobra venom. I. Isolation and characterization of Cobramines A and B. J. biol. Chem. 243, 1283–1289 (1968)PubMedGoogle Scholar
  315. Laskowski, M., Hagerty, G., Laurila, U.R.: Phosphodiesterase from rattlesnake venom. Nature (Lond.) 180, 1181–1182(1957)Google Scholar
  316. Lafiti, M., Farzanpay, R., Tabatabai, M.: Comparative studies of Iranian snake venoms by gel diffusion and neutralization tests. In: Kaiser, E. (Ed.): Symposium on Animal and Plant Toxins. Munich: Goldmann 1973Google Scholar
  317. Laure, C. J.: The primary structure of Crotamine. Hoppe Seylers Z. physiol. Chem. 356, 213–215 (1975)PubMedGoogle Scholar
  318. Laurell, C.B.: Antigen-antibody crossed electrophoresis. Ann. Biochem. 10, 358–361 (1965)Google Scholar
  319. Lebez, D., Gubensek, F., Turk, V.: Distribution of some toxic fractions 75Se labeled Vipera ammodytes venom in experimental animals. In: De Vries, A., Kochwa, E. (Eds.): Toxins of Animal and Plant Origin, Vol. III, pp. 1067–1074. London: Gordon and Breach 1973Google Scholar
  320. Lee, C.Y.: Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol. 12, 265–286 (1972)PubMedGoogle Scholar
  321. Lee, C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J.S., Tseng, T.C., Lee, S.Y.: Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Arch. Pharmakol. exp. Path. 259, 360–374(1968)Google Scholar
  322. Lee, C.Y., Chang, S.L., Kau, S.T., Luh, S.H.: Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J. Chromatogr. 72, 71–82 (1972)PubMedGoogle Scholar
  323. Lee, C.Y., Chen, Y.M., Mebs, D.: Chromatographic separation of the venom of Bungarus caeruleus and pharmacological characterization of its components. Toxicon 14, 451–457 (1976)PubMedGoogle Scholar
  324. Lee, C. Y., Huang, M.C., Bonilla, C.A.: Mode of action of purified basic proteins from three rattle snake venoms on neuromuscular junctions of the chick biventer cervicis muscle. In: Kaiser, (Ed.): Symposium On Animal and Plant Toxins, pp. 173–178. Munich: Goldmann 1973Google Scholar
  325. Lee, C.Y., Lin, J.S., Wei, J.W.: Indentification of cardiotoxin with cobramine B, DLF, toxin γ, and cobra venom cytotoxin. In: de Vries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, pp. 307–318. London: Gordon and Breach 1971Google Scholar
  326. Lee, C.Y., Tseng, L.F.: Distribution of Bungarus multicintus venom following envenomation. Toxicon 3, 281–290 (1966)PubMedGoogle Scholar
  327. LinShian, S.Y., Huang, M.C., Lee, C.Y.: A study of cardiotoxic principles from the venom of Bungarus fasciatus (Schneider). Toxicon 13, 189–196 (1975)Google Scholar
  328. Liu, C.S., Blackwelf, R.Q.: Hydrophitoxin b from Hydrophis cyanocinctus venom. Toxicon 12, 542–546(1974)Google Scholar
  329. Liu, C.S., Huber, G.S., Lin, C.L., Blackwell, R.Q.: Fractionation of toxins from Hydrophis cyanocinctus venom and determination of amino acid composition and end groups of hydrophitoxin a. Toxicon 11, 73–79 (1973)PubMedGoogle Scholar
  330. Liu, C.S., Wang, C.L., Blackwell, R.Q.: Isolation and partial characterization of “Pelamitoxin” A from Pelamis platurus venom. Toxicon 13, 31–36 (1975)PubMedGoogle Scholar
  331. Lo, T.B., Chang, W.C.: Studies on phospholipase A from Formosan (Naja naja atra) venom (Abstract). 4 th Symposium on Animal, Plant, and Microbial toxins. Tokyo, 1974Google Scholar
  332. Louis, J., Chiller, M., Weigle, W.O.: Fate of antigen binding cells in unresponsive and immune mice. J. exp. Med. 137, 461–470 (1973)PubMedGoogle Scholar
  333. Louw, A.I.: Snake venom toxins. The complete amino acid sequence of cytotoxin V114 from the venom of Naja mossambica mossambica. Biochem. biophys. Res. Commun. 58, 1022–1029 (1974 a)PubMedGoogle Scholar
  334. Louw, A. I.: Snake venom toxins. The amino acid sequences of three cytotoxin homologues from Naja mossambica mossambica venom. Biochim. biophys. Acta (Amst.) 336, 481–495 (1974 b)Google Scholar
  335. Low, B.W., Potter, R., Jackson, R.B., Tamiya, N., Sato, S.: X-ray crystallographic study of the “Erabutoxins” and of a diiodo derivative. J. biol. Chem. 246, 4366–4368 (1971)PubMedGoogle Scholar
  336. Low, B.W., Preston, H.S., Sato, A., Rosen, L.S., Searl, J.E., Rudko, A.D., Richardson, J.S.: Three dimensional structure of erabutoxin b neurotoxic protein; inhibitor of acetyl choline receptor. Proc. nat. Acad. Sci. (Wash.) 73, 2991–2994 (1976)Google Scholar
  337. Luzzio, A.J., Trevino, G.S.: Precipitin and neutralizing antibody response elicited by “Crotalus atrox” antivenom precipitate. Proc. Soc. exp. Biol. (N.Y.) 122, 295–299 (1966)Google Scholar
  338. Macfarlane, R.G., Barnett, B.: Haemostatic possibilities of snake-venom. Lancet 1934 II, 985–987Google Scholar
  339. Maeda, N., Tamiya, N.: Isolation, properties and amino acid sequences of three neurotoxins from the venom of sea snake Aepisurus laevis. Biochem. J. 153, 79–87 (1976)PubMedGoogle Scholar
  340. Maeda, N.N., Chen, Y., Tamiya, M., Lee, C.Y.: The isolation, properties and amino acid sequence of Laticauda semifasciata III, a weak and reversible neurotoxin from the sea snake Laticauda semifasciata (Abstract). 4 th International Symposium on Animal, Plant, and Microbial Toxins. Tokyo, 1974Google Scholar
  341. Maillard, J., Bloom, B.P.: Immunological adjuvants and the mechanism of cell cooperation. J. exp. Med. 136, 185–190 (1972)PubMedGoogle Scholar
  342. Mallick, S. M. K.: The applicability of floculation tests to the standardization of antivenin. Indian J. med. Res. 23, 525–529 (1935)Google Scholar
  343. Mancini, G., Carbonara, A.O., Heremans, J.F.: Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235–254 (1965)PubMedGoogle Scholar
  344. Mandelbaum, F.R., Reichl, A.P., Assakura, M.T.: Some physical and biochemical characteristics of HF1, the haemorrhagic factor in the venom of Bothrops jararaca (Abstract). 4 th International Symposium on Animal, Plant, and Microbial Toxins. Tokyo, 1974Google Scholar
  345. Mangalo, R., Fouque, F., Boquet, P.: Recherches biochimiques et immunologiques sur le venin des serpents. V. Application des techniques immunochimiques au titrage des anticorps spécifiques de la toxine α du venin de Naja nigricollis. Ann. Immunol. (Inst. Pasteur) 128 C, 841 – 850(1977)Google Scholar
  346. Margoliash, E., Nisonoff, A., Reichlin, M.: Immunological activity of cytochrome C. I Precipitating antibodies to monomeric vertebrate cytochrome C. J. biol. Chem. 245, 931–939 (1970)PubMedGoogle Scholar
  347. Margoliash, E., Reichlin’M., Nisonoff, A.: The relation of immunological activity and primary structure in cytochrome C. In: Kamachandran, G.N. (Ed.): Conformation of Biopolymers. New York: Academic 1967Google Scholar
  348. Markland, F. S., Damus, P.S.: Purification and properties of a thrombin-like enzyme from the venom of Crotalus adamanteus (Eastern diamon back rattlesnake). J. biol. Chem. 246, 6460 – 6473(1971)PubMedGoogle Scholar
  349. Maron, E., Shiozawa, C., Arnon, R., Sela, M.: Chemical and immunological characterization of a unique antigenic region in lysozyme. Biochemistry 10, 763–771 (1971)PubMedGoogle Scholar
  350. Maron, E., Webb, C., Teitelbaum, D., Arnon, R.: Cell-mediated vs humoral response in the cross-reaction between hen egg-white lysozyme and bovine α lactalbumin. Europ. J. Immunol. 2, 294–297 (1972)Google Scholar
  351. Marquart, H.: La sérothérapie antivenimeuse. Recherches sur la neutralisation des facteurs de diffusion des venins. Rev. Immunol. (Paris) 15, 262–270 (1951)Google Scholar
  352. Marrack-Hunter, P.C., Kappler, J.W.: Antigen-specific and non-specific mediators of T cell/B cell cooperation. J. Immunol. 114, 1116–1125 (1975)Google Scholar
  353. Martin, C.J.: The contribution of experiments with snake venom to the development of our knowledge of immunity. Brit. med. J. 1904 II, 574–577Google Scholar
  354. Martin, C.J.: Observations upon fibrin-ferments in the venoms of snakes and the time relation of their action. J. Physiol. (Lond.) 32, 207–215 (1905)Google Scholar
  355. Massaro, E.J., McLean, R.L., Elliott, W.B.: A fractionation procedure for Naja naja venom. In: deVries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. I, pp. 259–279. London: Gordon and Breach 1971Google Scholar
  356. Mebs, D.: Vergleichende Enzymuntersuchungen an Schlangengiften unter besonderer Berücksichtigung ihrer Casein-spaltenden Proteasen. Hoppe-Seylers Z. physiol. Chem. 349, 1115 – 1125(1968)PubMedGoogle Scholar
  357. Mebs, D., Lee, C.Y., Chen, Y.M., Iwanaga, S.: Chemical and pharmacological characterization of toxic polypeptides from four Elapidae venoms. 4 th International Symposium on Animal, Plant, and Microbial Toxins. Tokyo, Japan, 1974Google Scholar
  358. Mebs, D., Narita, K., Iwanaga, S., Samejima, Y., Lee, C.Y.: Amino acid sequence of α Bungaro-toxin from the venom of Bungarus multicinctus. Biochem. biophys. Res. Commun. 44, 711 – 716(1971)PubMedGoogle Scholar
  359. Menez, A., Bouet, F., Fromageot, P., Tamiya, N.: On the role of tyrosyl and tryptophanyl residues in the conformation of two snake neurotoxins. Bull. Inst. Pasteur 74, 57–64 (1976)Google Scholar
  360. Michaelis, L.: Untersuchungen über Eiweißpräzipitine, zugleich ein Beitrag zur Lehre von der Eiweißverdauung. Dtsch. med. Wschr. 2, 733–736 (1902)Google Scholar
  361. Micheel, F., Jung, F.: Zur Kenntnis der Schlangengifte. Hoppe-Seylers Z. physiol. Chem. 239, 217–230(1936)Google Scholar
  362. Miledi, R., Molinoff, P., Potter, L.T.: Isolation of the cholinergic receptor of torpedo electric tissue. Nature (Lond.) 229, 354–357 (1971)Google Scholar
  363. Miller, J.F.A.P.: Interaction between thymus dependent (T) cells and bone marrow derived (B) cells in antibody response. In: Makela, O., Cross, A., Kosunen, T.U. (Eds.): Cell Interactions and Receptor Antibodies in Immune Response, pp. 293–309. New York: Academic 1971Google Scholar
  364. Miller, J. F. A. P., Basten, A., Sprent, J., Cheers, C.: Interaction between lymphocytes in immune responses. Cell. Immunol. 2, 469–495 (1971)PubMedGoogle Scholar
  365. Miller, J.F.A.P., Mitchell, G.F.: Cell to cell interaction in the immune response. I. Hemolysin— forming cells in neonatally thymectomized mice reconstitued with thymus or thoracic duct lymphocytes. J. exp. Med. 128, 801–820 (1968)PubMedGoogle Scholar
  366. Minton, S.: Antigenic relationships of the venom of Atractaspis microlepidota to that of other snakes. Toxicon 6, 59–64 (1968)PubMedGoogle Scholar
  367. Minton, S.A.: Variation in venom samples from Copperheads (Agkistrodon contortrix mokeson) and timber rattlesnakes (Crotalus horridus horridus). Copeia 4, 212–215 (1953)Google Scholar
  368. Minton, S.A.: An immunological investigation of rattlesnake venoms by the agar diffusion method. Amer. J. trop. Med. Hyg. 6, 1097–1107 (1957)Google Scholar
  369. Minton, S.A.: Observations on toxicity and antigenic makeup of venoms from juvenile snakes. In: Russell, F.E., Saunders, P.D. (Eds.): International Symposium on Animal Toxins, pp. 211–222. Oxford: Pergamon 1967aGoogle Scholar
  370. Minton, S.A.: Paraspecific protection by Elapidae and sea snake antivenins. Toxicon 5, 47–55 (1967 b)PubMedGoogle Scholar
  371. Miranda, F., Kupeyan, C., Rochat, H., Rochat, C., Lissitzky, S.: Purification of animal neurotoxins. Isolation and characterization of four neurotoxins from two different sources of Naja haje venom. Europ. J. Biochem. 17, 477–484 (1970)PubMedGoogle Scholar
  372. Mitchell, G.F., Miller, J.F.A.P.: Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone lymphocytes. J. exp. Med. 128, 821 – 837 (1968)PubMedGoogle Scholar
  373. Mitchison, N.A.: Induction of immunological paralysis in two zones of dosage. Proc. R. Soc. Lond. [Biol.] 161, 275–292 (1964)Google Scholar
  374. Mitchison, N.A.: The relative ability of T and B lymphocytes to see protein antigen. In: Makela, O., Cross, A., Kosunen, T.U. (Eds.): Cell Interaction and Receptor Antibodies in Immune Response, pp. 249–260. New York: Academic 1971Google Scholar
  375. Mitchison, N.A., Rajensky, K., Taylor, R.S.: Cooperation of antigenic determinants and of cells in the induction of antibodies. In: Sterzl, J., Riha, I. (Eds.): Developmental Aspects of Antibody Formation and Structure, Vol. II, pp. 547–561. New York: Academic 1970Google Scholar
  376. Mittelstaedt, J.S., Shaw, S.M., Tiffany, L.W.: The detoxifying effect of cobalt-60 radiations of the venom of the hooded cobra, Naja naja. In: De Vries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. III, pp. 887–896. London: Gordon and Breach 1973Google Scholar
  377. Mohamed, A.H., Bakr, I.A., Kamel, A.: Egyptian polyvalent anti-snake bite serum; technic of preparation. Toxicon 4, 69–72 (1966)PubMedGoogle Scholar
  378. Mohamed, A. H., Darwish, M.A., Hani-Ayobe, M.: Immunological studies on an Egyptian bivalent Naja antivenin. Toxicon 12, 321–323 (1974)PubMedGoogle Scholar
  379. Moller, G., Sjoberg, O.: Studies on the mechanism of antigenic competition. In: Makela, O., Cross, A., Kosunen, T.U. (Eds.): Cell Intraction and Receptor Antibodies in Immune Responses, pp. 419–432. New York: Academic 1971Google Scholar
  380. Morgenroth, J., Kaya, R.: Über eine komplementzerstörende Wirkung des Kobragiftes. Biochem. Z. 8, 378–382(1908)Google Scholar
  381. Moritsch, P.: Zur Serumtherapie der Bisse durch europäische Vipern. Wien. klin. Wschr. 39, 1514–1515(1926)Google Scholar
  382. Moroz, C., de Vries, A., Goldblum, N.: Preparation of an antivenin against Vipera palestinae venom with high antineurotoxic potency. Toxicon 4, 205–208 (1966 a)PubMedGoogle Scholar
  383. Moroz, C., deVries, A., Goldblum, N.: Preparation of horse antiserum against Echis colorata (Gunther) venom and determination of its capacity to neutralize the toxic afibrinogenemic and thrombocytopenic actions of Echis colorata and Echis carinata venoms. Ann. Inst. Pasteur 110, 276–282 (1966 b)Google Scholar
  384. Moroz, C., deVries, A., Sela, M.: Isolation and characterization of a neurotoxin from Vipera palestinae venom. Biochim. biophys. Acta (Amst.) 124, 136–146 (1966 c)Google Scholar
  385. Moroz, C., Goldblum, N., de Vries, A.: Preparation of Vipera palestinae antineurotoxin using carboxymethyl-cellulose-bound neurotoxin as antigen. Nature (Lond.) 200, 697–698 (1963)Google Scholar
  386. Moroz-Perlmutter, C., Goldblum, N., de Vries, A., Gitter, S.: Detoxification of snake venoms and venom fractions by formaldehyde. Proc. Soc. exp. Biol. (N.Y.) 112, 595–598 (1963)Google Scholar
  387. Moroz, C., deVries, A., Sela, M.: Chemical characterization of viperotoxin. Israel J. Chem. 3, 108 (1965)Google Scholar
  388. Müller-Eberhard, H. J.: Mechanism of inactivation of the third component of human complement (C′3) by cobra venom (Abstr.) Fed. Proc. 26, 744 (1967)Google Scholar
  389. Müller-Eberhard, H.J.: Biochemistry of complement. In: Amos, B. (Ed.): Progress in Immunology, pp. 553–565. New York: Academic 1971Google Scholar
  390. Munjal, D., Elliott, W.B.: Further studies on the properties of phospholipase A from honeybee (Apis mellifera) venom. Toxicon 10, 367–375 (1972)PubMedGoogle Scholar
  391. Murata, Y., Satake, M., Suzuki, T.: Studies on snake venom. XII. Distribution of proteinase activities among Japanese and Formosan snake venoms. J. Biochem. (Tokyo) 53, 431–436 (1963)Google Scholar
  392. Mutsaars, W., Bartels-Viroux, J.: Recherches sur un facteur favorisant la destruction du troisième composant du sérum chauffé de cobaye par le venin de cobra. Ann. Inst. Pasteur 73, 451 – 471 (1947)Google Scholar
  393. Nair, B.C., Nair, C., Elliott, W.B.: Action of antisera against homologous and heterologous snake venom phospholipases A2. Toxicon 13, 453–456 (1975)PubMedGoogle Scholar
  394. Nakai, K., Sasaki, T., Hayashi, K.: Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja). Biochem. biophys. Res. Commun. 44, 893–897 (1971)PubMedGoogle Scholar
  395. Narita, K., Lee, C. Y.: The amino acid sequence of cardiotoxin from Formosan cobra (Naja naja atra) venom. Biochem. biophys. Res. Commun. 41, 339–343 (1970)PubMedGoogle Scholar
  396. Nelson, R.A.: Survey Ophtal. 11, 498 (1966) (quoted by Hunsicker, L.G., Ruddy, S., Austen, K.F. In: Alternative Complement Pathway. J. Immunol. 110, 128–138 (1973)Google Scholar
  397. Nicolle, M., Raphael, A.: (quoted by: Nicolle, M., Boquet, A.: Elements de Microbiologie Générale et d’Immunologie, p. 268. Paris: Doin 1925)Google Scholar
  398. Nisonoff, A., Reichlin, M., Margoliash, E.: Immunological activity of cytochrome C. II. Localization of a major antigenic determinant of human cytochrome C. J. biol. Chem. 245, 940–946 (1970)PubMedGoogle Scholar
  399. Noc, F.: Sur quelques propriétés physiologiques des différents venins de serpents. Ann. Inst. Pasteur 18, 387–406 (1904)Google Scholar
  400. Noguchi, H.: Paraspecific properties of antivenins. Brit. med. J. 1904 II, 580–581Google Scholar
  401. Noguchi, H.: Snake Venoms. Washington: Carnegie Institution 1909Google Scholar
  402. Nossal, G.J.V.: Recent advances in immunological tolerance. In: Amos, B. (Ed.): Progress in Immunology, pp. 665–677. New York: Academic 1971Google Scholar
  403. Oberer, D.: Effect of snake venoms on rabbit basophil leucocytes. Biochem. Pharmacol. 11, 9–15 (1962)PubMedGoogle Scholar
  404. Ohta, M., Hayashi, K.: Chemical modification of the tryptophan residue in toxin B from the venom of the Indian cobra. Biochem. biophys. Res. Commun. 57, 973–979 (1974)Google Scholar
  405. Omori-Satoh, T., Lang, J., Breithaupt, H., Habermann, E.: Partial amino acid sequence of the basic Crotalus phospholipase A. Toxicon 13, 69–71 (1975)PubMedGoogle Scholar
  406. Omori-Satoh, T., Ohsaka, A.: Purification and some properties of hemorrhagic principle in the venom of Trimeresurus flavoviridis. Biochim. biophys. Acta (Amst.) 207, 432–444 (1970)Google Scholar
  407. Oshima, G., Matsuo, Y., Iwanaga, S., Suzuki, T.: Studies on snake venoms.XIX. Purification and some physico-chemical properties of proteinases a and c from the venom of Agkistrodon halys blomhoffii. J. Biochem. (Tokyo) 64, 227–238 (1968)Google Scholar
  408. Oshima, G., Omori-Satoh, T., Iwanaga, S., Suzuki, T.: Studies on snake venom hemorrhagic factor I (HR-I) in the venoms of Agkistrodon halys blomhoffii. Its purification and biological properties. J. Biochem. (Tokyo) 72, 1483–1494 (1972)Google Scholar
  409. Otto, R.: Zur Serumtherapie bei Bissen durch europäische Vipern. Klin. Wschr. 6, 1948–1950 (1927)Google Scholar
  410. Otto, R.: Vergleichende Untersuchungen mit Schlangengiftserum und Viperngiften verschiedener Herkunft. Z. Hyg. Infekt. 109, 272–285 (1928)Google Scholar
  411. Otto, R.: Untersuchungen über die Toxine europäischer Viperinen. Z. Hyg. Infekt. 110, 82–92 (1929 a)Google Scholar
  412. Otto, R.: Untersuchungen über die Wirkung verschiedener Schlangen-Gift-Antisera auf das Berne-Kreuzottern Toxin. Z. Hyg. Infekt. 110, 513–515 (1929 b)Google Scholar
  413. Otto, R.: Zur Wirkung der Schlangengiftantisera auf die Gifte europäischer Ottern. Z. Hyg. Infekt. 111, 503–510(1930)Google Scholar
  414. Ouchterlony, O.: “In vitro” method for testing the toxin producing capacity of diphtheria bacteria. Acta path, microbiol. scand. 25, 186–191 (1948)Google Scholar
  415. Oudin, J.: L’analyse immunochimique qualitative, méthode par diffusion des antigènes au sein de Fimmunsérum précipitant gélosé. Ann. Inst. Pasteur 75, 30–51 (1948)Google Scholar
  416. Ouyang, C., Hong, J. S., Teng, C.M.: Purification and properties of the thrombin-like principle of Agkistrodon acutus venom and its comparison with the bovine thrombin. Thrombos. Diathes. haemorrh. (Stuttg.) 26, 224–234 (1971)Google Scholar
  417. Ouyang, C., Teng, C.M.: Purification and properties of the anticoagulant principle of Agkistrodon acutus venom. Biochim. biophys. Acta (Amst.) 278, 155–162 (1972)Google Scholar
  418. Ovadia, M., Kochva, E., Moav, B.: Neutralization mechanism of Vipera palestinae neurotoxin by a purified factor from homologous serum. Biochim. biophys. Acta (Amst.) 491, 370–386 (1977)Google Scholar
  419. Parrish, H.M., Watt, H.F., Arnold, J.D.: Human allergy resulting from North American snake venoms. J. Florida med. Ass. 43, 1116–1119 (1957)PubMedGoogle Scholar
  420. Patel, T.N., Braganca, B.M., Bellare, R.A.: Changes produced by cobra venom cytotoxin on the morphology of Yoshida sarcoma cells. Exp. Cell Res. 57, 289–297 (1969)PubMedGoogle Scholar
  421. Pearce, F.L., Banks, B.E.C., Banthorpe, D.V., Berry, A.R., Davies, H.S., Vernon, C.A.: The isolation and characterization of nerve-growth factor from the venom of Vipera russellii. Europ. J. Biochem. 29, 417–425 (1972)PubMedGoogle Scholar
  422. Pfleiderer, G., Sumyk, G.: Investigation of snake venom enzymes. I. Separation of rattlesnake venom proteinases by cellulose ion-exchange chromatography. Biochim. biophys. Acta (Amst.) 51, 482–493 (1961)Google Scholar
  423. Phisalix, C., Bertrand, G.: Atténuation du venin de vipère par la chaleur et vaccination du cobaye contre ce venin. Le sérum sanguin des animaux vaccinés. C.R. Soc. Biol. (Paris) 46, 148–150 (1894a)Google Scholar
  424. Phisalix, C., Bertrand, G.: Sur la propriété antitoxique du sang des animaux vaccinés contre le venin de vipère. C.R. Acad. Sci. [D] (Paris) 118, 356–358 (1894b)Google Scholar
  425. Piantanida, M., Muic, N.: The antigenic composition of Ammodytes viper venom. J. Immunol. 73, 115–119(1954)PubMedGoogle Scholar
  426. Picado, C.: Immunité hétérologue des animaux immunisés contre le venin bothropique. C.R. Soc. Biol. (Paris) 116, 419 (1934)Google Scholar
  427. Pickering, R.J., Wolfson, M.R., Good, R.A., Gewurz, H.: Passive hemolysis by serum and cobra venom factor: a new mechanism inducing membrane damage by complement. Proc. nat. Acad. Sci. (Wash.) 62, 521–527 (1969)Google Scholar
  428. Poilleux, G., Boquet, P.: Propriétés de trois toxines isolées du venin d’un Elapidae: Naja melanoleuca. C.R. Acad. Sci. [D] (Paris) 274, 1953–1956 (1972)Google Scholar
  429. Pratt Johnson, J.: The estimation of haemorrhagin in venom by an intra-dermal method and a potency test of antivenom sera for antihaemorrhagin. J. Path. Bact. 39, 704–706 (1934)Google Scholar
  430. Pross, H.F., Eidinger, D.: Antigenic competition: a review of nonspecific antigen-induced suppression. Advanc. Immunol. 18, 133–168 (1974)Google Scholar
  431. Pross, H.F., Novak, T., Eidinger, D.: “In vitro” studies of “antigenic competition”. I. The comparative responses of normal and “immune” lymphoid cell populations. Cell. Immunol. 2, 445–457(1971)PubMedGoogle Scholar
  432. Pryjma, J., Humphrey J.H.: Prolonged C3 depletion by cobra venom factor in thymus-deprived mice and its implication for the role of C 3 as an essential second signal for B-cell triggering. Immunology 28, 569–576 (1975)PubMedGoogle Scholar
  433. Puranananda, C., Lauhatirananda, P., Ganthavorn, S.: Cross immunological reactions in snake venoms. Mem. Inst. Butantan 33, 1, 327–330 (1966)Google Scholar
  434. Radomski, J.L., Miale, J.B., Deichmann, W.B., Fisher, J.A.: Hematologic effects of Crotalus adamanteus (rattlesnake) venom. Arch. Toxikol. 17, 365–372 (1959)PubMedGoogle Scholar
  435. Radovich, J., Talmage, D.W.: Antigenic competition: cellular or humoral? Science 158, 512–514 (1967)PubMedGoogle Scholar
  436. Ramon, G.: Des anatoxines. C.R. Acad. Sci. [D] (Paris) 178, 1436–1439 (1924)Google Scholar
  437. Ramon, G., Boquet, P., Richou, R., Nicol, L.: Les anavenins spécifiques et les substances adjuvantes et stimulantes de l’immunité dans la production des sérums antivenimeux respectivement dirigés contre les venins de Cerastes cornutus et de Naja haje. Ann. Inst. Pasteur 67, 355–358 (1941)Google Scholar
  438. Raudonat, H.W., Holler, B.: Über die herzwirksame Komponente des Kobragiftes “Cardiotoxin”. Arch. exp. Path. Pharmak. 233, 431–437 (1958)Google Scholar
  439. Raymond, M.L., Tu, A.T.: Role of tyrosine in sea snake neurotoxin. Biochim. biophys. Acta (Amst.) 285, 498–502 (1972)Google Scholar
  440. Reichlin, M.: Amino acid substitution and antigenicity of globular proteins. Advanc. Immunol. 20, 71–123 (1975)Google Scholar
  441. Reid, H.A.: Snake bites in Malaya. In: Keegan, H.L., Macfarlane, W.V. (Eds.): Venomous and Poisonous Animals and Noxious Plants of the Pacific Region, pp. 355–362. Oxford: Pergamon 1963Google Scholar
  442. Reid, H. A.: Cobrabites. Brit. med. J. 1964 II, 540–545Google Scholar
  443. Reid, H.A., Thean, P.C., Chang, K.E., Baharom, A.R.: Clinical effects of bites by Malayan viper (Agkistrodon rhodostoma). Lancet 1963 I, 617–621Google Scholar
  444. Renaud, M.: Immunisation contre le venin de cobra par les complexes venins-savons. C.R. Soc. Biol. (Paris) 103, 143–144 (1930)Google Scholar
  445. Richards, G. M., Tutas, D.J., Wechter, W.J., Laskowski, M.: Hydrolysis of dinucleoside monophosphates containing arabinose in various internucleotide linkages by exonuclease from the venom of Crotalus adamanteus. Biochemistry 6, 2908–2914 (1967)PubMedGoogle Scholar
  446. Ritz, H.: Über die Wirkung des Cobragiftes auf die Komplemente. Z. Immun.-Forsch. 13, 62–63 (1912)Google Scholar
  447. Rochat, H., Gregoire, J., Martin-Moutot, N., Menashe, M., Kopeyan, C., Miranda, F.: Purification of animal neurotoxins: isolation and characterization of three neurotoxins from the venom of Naja nigricollis (mossambica) Peters. FEBS Letters 42, 335–339 (1974)PubMedGoogle Scholar
  448. Rubin, A. S., Coons, A.H.: Specific heterologous enhancement of immune responses. II. Immunological memory cells of thymic origin. J. exp. Med. 135, 437–441 (1972 a)PubMedGoogle Scholar
  449. Rubin, A. S., Coons, A.H.: Specific heterologous enhancement of immune responses. IV. Specific generation of a thymus-derived enhancing factor. J. exp. Med. 136, 1501–1517 (1972 b)PubMedGoogle Scholar
  450. Rude, E.: Antigens and immunogenicity. FEBS Letters 17, 6–10 (1971)PubMedGoogle Scholar
  451. Russel, F.E., Timmerman, W.F., Meadows, P.E.: Clinical use of antivenin prepared from goat serum. Toxicon 8, 63–65 (1970)Google Scholar
  452. Rydén, L., Gabel, D., Eaker, D.: A model of the three-dimensional structure of snake venom neurotoxins based on chemical evidence. Int. J. Pept. Prot. Res. 5, 261–273 (1973)Google Scholar
  453. Sadahiro, S., Kondo, S., Yamauchi, K., Kondo, H., Murata, R.: Studies on immunogenicity of toxoids from Habu (Trimeresurus flavoviridis) venom. Jap. J. med. Sci. Biol. 23, 285–289 (1970)PubMedGoogle Scholar
  454. Saito, K., Hanahan, D.J.: A study of the purification and properties of the phospholipase A of Crotalus adamanteus venom. Biochemistry 1, 521–532 (1962)PubMedGoogle Scholar
  455. Salach, J.I., Turini, P., Hauber, J., Seng, R., Tisdale, H., Singer, T.P.: Isolation of phospholipase A isoenzymes from Naja naja venom and their action on membrane bound enzymes. Biochem. biophys. Res. Commun. 33, 936–941 (1968)PubMedGoogle Scholar
  456. Salach, J.I., Turini, P., Seng, R., Hauber, J., Singer, T.P.: Phospholipase A of snake venoms. I. Isolation and molecular properties of isoenzymes from Naja naja and Vipera russellii venoms. J. biol. Chem. 246, 331–339 (1971)PubMedGoogle Scholar
  457. Samejima, Y., Iwanaga, S., Suzuki, T.: Complete amino acid sequence of phospholipase A2 isolated from Agkistrodon halys blomhoffli venom. FEBS Letters 47, 348–351 (1974)Google Scholar
  458. Sarkar, N.K.: Existence of cardiotoxic principle in cobra venom. Ann. Biochem. exp. Med. 8, 11–22(1948)PubMedGoogle Scholar
  459. Sasaki, T.: Chemical studies on the poison of Formosan cobra. II. The terminal amino acid residues of purified poison (neurotoxin). J. Pharm. Soc. Jap. 77, 845–847 (1957)Google Scholar
  460. Satake, M., Murata, Y., Suzuki, T.: Studies on snake venom. XIII. Chromatographic separation and properties of three proteinases from Agkistrodon halys blomhoffli venom. J. Biochem. (Tokyo) 53, 438–447 (1963)Google Scholar
  461. Sato, T., Iwanaga, S., Mizushima, Y., Suzuki, T.: Studies on snake venoms. XV. Separation of arginine esterhydrolase of Agkistrodon halys blomhoffli venom into three enzymatic entities: “bradykinin releasing”, “clotting”, and “permeability increasing”. J. Biochem. (Tokyo) 57, 380–391 (1965)Google Scholar
  462. Sato, I., Ryan, K.W., Mitsuhashi, S.: Studies on habu snake venom. VI. Cytotoxic effect of Habu (Trimeresurus flavoviridis Hallowell) and cobra (Naja naja) venoms on the cells “in vitro”. Jap. J. exp. Med. 34, 119–124 (1964)PubMedGoogle Scholar
  463. Sato, S., Abe, T., Tamiya, N.: Binding of iodinated “Erabutoxin b” a sea snake toxin to the end-plates of the mouse diaphragm. Toxicon 8, 313–315 (1970)PubMedGoogle Scholar
  464. Sato, S., Ogahara, H., Tamiya, N.: Immunochemistry of “Erabutoxins”. Toxicon 10, 239–243 (1972)PubMedGoogle Scholar
  465. Sato, S., Tamiya, N.: Iodination of Erabutoxin b: Diiodohistidine formation. J. Biochem. (Tokyo) 68, 867–872 (1970)Google Scholar
  466. Sato, S., Yoshida, H., Abe, H., Tamiya, N.: Properties and biosynthesis of a neurotoxic protein of the venom of sea snakes Laticauda laticaudata and Laticauda colubrina. Biochem. J. 115, 85 – 90 (1969)PubMedGoogle Scholar
  467. Sawai, Y., Kawamura, Y., Fukuyama, T., Keegan, H.L.: Studies on the inactivation of snake venoms by dihydrothioctic acid. Jap. J. exp. Med. 37, 121–128 (1967)Google Scholar
  468. Sawai, Y., Makino, M., Kawamura, Y.: Studies on the antitoxic action of dihydrolypoic acid (dihydrothioctic acid), and tetracycline against Habu snake (Trimeresurus flavoviridis Hallo-well) venom. In: Keegan, H.L., Macfarlane, W.V. (Eds.): Venomous and Poisonous Animals and Noxious Plants of the Pacific Area, pp. 327–335. Oxford: Pergamon 1963Google Scholar
  469. Sawai, Y., Makino, M., Miyasaki, S., Kato, K., Adachi, H., Mitsuhashi, S., Okonogi, T.: Studies on the improvement of treatment of Habu snake bite. I. Studies on the improvement of habu snake antivenin. Jap. J. exp. Med. 31, 137–150 (1961)Google Scholar
  470. Schenberg, S.: Analise imunologica (micro-difusao em gel) de venenos individuals de Bothrops jararaca. Cienca Cultura 13, 225–230 (1961)Google Scholar
  471. Schenberg, S.: Immunological (Ouchterlony method) indentification of intrasubspecies qualitative differences in snake venom composition. Toxicon 1, 67–75 (1963)Google Scholar
  472. Schenberg, S., Pereira Lima, F. A., Schiripa, L.N., Nagamori, A.: A snake venom ADPase (Abstract). 4 th International Symposium on Animal, Plant, and Microbial Toxins. Tokyo, 1974Google Scholar
  473. Schenck, J.R., Hargie, M.P., Brown, M.S., Erbert, D.S., Yoo, A.L., Mclntire, C.: The enhancement of antibody formation by Escherichia coli lipopolysaccharid acid-detoxified derivatives. J. Immunol. 102, 1411–1422 (1969)PubMedGoogle Scholar
  474. Schirrmacher, V., Wigzell, H.: Immune response against native and chemically modified albumin in mice. I. Analysis of non-thymus processed (B) and thymus processed (T) cell response against methylated bovine serum albumin. J. exp. Med. 136, 1617–1630 (1972)Google Scholar
  475. Schlossberger, H., Bieling, R., Demnitz, H.: Untersuchungen über Antitoxine gegen Schlangengifte und die Herstellung eines Heil-Serums gegen die Gifte der europäischen und mediterranen Ottern. In: Die europäischen und mediterranen Ottern und ihre Gifte, pp. 111–158. Marburg-Lahn: Behring 1936Google Scholar
  476. Schöttler, W.H.A.: Serological analysis of venoms and antivenins. Bull. Org. Mond. Sante 12, 877–903 (1955)Google Scholar
  477. Sela, M., Arnon, R.: Studies on the chemical basis of the antigenicity of proteins. I. Antigenicity of polypeptidyl gelatins. Biochem. J. 75, 91–102 (1960)PubMedGoogle Scholar
  478. Sela, M., Fuchs, S., Arnon, R.: Studies on the chemical basis of the antigenicity of proteins 5 Synthesis, characterization and immunogenicity of some multi-chain and linear polypeptides containing tyrosine. Biochem. J. 85, 223–235 (1962)PubMedGoogle Scholar
  479. Seto, A., Sato, S., Tamiya, N.: The properties and modification of tryptophan in a sea snake toxin, “Erabutoxin”. Biochim. biophys. Acta (Amst.) 214, 483–489 (1970)Google Scholar
  480. Sewall, H.: Experiments on the preventive inoculations of rattlesnake venom. J. Physiol. (Lond.) 8, 203–210 (1887)Google Scholar
  481. Shaham, N., Bdolah, A., Kochva, E.: Isolation of L-amino acid oxidase from Vipera palestinae venom and preparation of a monospecific antiserum in rabbits. In: deVries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. III, pp. 919–925. London: Gordon and Breach 1973Google Scholar
  482. Shands, J.W.: The immunological role of the macrophage. In: Cruickshank, R., Weir, D.M. (Eds.): Modern Trends in Immunology, pp. 86–118. London: Butterworths 1967Google Scholar
  483. Shiloah, J., Berger, A., Klibansky, C.: Purification of isoenzymes from cobra Naja naja and Vipera palestinae venoms Toxicon 8, 153–154 (1970)Google Scholar
  484. Shiloah, J., Klibansky, C., deVries, A.: Phospholipase isoencymes from Naja naja venom. I. Purification and partial characterization. Toxicon 11, 481–490 (1973)PubMedGoogle Scholar
  485. Shipolini, R.A., Bailey, G.S., Banks, B.E.C.: The preparation of neurotoxin from the venom of Naja melanoleuca and the primary sequence determination. Eur op. J. Biochem. 42, 203–211 (1974)Google Scholar
  486. Shipolini, R.A., Bailey, G.S., Edwardson, J.A., Banks, B.E.C.: Separation and characterization of polypeptides from the venom of Dendroaspis viridis. Europ. J. Biochem. 40, 337–344 (1973)PubMedGoogle Scholar
  487. Shipolini, R.A., Banks, B.E.C.: The amino acid sequence of a polypeptide from the venom of Dendroaspis viridis. Europ. J. Biochem. 49, 399–405 (1974 b)PubMedGoogle Scholar
  488. Shipolini, R.A., Ivanov, C.P., Dimitrov, G.: Composition of the low molecular fraction of the Bulgarian viper venom. Biochim. biophys. Acta (Amst.) 104, 292–295 (1965)Google Scholar
  489. Shipolini, R.A., Kissonnerghis, M., Banks, B.E.C.: The primary structure of a major polypeptide component from the venom of Naja melanoleuca. Europ. J. Biochem. 56, 449–454 (1975)PubMedGoogle Scholar
  490. Shkenderov, S.: Anaphylactogenic properties of bee venom and its fractions. Toxicon 12, 529 – 534 (1974)PubMedGoogle Scholar
  491. Shü, I.C., Ling, K.H., Yang, C.C.: Study on I131 cobrotoxin. Toxicon 5, 295–301 (1968)PubMedGoogle Scholar
  492. Shulov, A., Ginsburg, H., Weissmann, A., Flesh, Y., Dishon, T.: La préparation d’un antivenin contre la vipère palestinienne par l’emploi d’un venin frais. Harefuah. J. med. Ass. Israel 56, 55–58 (1959)Google Scholar
  493. Shulov, A., Nelken, D., Schillinger, G.: Méthode sérologique pour le titrage des serums antivenimeux. Ann. Inst. Pasteur 102, 117–122 (1962)Google Scholar
  494. Singer, T.P., Kearney, E. B.: The L-amino-acid-oxidases of snakes venoms. II. Isolation and characterization of homogeneous L-amino-acid-oxidase. Arch. Biochem. 29, 190–209 (1950)PubMedGoogle Scholar
  495. Sket, D., Gubensek, F., Adamic, S., Lebez, D.: Action of a partially purified basic protein fraction from Vipera ammodytes venom. Toxicon 11, 47–53 (1973)PubMedGoogle Scholar
  496. Skvaril, P., Tykal, P.: Investigation of antigen composition of the venom of Vipera ammodytes. Coll. Czechosl. Chem. Commun. 26, 1479–1482 (1961)Google Scholar
  497. Slotta, K.H.: A crotoxina primeru substancia pura dos venenos ofidicios. Ann. Acad. Brasil. Sci. 10, 195 (1938)Google Scholar
  498. Soh, K. S., Chan, K. E.: Caseinolytic and esteratic activities of Malayan pit viper venom and its proteolytic and thrombin-like fractions. Toxicon 12, 151–158 (1974)PubMedGoogle Scholar
  499. Spitznagel, J. K., Allison, A.C.: Mode of action of adjuvant effects on antibody response to macrophages associated bovine serum albumin. J. Immunol. 104, 128–139 (1970 a)PubMedGoogle Scholar
  500. Spitznagel, J.K., Allison, A.C.: Mode of action of adjuvants: retinol and other lysosome-labili-zing agents as adjuvants. J. Immunol. 104, 119–127 (1970 b)PubMedGoogle Scholar
  501. Stanic, M.: Allergenic properties of venom hypersensitiveness in man and animals. In: Buckley, Porges, N. (Eds.): Venoms, pp. 181–188. Amer. Ass. Adv. Sci., pub. No.44, Washington 1956Google Scholar
  502. Stanic, M.: A modified Calmette’s “in vitro” method for the titration of the antiphosphatidase a antibodies in the antivenin against the Vipera ammodytes venom. Path. Microbiol. (Basel) 23, 30–35 (1960)Google Scholar
  503. Stephens, J. W.W.: On the hemolytic action of snake toxins and toxin sera. J. Path. Bact. 6, 273 (1900)Google Scholar
  504. Strosberg, A.D., Nihoul-Deconink, C., Kanarek, L.: Weak immunological cross-reaction between bovine α lactalbumin and hen’s egg white lysozyme. Nature (Lond.) 207, 1241–1242 (1970)Google Scholar
  505. Strydom, A. J. C.: Snake venom toxins. The amino acid sequences of two toxins from Dendroaspis jamesoni kaimosea (jameson’s mamba) venom. Biochim. biophys. Acta (Amst.) 328, 491–509 (1973)Google Scholar
  506. Strydom, A. J.C., Botes, D.P.: Snake venom toxins. Purification, properties, and complete amino acid sequence of two toxins from ringhals (Hemachatus haemachatus) venom. J. biol. Chem. 246, 1341–1349(1971)PubMedGoogle Scholar
  507. Strydom, D.J.: Phylogenetic relationships of proteroglyphae toxins. Toxicon 10, 39–45 (1972a)PubMedGoogle Scholar
  508. Strydom, D. J.: Snake venom toxins: the amino acid sequences of two toxins from Dendroaspis polylepis polylepis. J. biol. Chem. 247, 4029–4042 (1972 b)PubMedGoogle Scholar
  509. Strydom, D. J.: Snake venom toxins: the evolution of some of the toxins found in snake venoms. Syst. Zool. 22, 596–608 (1973 a)Google Scholar
  510. Strydom, D.J.: Snake venom toxins. Structure-function relationships and phylogenetics. Comp. Biochem. Physiol. [B] 44, 269–281 (1973 b)Google Scholar
  511. Strydom, D. J.: Protease inhibitors as snake toxins. Nature (Lond.) 243, 88–89 (1973c)Google Scholar
  512. Strydom, D. J.: The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor from Dendroaspis polylepis polylepis (black mamba) venom. Biochim. biophys. Acta (Anst.) 491, 361–369 (1977)Google Scholar
  513. Sulkowski, E., Björk, W., Laskowski, M.: A specific and nonspecific alkaline monophosphatase in the venom of Bothrops atrox and their occurence in a purified venom phosphodiesterase. J. biol. Chem. 238, 2477–2486 (1963)PubMedGoogle Scholar
  514. Sulkowski, E., Laskowski, M.: Venom exonuclease (phosphodiesterase) immobilized on concanavalin-A-sepharose. Biochem. biophys. Res. Commun. 57, 463–468 (1974)PubMedGoogle Scholar
  515. Sumyk, G., Lal, H., Hawrylewicz, E. J.: Whole animal autoradiographic localization of radioiodine labeled cobra venom in mice. Fed. Proc. 22, 668 (1963)Google Scholar
  516. Taborda, A.R., Taborda, L.C., Williams, J. N., Jr., Elvehjem, C.A.: A study of the desoxyribonu-cleases activity of snake venoms. J. biol. Chem. 195, 207–213 (1952)PubMedGoogle Scholar
  517. Takahashi, H., Iwanaga, S., Suzuki, T.: Isolation of a novel inhibitor of kallikrein, plasmin, and trypsin from the venom of Russell’s viper (Vipera russellii). FEBS Letters 27, 207–210 (1972)PubMedGoogle Scholar
  518. Takahashi, H., Iwanaga, S., Kitagawa, T., Hokama, Y., Suzuki, T.: Snake venom proteinase inhibitors. II. Chemical structure of inhibitor II isolated from the venom of Russell’s viper (Vipera russellii). J. Biochem. (Tokyo) 76, 721–733 (1974a)Google Scholar
  519. Takahashi, H., Iwanaga, S., Kitagawa, T., Hokama, Y., Suzuki, T.: Novel proteinase inhibitors in snake venoms: Distribution, isolation and amino acid sequence. In: Fritz, H., Tschesche, H., Greene, L. J., Eruscheit, E. (Eds.): Bayer Symposium V: Proteinase Inhibitors, pp. 265–276. Berlin-Heidelberg-New York: Springer 1974bGoogle Scholar
  520. Takahashi, H., Iwanaga, S., Hokama, Y., Suzuki, T., Kitagawa, T.: Primary structure of proteinase inhibitor II isolated from the venom of Russell’s viper (Vipera russellii). FEBS Letters 38, 217–221 (1974c)Google Scholar
  521. Takahashi, T., Ohsaka, A.: Purification and characterization of a proteinase in the venom of Trimeresurus flavoviridis. Complete separation of the enzyme from hemorrhagic activity. Biochim. biophys. Acta (Amst.) 198, 293–307 (1970 a)Google Scholar
  522. Takahashi, T., Ohsaka, A.: Purification and some properties of two hemorrhagic principles (HR2a and HR2b) in the venom of Trimeresurus flavoviridis; complete separation of the principles from proteolytic activity. Biochim. biophys. Acta (Amst.) 207, 65–75 (1970 b)Google Scholar
  523. Takechi, M., Hayashi, K., Sasaki, T.: The amino acid sequence of cytotoxin II from the venom of Indian cobra (Naja naja). Molec. Pharmacol. 8, 446–451 (1973)Google Scholar
  524. Takechi, M., Sasaki, T., Hayashi, K.: The N-terminal amino acid sequences of two basic cytotoxic proteins from the venom of the Indian cobra. Naturwissenschaften 6, 323–324 (1971)Google Scholar
  525. Talmage, D.: The role of auxiliary cells in antigen induced response (Summary). Immunochemis-try 11, 102 (1974)Google Scholar
  526. Tamiya, N., Abe, H.: The isolation, properties and amino acid sequence of “Erabutoxin” c, a minor neurotoxic component of the venom of a sea snake Laticauda semifasciata. Biochem. J. 130, 547–555 (1972)PubMedGoogle Scholar
  527. Tamiya, N., Arai, H.: Studies on sea snake venoms. Crystallization of “Erabutoxins” a and b from Laticauda semifasciata venom. Biochem. J. 99, 624–630 (1966)PubMedGoogle Scholar
  528. Tamiya, N., Arai, H., Sato, S.: Studies on sea snake venoms: crystallization of “Erabutoxins” a and b from Laticauda semifasiata venom, and of “Laticotoxin”, a from Laticauda laticaudata venom. In: Russell, F.E., Saunders, P.R. (Eds.): Animal Toxins, pp. 249–258. Oxford: Pergamon 1966Google Scholar
  529. Tamiya, N., Sato, S.: Studies on snake venom: Structure and function of crystalline toxins of sea venom Laticaudinae. 7th Inter. Congress. Biochem., Hakone Symp., Tokyo, Abstr. 497 (1967)Google Scholar
  530. Tanaka, A., Ishibashi, T., Sugugima, K., Takamoto, M.: Immunological adjuvants. VI. An acety-lated mycobacterial adjuvant lacking competing antigenicity. Z. Immun.-Forsch. 142, 303 – 317(1971)Google Scholar
  531. Tatsuki, T., Iwanaga, S., Oshima, G., Suzuki, T.: Snake venom NAD nucleotidase: its occurence in the venom from the genus Agkistrodon and purification and properties of the enzyme from the venom of Agkistrodon halys blomhoffii. Toxicon 13, 211–220 (1975)PubMedGoogle Scholar
  532. Tatsuki, T., Iwanaga, S., Suzuki, T.: A simple method for preparation of snake venom phosphodiesterase almost free from 5′-nucleotidase. J. Biochem. (Tokyo) 77, 831–836 (1975)Google Scholar
  533. Taylor, J., Mallik, S. M. K.: Observation on the neutralization of the “hemorrhagin” of certain viper venoms by antivenin. Indian J. med. Res. 23, 121–130 (1935)Google Scholar
  534. Taylor, J., Mallick, S. M. K.: The action of rattlesnake and moccasin venoms as compared with Indian viper venoms. Indian J. med. Res. 24, 273–279 (1936)Google Scholar
  535. Taylor, J., Mallick, S.M.K., Ahuja, M.L.: The coagulant action of blood of Daboia and Echis venoms and its neutralization. Indian J. med. Res. 23, 131–140 (1935)Google Scholar
  536. Tazieff-Depierre, F., Pierre, J.: Action curarisante de la toxine α de Naja nigricollis. C.R. Acad. Sci. [D] (Paris) 263, 1785–1788 (1966)Google Scholar
  537. Timmerman, W.F.: Immunological studies with Crotalus venom. Proc. west. Pharmacol. Soc. 13, 105–110(1970)Google Scholar
  538. Toda, T., Mitsuse, B.: Studien über die Komponenten des hämolytischen Komplements. Z. Immun.-Forsch. 78, 62–81 (1933)Google Scholar
  539. Toom, P.M., Solie, T.N., Tu, A.T.: Characterization of a nonproteolytic arginine ester-hydroly-sing enzyme from snake venom. J. biol. Chem. 245, 2549–2555 (1970)PubMedGoogle Scholar
  540. Tsao, F.H.C., Keim, P.S., Heinrikson, R.L.: Crotalus adamanteus phospholipase A2α: subunit structure, NH2-terminal sequence, and homology with other phospholipase. Arch. Biochem. Biophys. 167, 706–717 (1975)PubMedGoogle Scholar
  541. Tseng, L. F., Chiu, T.H., Lee, C.Y.: Absorption and distribution of 131 abeled Cobra venom and its purified toxins. Toxicol, appl. Pharmacol. 12, 526–535 (1968)Google Scholar
  542. Tsernoglou, D., Petsko, G.A.: The crystal structure of a postsynaptic neurotoxin in from sea snake at 2.2 Å resolution. FEBS Letters 68, 1–14 (1976)PubMedGoogle Scholar
  543. Tu, A. T., Adams, B.L.: Phylogenese relationships among venomous snakes of the genus Agkistrodon from Asia and the North American continent. Nature (Lond.) 217, 760–762 (1968)Google Scholar
  544. Tu, A. T., Ganthavorn, S.: Comparison of Naja naja siamensis and Naja naja atra venoms. Toxicon 5, 207–212(1968)PubMedGoogle Scholar
  545. Tu, A.T., Hong, B.S.: Purification and chemical studies of a toxin from the venom of Lapemis hardwickii. J. biol. Chem. 246, 2772–2779 (1971)PubMedGoogle Scholar
  546. Tu, A. T., Hong, B. S., Solie, T.N.: Characterization and chemical modification of toxins isolated from the venom of sea snake, Laticauda semifasciata, from Philippines. Biochemistry 10, 1295–1304(1971)PubMedGoogle Scholar
  547. Tu, A.T., Passey, R.B.: Phospholipase A from sea snake venom and its biological properties. In: de Vries, A., Kochva, E. (Eds.): Toxins of Animal and Plant Origin, Vol. I, pp. 419–436. London: Gordon and Breach 1971Google Scholar
  548. Tu, A. T., Passey, R.B., Toom, P.M.: Isolation and characterization of phospholipase A from sea snake Lacticauda semifasciata venom. Arch. Biochem. Biophys. 140, 96–106 (1970)PubMedGoogle Scholar
  549. Tu, A. T., Salafranca, E. S.: Immunological properties and neutralization of sea snake venoms (II). Amer. J. trop. Med. Hyg. 23, 135–138 (1974)Google Scholar
  550. Tu, A. T., Shen, T., Bieber, A.L.: Purification and chemical characterization of the major neurotoxin from the venom of Pelamis platurus. Biochemistry 14, 3408–3413 (1975)PubMedGoogle Scholar
  551. Tu, A. T., Toom, P. M.: Isolation and characterization of the toxic component of Enhydrina schistosa (common sea snake) venom. J. biol. Chem. 246, 1012–1016 (1971)PubMedGoogle Scholar
  552. Unanue, E.R., Askonas, B.A., Allison, A.C.: A role of macrophages in the stimulation of immune responses by adjuvants. J. Immunol. 103, 71–78 (1969)PubMedGoogle Scholar
  553. Uriel, J., Avrameas, S.: Mise en évidence d’hydrolases pancréatiques après électrophorèse et immuno-électrophorèse en agarose. Ann. Inst. Pasteur 106, 396–407 (1964)Google Scholar
  554. Uriel, J., Courcon, J.: Caractérisation des ribonucléases après électrophorèse en gélose. C.R. Acad. Sci. [D] (Paris) 253, 1876–1877 (1961)Google Scholar
  555. Uriel, J., Scheidegger, J.J.: Electrophorèse en gélose et coloration des constituants. Bull. Soc. chim. Biol. 37, 165–168 (1955)PubMedGoogle Scholar
  556. Vellard, J.: Spécificité des sérums anti-ophidiques. Ann. Inst. Pasteur 44, 148–170 (1930)Google Scholar
  557. Vellard, J.: Propriétés du venin des principales espèces de serpents du Vénézuala. Ann. Inst. Pasteur 60, 511–548 (1938)Google Scholar
  558. Vellard, J.: Variations géographiques du venin de Crotalus terrificus. C.R. Soc. Biol. [D] (Paris) 130, 463–464 (1939)Google Scholar
  559. Vidal, J.C., Cattaneo, P., Stoppani, A.O.M.: Some characteristic properties of phospholipases A2 from Bothrops neuwiedii venom. Arch. Biochem. Biophys. 151, 168–179 (1972)PubMedGoogle Scholar
  560. Vidal, J.C., Stoppani, A.O.M.: Purification de la phospholipase A du venin de Bothrops neuwiedii. C.R. Soc. Biol. (Paris) 162, 1615–1616 (1968)Google Scholar
  561. Vidal, J.C., Stoppani, A.O.M.: Isolation and purification of two phospholipases A from Bothrops venom. Arch. Biochem. Biophys. 145, 543–556 (1971 a)PubMedGoogle Scholar
  562. Vidal, J.C., Stoppani, A.O.M.: Isolation and properties of an inhibitor of phospholipase A from Bothrops neuwiedii venom. Arch. Biochim. Biophys. 147, 66–76 (1971b)Google Scholar
  563. Viljoen, C.C., Botes, D.P.: Snake venom toxins. The purification and amino acid sequence of toxin F. VII. From Dendroaspis angusticeps venom. J. biol. Chem. 248, 4915–4919 (1973)PubMedGoogle Scholar
  564. Viljoen, C.C., Botes, D.P.: Snake venom toxins. The purification and amino acid sequence of toxin T A2 from Dendroaspis. J. biol. Chem. 249, 366–372 (1974)PubMedGoogle Scholar
  565. Vital Brazil, O.: La défense contre l’Ophidisme. Sao Paulo: Pocai & Weiss 1911Google Scholar
  566. Vital Brazil, O.: Neurotoxins from the South American rattle-snake venom. J. Formosan med. Ass. 71, 394–400 (1972)Google Scholar
  567. Vogt, W., Patzer, P., Lege, L., Oldigs, H.D., Wille, G.: Synergism between phospholipase A and various peptides and SH-reagents in causing haemolysis. Arch. Pharmakol. 265, 442–454 (1970)Google Scholar
  568. Wahlström, A.: Purification and characterization of phospholipase A from the venom of Naja nigricollis. Toxicon 9, 45–56 (1971)PubMedGoogle Scholar
  569. Wakui, K., Kawauchi, S.: Properties of the two lecithinases A in snake venom. J. pharm. Soc. Jap. 81, 1394–1400(1961)Google Scholar
  570. Weigle, W. O., Chiller, J. M., Habitch, G. S.: Immunological unresponsiveness: cellular kinetics and interactions. In: Amos, B. (Ed.): Progress in Immunology, pp. 311–322. New York: Academic 1971Google Scholar
  571. Weise, K.H. K., Carlsson, F.H.H., Joubert, F.J., Strydom, D.J.: The purification of toxins V11I and V112, two cytotoxin homologues from banded Egyptian cobra (Naja haje annulifera) venom, and the complete amino acid sequence of toxin V11I. Hoppe-Seylers Z. physiol. Chem. 354, 1317–1326 (1973)PubMedGoogle Scholar
  572. Wellner, D., Meister, A.: Crystalline L-amino acid oxidase of Crotalus adamanteus. J. biol. Chem. 235, 2013–2018(1960)PubMedGoogle Scholar
  573. Wells, M. A., Hanahan, D. J.: Studies on phospholipase A. I. Isolation and characterization of two enzymes from Crotalus adamanteus venom. Biochemistry 8, 414–424 (1969)PubMedGoogle Scholar
  574. White, R.G.: Concepts of mechanism of action of adjuvants. In: Boreck, F. (Ed.): Immunogenici-ty, pp. 112–130. Amsterdam: North-Holland 1972Google Scholar
  575. White, R. G., Jenkins, G.C., Wilkinson, P.C.: The reproduction of skin sensitizing antibody in the guinea-pig. Int. Arch. Allergy 22, 156–165 (1963)PubMedGoogle Scholar
  576. Wu, C.Y., Cinader, B.: Antigenic promotion. Increase in hapten specific plaque-forming cells after pre-injection with structurally unrelated macromolecules. J. exp. Med. 134, 693–712 (1971)PubMedGoogle Scholar
  577. Wu, T.W., Tinker, D.O.: Phospholipase A2 from Crotalus atrox venom. I. Purification and some properties. J. Biochem. (Tokyo) 8, 1558–1568 (1969)Google Scholar
  578. Yang, C.C.: Enzymic hydrolysis and chemical modification of cobrotoxin. Toxicon 3, 19–23 (1965 a)PubMedGoogle Scholar
  579. Yang, C.C.: Crystallization and properties of cobrotoxin from Formosan cobra venom. J. biol. Chem. 240, 1616–1618 (1965 b)PubMedGoogle Scholar
  580. Yang, C.C.: The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim. biophys. Acta (Amst.) 133, 346–355 (1967)Google Scholar
  581. Yang, C.C., Chang, L. T.: Studies on the phosphatase activities of Formosan snake venoms. J. Formosan med. Ass. 53, 609–616 (1954)Google Scholar
  582. Yang, C.C., Chang, C.C., Liou, I. F.: Studies on the status of arginine residues in Cobrotoxin. Biochim. biophys. Acta (Amst.) 365, 1–14 (1974)Google Scholar
  583. Yang, C.C., Chang, C.C., Wei, H.C.: Studies on fluorescent cobrotoxin. Biochim. biophys. Acta (Amst.) 147, 600–602 (1967)Google Scholar
  584. Yang, C.C., Chen, C.J., Su, C.C.: Biochemical studies on the Formosan snakes venoms. IV. The toxicity of Formosan cobra venom and enzyme activities. J. Biochem. (Tokyo) 46, 1201 – 1209 (1959)Google Scholar
  585. Yang, C.C., Chiu, W.C., Kao, K.C.: Biochemical studies on the snake venoms. VII. Isolation of venom Cholinesterase by zone electrophoresis. J. Biochem. (Tokyo) 48, 706–713 (1960)Google Scholar
  586. Yang, C.C., Lin, M.F., Chang, C. C.: Purification of anticobrotoxin antibody by affinity chromatography. Toxicon 15, 51–62 (1977)PubMedGoogle Scholar
  587. Yang, C.C., Yang, H. J., HuangJ.S.: The amino acid sequence of cobrotoxin. Biochim. biophys. Acta (Amst.) 188, 65–77 (1969)Google Scholar
  588. Zeller, E.A.: Über eine Adenosintriphosphorsäure (ATP) spaltendes Enzym der Schlangengifte. Experientia (Basel) 4, 194–197 (1948 a)Google Scholar
  589. Zeller, E.A.: Enzymes of snakes venoms and their biological significance. Advanc. Enzymol. 8, 459–495 (1948 b)Google Scholar
  590. Zeller, E.A.: The formation of pyrophosphate from adenosine triphosphate in the presence of a snake venom. Arch. Biochem. 28, 138–139 (1950)PubMedGoogle Scholar
  591. Zeller, E.A., Maritz, A.: Über eine neue L-aminosäure-oxidase (ophio-L-aminosäure-oxidase). Helv. chim. Acta 28, 365–379 (1945)Google Scholar
  592. Zimmerman, S. E., Brown, R.K., Curti, B., Massey, V.: Immunochemical studies of L-amino acid oxidase. Biochim. biophys. Acta (Amst.) 229, 260–270 (1971)Google Scholar
  593. Zwilling, R., von, Pfleiderer, G.: Eigenschaften der α-Protease aus dem Gift von Crotalus atrox. Hoppe-Seylers Z. physiol. Chem. 348, 519–524 (1967)PubMedGoogle Scholar
  594. Zwissler, O.: The role of enzymes in the process responsible for the toxicity of snake venoms (an immunological study). Mem. Inst. Butantan 33, 281–291 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • P. Boquet

There are no affiliations available

Personalised recommendations