Advertisement

Effects of Drugs on Chloroplasts

  • L. Ebringer
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 6)

Abstract

In addition to their practical application, particularly in medicine, antibiotics can be utilized also when studying key biochemical problems. However, antibiotics also serve in some other fields as a means of elucidating the secrets of living matter.

Keywords

Nalidixic Acid Macrolide Antibiotic Bleaching Effect Chlorophyll Synthesis Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S., Bensky, B.: O-methylthreonine, a new bleaching agent for Euglena gracilis, J. Gen. Microbiol, 27, 75 (1962)PubMedGoogle Scholar
  2. Aaronson, S., Ellenbogen, B.B., Yellen, L.K., Hutner, S.H.: In vivo differentiation of Euglena cytoplasmic and chloroplast protein synthesis with chloramphenicol and DL-ethionine. Biochem. Biophys. Res. Commun. 27, 535 (1967)PubMedGoogle Scholar
  3. Akao, M., Kuroda, K., Tsutsui, Y., Kanisawa, M., Miyuki, K.: Effects of nitrofurans antagonistic to 3′-methyl-4-dimethalaminoazobenzene in hepatocarcinogenesis and RNA polymerase activity of liver cell nuclei in rats. Cancer Res. 34, 1843 (1974)PubMedGoogle Scholar
  4. Altman, J., Bachelder, S.: Susceptibility of some ornamental and vegetable plants to streptomycin injur. Plant Disease Reptr. 30, 1081 (1956)Google Scholar
  5. Altmann, R.: Die Elementarorganismen und ihre Beziehung zu den Zellen, Leipzig: Viet und Comp 1890Google Scholar
  6. Anderson, L.A., Smillie, R.M.: Binding of chloramphenicol by ribosomes from chloroplasts. Biochem. Biophys. Res. Commun. 23, 535 (1966)PubMedGoogle Scholar
  7. Antignus, Y., Sela, I., Harpaz, L.: Species of RNA extracted from tobacco and Datura plants and their differential sensitivity to actinomycin D. Biochem. Biophys. Res. Commun. 44, 78 (1971)Google Scholar
  8. Aoki, S., Hase, E.: De- and re-generation of chloroplasts in the cells of Chlorella protothecoides, II. Effects of actinomycin on greening of “glucose-bleached” and “etiolated” algal cells. Plant Cell Physiol. (Tokyo) 5, 485 (1964)Google Scholar
  9. Argoudelis, A.D., Coats, J.H., Mason, D.J., Sebek, O.K.: Microbial transformation of antibiotics. III. Conversion of clindamycin to 1′-demethylclindamycin and clindamycin sulfoxide by Streptomyces species. J. Antibiotics (Tokyo) 23, 309 (1969)Google Scholar
  10. Aronson, J., Meyer, W.L., Brock, T.D.: A molecular model for chemical and biological differences between streptomycin and dihydrostrepto-mycin. Nature (London) 202, 555 (1964)Google Scholar
  11. Asnis, R.E.: The reduction of furacin by cell-free extracts of furacin-resistant and parent-susceptile strain of Escherichia coli. Arch. Biochem. Biophys. 66, 208 (1957)PubMedGoogle Scholar
  12. Aszalos, A., Jelinek, M., Berk, B.: Rubiflavin, a toxic antitumor antibiotic. In: Antimicrobial Agents and Chemotherapy (ed, G.L. Hobby), p. 68, 1964. Ann Arbor: Am. Soc, Microbiology 1965Google Scholar
  13. Avadhani, N.G., Buetow, D.E.: Isolation of active polyribosomes from the cytoplasm, mitochondria and chloroplasts of Euglena gracilis. Biochem. J. 128, 353 (1972)PubMedGoogle Scholar
  14. Bachmayer, H., Kreil, G.: The formation of N-formylmethionylpuromycin by intact cells of four different bacteria and a blue-green alga. Biochim. Biophys. Acta (Amst.) 169, 95 (1968)Google Scholar
  15. Bagni, N., Corsini, E., Fracassini, D.S.: Growth-factors and nucleic acid synthesis in Helianthus tuberosus. I. Reversal of actinomycin D inhibition by spermidine. Physiol. Plantarium 24, 112 (1971)Google Scholar
  16. Bal, A.K.: Effect of actinomycin D on root meristem cells of Allium cepa L. Z. Pflanzenphysiol. 63, 261 (1970)Google Scholar
  17. Bal, A.K., Gross, P.R.: Mitosis and differentiation in roots treated with actinomycin. Science 139, 584 (1963)PubMedGoogle Scholar
  18. Balogh, E., Boszormenyi, Z., Cseh, E.: The effect of chloramphenicol on the amino acid metabolism and ion uptake of isolated wheat roots. Biochim. Biophys. Acta (Amst.) 52, 3 81 (1961)Google Scholar
  19. Bartz, G.R., Controulis, J., Crooks, Jr., H.M., Rebstock, M.C.: Dihydrostreptomycin. J. Am. Chem. Soc. 68, 2163 (1946)PubMedGoogle Scholar
  20. Benerji, D., Laloraya, M.M.: Chlorophyll formation in isolated pumpkin cotyledons in the presence of kinetin and chloramphenicol. Plant cell Physiol. (Tokyo) 8, 263 (1967)Google Scholar
  21. Ben-Shaul, Y., Markus, Y.: Effects of chloramphenicol on growth, size distribution, chlorophyll synthesis and ultrastructure of Euglena gracilis. J. Cell Sci. 4, 627 (1969)PubMedGoogle Scholar
  22. Ben-Shaul, Y., Ophir, I.: Structural and developmental aspects of cycloheximide effects on the chloroplasts of Euglena gracilis. Can, J. Botany 48, 929 (1970a)Google Scholar
  23. Ben-Shaul, Y.: Effects of streptomycin on plastids in dividing Euglena. Planta (Berlin) 91, 195 (1970b)Google Scholar
  24. Ben-Shaul, Y., Silman, R., Ophir, I.: Effects of streptomycin on the ultrastructure of plastids in Euglena. Physiol. Veg. 10, 255 (1972)Google Scholar
  25. Beridze, T.G., Odintsova, M.S., Cherkashina, N.A., Sissakian, N.M.: The effect of nucleic acid synthesis inhibitors on the chlorophyll formation by etiolated bean leaves. Biochem. Biophys. Res. Commun. 23, 683 (1966)PubMedGoogle Scholar
  26. Bhuyan, B.K., Smith, C.G.: Differential interaction of nogalamycin with DNA of varying base composition. Proc. Nat. Acad. Sci. (Wash.) 54, 566 (1965)Google Scholar
  27. Bishop, D.G., Bain, J.M., Smillie, R.M.: The effect of antibiotics on the ultrastructure and photochemical activity of a developing chloro-plast. J. Exp. Botany 24, 361 (1973)Google Scholar
  28. Bishop, D.G., Smillie, R.M.: Effect of chloramphenicol and cycloheximide on lipid synthesis during chloroplast development in Euglena gracilis. Arch. Biochem. Biophys. 139, 179 (1970)PubMedGoogle Scholar
  29. Biswas, D.K., Goring, L.: The attachment site of streptomycin to the 30S ribosomal subunits. Proc. Nat. Acad. Sci. (Wash.) 69, 2141 (1972)Google Scholar
  30. Bloch, A., Coutsogeorgopoulos, C.: Inhibition of protein synthesis by amicetin, a nucleoside antibiotic. Biochemistry 5, 3345 (1966)PubMedGoogle Scholar
  31. Blum, J.J.: Inhibition of growth of Euglena and Astasia by primycin and prevention of the effect by polynucleotides. Arch. Biochem. Biophys. 11l, 635 (1965)Google Scholar
  32. Blum, J.J., Buetow, D.E.: Effects of actinomycin D on acetate-starved and logarithmically growing Euglena gracilis. Biochim. Biophys. Acta (Amst.) 68, 625 (1963)Google Scholar
  33. Bogorad, L.: Effects of streptomycin on chlorophyll formation in dark-grown seedlings. Am. J. Botany 37, 676 (1950)Google Scholar
  34. Bogorad, L.: Evolution of organelles and eukaryotic genomes. Science 188, 891 (1975)PubMedGoogle Scholar
  35. Bomford, R.: Infection of alga-free Paramecium bursaria with strains of Chlorella, Scenedesmus, and a yeast. J. Protozool. 12, 221 (1965)PubMedGoogle Scholar
  36. Bonen, L., Doolittle, W.F.: On the prokaryotic nature of red algal chloroplasts. Proc. Nat. Acad. Sci. (Wash.) 72, 2310 (1975)Google Scholar
  37. Bottomley, W., Smith, H.J., Bogorad, L.: RNA polymerases of maize: Partial purification and properties of the chloroplast enzyme. Proc. Nat. Acad. Sci. (Wash.) 68, 2412 (1971a)Google Scholar
  38. Bottomley, W., Spencer, D., Wheeler, A.M., Whitfeld, P.R.: The effect of a range of RNA polymerase inhibitors on RNA synthesis in higher plant chloroplasts and nuclei. Arch. Biochem. Biophys. 143, 269 (1971b)PubMedGoogle Scholar
  39. Bourguignon, G.J., Lewitt, M., Sternglanz, R.: Studies on the mechanism of action of nalidixic acid. Antimicr. Agents Chemother. 4, 479 (1973)Google Scholar
  40. Bovarnick, J.G., Chang, S.W., Schiff, J.A., Schwartzbach, S.D.: Events surrounding the early development of Euglena chloroplasts: experiments with streptomycin in non-dividing cells. J. Gen. Microbiol. 83, 51 (1974a)PubMedGoogle Scholar
  41. Bovarnick, J.G., Schiff, J.A., Freedmann, Z., Egan, Jr., J.M.: Events surrouding the early development of Euglena chloroplasts: cellular origins of chloroplast enzymes in Euglena. J. Gen. Microbiol. 83, 63 (1974b)PubMedGoogle Scholar
  42. Bovarnick, J.G., Zeldin, M.H., Schiff, J.A.: Differential effects of actinomycin D on cell division and light-induced chloroplast development in Euglena. Develop. Biol. 19, 321 (1969)PubMedGoogle Scholar
  43. Bowling, D.J.F.: Effect of chloramphenicol on the uptake of salts and water by intact Castor bean plants. Nature (London) 200, 284 (1963)Google Scholar
  44. Brandes, D., Buetow, D.E., Bertini, F., Malkoff, D.B.: Role of lysosomes in cellular lytic processes. I. Effect of carbon starvation in Euglena gracilis. Exp. Mol. Pathol. 3, 583 (1964)Google Scholar
  45. Brawerman, G., Eisenstadt, J.M.: Deoxyribonucleic acid from the chloroplasts of Euglena gracilis. Biochim. Biophys. Acta (Amst.) 91, 477 (1964)Google Scholar
  46. Brian, P.W.: Effects of antibiotics on plants. Ann. Rev. Plant Physiol. 8, 413 (1957)Google Scholar
  47. Brink, N.G., Keehl, Jr., F.A., Folkers, K.: Streptomyces antibiotics. III. Degradation of streptomycin to streptobiosamine derivatives. Science 102, 506 (1945)PubMedGoogle Scholar
  48. Brock, T.D.: Streptomycin. In: Biochemical Studies of Antimicrobial Drugs. Symposia of Soc. General Microbiology, No. XVI, p. 132. Great Britain, 1966.Google Scholar
  49. Brock, T.D., Johnson, R.M., de Ville, W.B.: Physical and chemical properties of a bacterial virus as related to its inhibition by streptomycin. Virology 35, 439 (1965)Google Scholar
  50. Brock, T.D., Mosser, J., Peacher, B.: The inhibition by streptomycin of certain streptococcus bacteriophages, using host bacteria resistant to the antibiotic. J. Gen. Microbiol. 33, 9 (1963)PubMedGoogle Scholar
  51. Brock, T.D., Wooley, S.: Streptomycin as an antiviral agent: Mode of action. Science 141, 1065 (1963)PubMedGoogle Scholar
  52. Calendi, E., di Marco, A., Reggiani, M., Scarpinato, B., Valentini, L.: On physico-chemical interactions between daunomycin and nucleic acid. Biochim. Biophys. Acta (Amst.) 103, 25 (1965)Google Scholar
  53. Carr, N.G., Craig, I.W.: The relationship between bacteria, blue-green algae and chloroplasts. In: Phytochemical Phylogeny. Proc. Phytochemical Soc. Symposium, Bristol, 1969 (ed. J.E. Harbonne). New York: Academic Press 1970Google Scholar
  54. Celmer, W.D.: Triacetyloleandomycin: Biochemical correlations. In: Antibiotics Annual 1958–1959, p. 277. New York: Medical Encyclopedia Inc. 1959Google Scholar
  55. Celmer, W.D.: Macrolide stereochemistry. I. II. III. J. Am. Chem. Soc. 87, 1797 (1965)PubMedGoogle Scholar
  56. Celmer, W.D.: Stereochemical problems in macrolide antibiotics. Pure Applied Chem. 28, 413 (1971)Google Scholar
  57. Celmer, W.D., Ebringer, L.: Effects of certain O-acyl derivatives of oleandomycin and erythromycin on chloroplasts of Euglena gracilis. J. Protozool. 14, 263 (1967)PubMedGoogle Scholar
  58. Chang, F.N., Flaks, J.G.: Topography of the Escherichia coli 30S ribo-somal subunit and streptomycin binding. Proc. Nat. Acad. Sci. (Wash.) 67, 1321 (1970)Google Scholar
  59. Chang, F.N., Flaks, J.G.: Binding of dihydrostreptomycin to Escherichiacoli ribosomes: characteristics and equilibrium of the reaction. Antimicrob. Agents Chemother. 2, 294 (1972a)PubMedGoogle Scholar
  60. Chang, F.N., Flaks, J.G.: Binding of dihydrostreptomycin to Escherichia coli ribosomes: kinetics of the reaction. Antimicrob. Agents Chemother. 2, 308 (1972b)PubMedGoogle Scholar
  61. Chang, F.N., Siddhikol, C., Weisblum, B.: Subunit localization studies of antibiotic inhibitors of protein synthesis. Biochim. Biophys. Acta (Amst.) 186, 396 (1969)Google Scholar
  62. Chiang, K.S., Kates, J.R., Sueoka, N.: Meiotic DNA replication mechanism of Chlamydomonas reinhardii. Genetics 52, 434 (1965)Google Scholar
  63. Clayton, C.N.: Streptomycin for fire blight control on apple in North Carolina. Plant Disease Reptr. 39, 128 (1955)Google Scholar
  64. Cocito, C.: Metabolism of macromolecules in bacteria treated with virginiamycin. J. Gen. Microbiol. 57, 179 (1969)PubMedGoogle Scholar
  65. Cocito, C., Bronchart, R., van Pel, B.: Phenotypic and genotypic changes induced in eucaryotic cells by protein inhibitors. Biochem. Biophys. Res. Commun. 46, 1688 (1972)PubMedGoogle Scholar
  66. Cocito, C., Shilo, M.: Macromolecule metabolism and photosynthetic functions in blue-green algae treated with virginiamycin, an inhibitor of protein synthesis. Antimicrob. Agents Chemother. 6, 136 (1974)PubMedGoogle Scholar
  67. Cohen, M.M., Shaw, M.W., Craig, A.P.: The effects of streptonigrin on cultured human leukocytes. Proc. Nat. Acad, Sci, (Wash.) 50, 16 (1963)Google Scholar
  68. Cohen, S.S.: Were mitochondria and chloroplasts microorganisms? Am. J. Sci. 58, 281 (1970)Google Scholar
  69. Cohen, S.S.: Mitochondria and chloroplasts revisited. Am. J. Sci. 61, 437 (1973)Google Scholar
  70. Cohen, S.S., Lichtenstein, J.: The isolation of deoxyribonucleic acid from bacterial extracts by precipitation with streptomycin, J. Biol. Chem. 235, PC 55 (1960)Google Scholar
  71. Cook, T.M., Brown, K.G., Boyle, J.Y., Gross, W.A.: Bactericidal action of nalidixic acid on Bacillus subtilis. J. Bacterid. 92, 1510 (1966a)Google Scholar
  72. Cook, T.M., Deitz, W.H., Gross, W.A.: Mechanism of action of nalidixic acid on Escherichia coli. IV. Effects on the stability of cellular constituents. J. Bacteriol. 91, 774 (1966b)PubMedGoogle Scholar
  73. Cook, T.M., Goss, W.A., Deitz, W.H.: Mechanism of action of nalidixic acid on Escherichia coli. V. Possible mutagenic effect. J. Bacteriol. 91, 780 (1966c)PubMedGoogle Scholar
  74. Davies, J.W., Gilbert, W., Gorini, L.: Streptomycin, suppression and the code. Proc. Nat. Acad. Sci. (Wash.) 51, 883 (1964)Google Scholar
  75. Davies, J., Gorini, L., Davis, B.D.: Misreading of RNA codewords induced by aminoglycoside antibiotics: the effect of drug concentration. J. Biol. Chem. 243, 3312 (1965)Google Scholar
  76. De Deken-Grenson, M.: Action de la streptomycine sur la formation des chloroplastes. Biochim. Biophys. Acta (Amst.) 17, 35 (1955)Google Scholar
  77. Drown, D., Galloway, R.A.: A study of the mechanism of action of streptomycin in Euglena gracilis. Arch. Mikrobiol. 68, 377 (1969)PubMedGoogle Scholar
  78. Ebringer, L.: Die Erythromycinwirkung auf die Flagellaten Euglena gracilis Klebs. Naturwissenschaften 48, 606 (1961a)Google Scholar
  79. Ebringer, L.: Some effects of antibiotics on protozoa. In: Progress in Protozoology. Proc. First Int. Conf. on Protozoology (eds J. Weiser, J. Jira), p. 198. Praha: Pub. House of Czechoslovak Acad, of Sci. 1961bGoogle Scholar
  80. Ebringer, L.: Erythromycin- and streptomycin-like antibiotics as bleaching factors for Euglena gracilis. Naturwissenschaften 14, 334 (1962a)Google Scholar
  81. Ebringer, L.: Erythromycin-induced bleaching of Euglena gracilis. J. Protozool. 9, (1962b)Google Scholar
  82. Ebringer, L.: Side effect of kanamycin on a green protista. J. Antibiot. (Tokyo) Ser. A, 15, 113 (1962c)Google Scholar
  83. Ebringer, L.: Bleaching of euglenas by antibiotics — a specific form of antagonism in Actinomycetes. Folia Microbiol. (Praha) 9, 249 (1964)Google Scholar
  84. Ebringer, L.: Macrolide antibiotics as bleaching factors for Euglena gracilis. Naturwissenschaften 52, 666 (1965)PubMedGoogle Scholar
  85. Ebringer, L.: Antibiotics and apochlorosis. I. Macrolide antibiotics — their common molecular structure responsible for bleaching of Euglena gracilis. Folia Microbiol. (Praha) 11, 379 (1966)Google Scholar
  86. Ebringer, L.: Inducción de cambios en el DNA por antibióticos. Lecture at the “I Curso de Biológia Molecular”, Madrid, November, 1967Google Scholar
  87. Ebringer, L.: The action of nalidixic acid on Euglena plastids. J. Gen. Microbiol. 61, 141 (1970)PubMedGoogle Scholar
  88. Ebringer, L.: The action of inhibitors of nucleic acids synthesis on Euglena. Experientia 27, 586 (1971)PubMedGoogle Scholar
  89. Ebringer, L.: Are plastids derived from prokaryotic micro-organisms? Action of antibiotics on chloroplasts of Euglena gracilis. J. Gen. Microbiol. 71, 35 (1972a)PubMedGoogle Scholar
  90. Ebringer, L.: The action of rubiflavin and other cytostatic antibiotics on Euglena gracilis. Neoplasma 19, 579 (1972b)PubMedGoogle Scholar
  91. Ebringer, L., Foltínova, P.: Comparison of the effects of 7-oxy- and 7-halo-derivatives of lincomycin on Euglena gracilis. Acta F.R.N. Univ. Comen.-Microbiología V, 113 (1976)Google Scholar
  92. Ebringer, L., Jurášek, A., Kada, R.: Antibiotics and apochlorosis. III. The effects of 5-nitrofurans on chloroplast system of Euglena gracilis. Folia Microbiol. (Praha) 12, 151 (1967a)Google Scholar
  93. Ebringer, L., Jurášek, A., Kada, R., Krkoška, P., Foltinova, P.: New nitrofurans — a correlation study between chemical structures and biological activities. In: Advances in Antimicrobial and Antineoplastic Chemotherapy (eds. M. Hejzlar, M. Semonský, S. Masák), Vol. 1, p. 873. Prague: Avicenum 1972Google Scholar
  94. Ebringer, L., Jurášek, A., Koníček, J., Koníčková, M., Lahitová, N., Trubačík, S.: Mutagenic action of nitrofurans on Euglena gracilis and Mycobacterium phlei. Antimicrob. Agents Chemother. 9, 682 (1976)PubMedGoogle Scholar
  95. Ebringer, L., Krkoška, P., Mačor, M., Jurášek, A., Kada, R.: Furan derivatives — their common molecular denominator responsible for bleaching of Euglena gracilis. Archiv Mikrobiol. 57, 61 (1967b)Google Scholar
  96. Ebringer, L., Kupková, H.: Antibiotics and apochlorosis. II. Macro-molecular synthesis and the bleaching effect of streptomycin. Folia Microbiol. (Praha) 12, 36 (1967)Google Scholar
  97. Ebringer, L., Mego, J.L., Jurášek, A.: Mitomycins and the bleaching of Euglena gracilis. Archiv Mikṙobiol. 64, 229 (1969a)Google Scholar
  98. Ebringer, L., Mego, J.L., Jurášek, A., Kada, R.: The action of streptomycins on the chloroplast system of Euglena gracilis, J. Gen. Microbiol. 59, 203 (1969b)PubMedGoogle Scholar
  99. Ebringer, L., Mego, J.L., Pódova, M.: Reversal of streptomycin bleaching of Euglena gracilis by mutagenic concentrations of hydroxylamine. Biochem. Biophys. Res. Commun. 29, 571 (1967c)PubMedGoogle Scholar
  100. Ebringer, L., Nemec, P., Santová, H., Foltínova, P.: Changes of the plastid system of Euglena gracilis induced with streptomycin and di-hydrostreptomycin. Archiv Mikrobiol. 73, 268 (1970)Google Scholar
  101. Edelman, M., Cowan, Ch., Epstein, H.T., Schiff, J.A.: Studies of chloroplast development in Euglena. VIII. Chloroplast-associated DNA. Proc. Nat. Acad. Sci. (Wash.) 52, 1214 (1964)Google Scholar
  102. Edelman, M., Schiff, J.A., Epstein, H.T.: Studies of chloroplast development in Euglena. XII. Two types of satellite DNA. J. Mol. Biol. 11, 769 (1965)PubMedGoogle Scholar
  103. Eisenstadt, J.M.: Protein synthesis in chloroplasts and chloroplast ribosomes. In: Biochemistry of Chloroplasts (ed. T.W. Goodwin), Vol. 2, p. 346. New York: Academic Press 1967Google Scholar
  104. Eisenstadt, J.M., Brawerman, G.: Incorporation of amino acids into proteins of chloroplasts and chloroplasts ribosomes of Euglena. Bio-chim. Biophys. Acta (Amst.) 76, 319 (1963)Google Scholar
  105. Ellis, R.J.: Chloramphenicol and uptake of salts in plants. Nature (London) 200, 597 (1963)Google Scholar
  106. Ellis, R.J.: Chloroplast ribosomes: Stereospecificity of inhibition by chloramphenicol. Science 158, 477 (1969)Google Scholar
  107. Ellis, R.J., Hartley, M.R.: Nucleic acids of chloroplasts. In: Biochemistry of Nucleic Acids. Intern. Review of Sci., Biochemistry Ser. (ed. K. Burton), Vol. 6, p. 11. London-Baltimore: Butterworths and Univ. Park Press 1974Google Scholar
  108. Endo, H., Ishizawa, M., Kamiya, T., Sonoda, S.: Relation between tumor-icidal and prophage-inducing action. Nature (London) 198, 258 (1963)Google Scholar
  109. English, A.R., McBride, T.J.: Laboratory evaluation of partially — acetylated esters of oleandomycin. Proc. Soc. Exp. Biol. Med. 100, 880 (1959)PubMedGoogle Scholar
  110. Ertürk, E., Morris, J.E., Cohen, S.M., Price, J.M., Bryan, G.T.: Transplantable rat mammary tumors induced by 5-nitro-2-furaldehyde semicarbazone and by formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl] hy-drazide. Cancer Res. 30, 1409 (1970)PubMedGoogle Scholar
  111. Euler, H. von: Nukleinsäuren als Wuchsstoffe in Gegenwart von Colchi-cin und von Streptomycin. Arch. für Kemi, Mineralogi och Geologi 24 A, 1 (1947a)Google Scholar
  112. Euler, H. von: Über die Keimung von Samen unter Einwirkung antibiotischer Stoffe. I. Beeinflussung der Chlorophyllbildung. Arkiv for Kemi, Mineralogi och Geologi 25 A, 1 (1947b)Google Scholar
  113. Euler, H. von: Einfluß von Streptomycin und Dihydrostreptomycin auf keimende Samen grüner Pflanzen. Z. Physiol. Chem. 295, 411 (1953)Google Scholar
  114. Euler, H. von, Braceo, M., Heller, L.: Les actions de la streptomycine sur les graines en germination des plantes vertes et sur les polynucleotides. Compt. Rend. Acad. Sci. (Paris) 227, 16 (1948)Google Scholar
  115. Euler, H. von, Heller, L.: Die Fällungen von Nukleoproteiden, Nukleinsäuren und Nukleotiden durch Streptomycin. Arkiv for Kemi, Mineralogi och Geologi 26 A, 1 (1948)Google Scholar
  116. Euler, H. von, Stein, L.: Einfluß von Streptomycin und von Tetracyclin auf die Entwicklung keimender Samen. Experientia 3, 108 (1955)Google Scholar
  117. Eytan, G., Ohad, I.: Biogenesis of chloroplast membranes. 6. Cooperation between cytoplasmic and chloroplast ribosomes in synthesis of photosynthetic lamellae proteins during greening process in a mutant of Chlamydomonas reinhardii Y-l. J. Biol. Chem. 245, 4297 (1970)PubMedGoogle Scholar
  118. Falaschi, A., Kornberg, A.: Phleomycin, an inhibitor of DNA polymerase. Federation Proc. 23, 940 (1964)Google Scholar
  119. Famintzin, A.: Die Symbiose als Mittel der Synthese von Organismen. Biologisches Zentralblatt 27, 353 (1907)Google Scholar
  120. Flaks, J.G., Cox, E.C., White, J.R.: Inhibition of polypeptide synthesis by streptomycin. Biochem. Biophys, Res. Commun. 7, 385 (1962)Google Scholar
  121. Flavell, R.: Mitochondria and chloroplasts as descendant of prokaryotes. Biochem. Genetics. 6, 275 (1972)Google Scholar
  122. Fox, J.J., Kuwada, Y., Watanabe, K.A., Ueda, T., Whipple, E.B.: Nucleosides XXV. Chemistry of gougerotin. In: Antimicrobial Agents and Chemotherapy 1964 (ed. G.L. Hobby), p. 518. Ann Arbor: Am. Soc. For Microbiology 1965Google Scholar
  123. Freese, E.: Hereditary consequences of different DNA alternations. In: The Physiology of Gene and Mutation Expression (eds. M. Kohoutová, J. Hubáček), p. 17. Prague: Academia 1966Google Scholar
  124. Freyssinet, G., Schiff, J.A.: The chloroplast and cytoplasmic ribosomes of Euglena. 2. Characterization of ribosomal proteins. Plant Physiol. 53, 543 (1974)PubMedGoogle Scholar
  125. Frick, H., Jones, R.F.: Inhibition of chlorophyll synthesis in Lemna minor by nalidixic acid. Can. J. Bot. 53, 2319 (1975)Google Scholar
  126. Gibor, A., Granick, S.: The plastid system of normal and bleached Euglena gracilis. J. Protozool. 9, 327 (1962)Google Scholar
  127. Gibor, A., Granick, S.: Plastids and mitochondria: inheritable systems. Science 145, 890 (1964)PubMedGoogle Scholar
  128. Gibor, A., Herron, H.A.: Chloroplast inheritance. In: The Biology of Euglena (ed. D.E. Buetow), Vol. 2, p. 335. New York-London: Academic Press 1968Google Scholar
  129. Gillham, N.W.: Uniparental inheritance in Chlamydomonas reinhardtii Am. Naturalist 103, 355 (1969)Google Scholar
  130. Goffeau, A., Brachet, J.: Deoxyribonucleic acid-dependent incorporation of amino acids into the proteins of chloroplasts isolated from anucleate Acetabularia fragments. Biochim. Biophys. Acta (Amst.) 95, 302 (1965)Google Scholar
  131. Goldberg, I.: Pactamycin. In: Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents (eds. J.W. Corcoran, F.E. Hahn), p. 498. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  132. Goodwin, P.B., Carr, D.J.: Actinomycin D and the hormonal induction of amylase synthesis in barley aleurone layers. Planta 106, 1 (1972)Google Scholar
  133. Goss, W.A., Deitz, W.H., Cook, T.M.: Mechanism of action of nalidixic acid on Escherichia coli. J. Bacterid. 88, 1112 (1964)Google Scholar
  134. Goss, W.A., Deitz, W.H., Cook, T.M.: Mechanism of action of nalidixic acid on Escherichia coli, II. Inhibition of deoxyribonucleic acid synthesis. J. Bacteriol. 89, 1068 (1965)PubMedGoogle Scholar
  135. Griffith, L.J., Ostrander, W.E., Mullins, C.G., Beswick, D.E.: Drug antagonism between lincomycin and erythromycin. Science 147, 746 (1965)PubMedGoogle Scholar
  136. Gross, J.A., Jahn, T.L., Berstein, E.: The effect of anti-histamines on the pigments of green protista. J. Protozool. 2, 71 (1955)Google Scholar
  137. Guttman, H.N., Tendier, M.D.: Studies on anthramycin sensitivity in Euglena. Proc. Soc. Exp. Biol. Med. 121, 1140 (1966)PubMedGoogle Scholar
  138. Hall, J.B.: The nature of the host in the origin of the eukaryote cell. J. Theoret. Biol. 38, 413 (1973)Google Scholar
  139. Hall, W.T., Claus, G.: Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J. Cell Biol. 19, 551 (1963)PubMedGoogle Scholar
  140. Hane, M.W., Wood, T.H.: Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J. Bacteriol. 99, 238 (1969)PubMedGoogle Scholar
  141. Hanson, J.B. Hodges, T.K.: Uncoupling action of chloramphenicol as a basis for the inhibition of ion accumulation. Nature (London) 200, 1009 (1963)Google Scholar
  142. Hanson, J.B., Kreuger, W.A.: Impairment of oxidative phosphorylation by D-threo- and L-threo-chloramphenicol. Nature (London) 211, 1322 (1966)Google Scholar
  143. Harris, C., Grady, H., Svoboda, D.: Segregation of the nucleolus produced by anthramycin. Cancer Res, 28, 81 (1968)PubMedGoogle Scholar
  144. Hartman, G., Honike, K.O., Knüsel, F., Nüesh, S.: The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim. Biophys. Acta (Amst.) 145, 843 (1967)Google Scholar
  145. Havinga, E., Lynch, Y., Norris, L., Calvin, M.: The effect of certain biologically active substances upon photosynthesis and dark CO2 fixation. Recueil Trav. Chim. 72, 597 (1953)Google Scholar
  146. Hayllar, B.I., Neall, A.H.O., Jr., Dottere, J.A.: Metastatic testicular tumor treated with a maintenance dose of nitrofurazone. J. Urol. 84, 565 (1960)PubMedGoogle Scholar
  147. Hecker, L.I., Egan, J., Reynolds, R.J., Nix, C.E., Schiff, J.A., Bar-nett, W.E.: The sites of transcription and translation for Euglena chloroplastic aminoacyl-t RNA synthetases. Proc. Nat. Acat, Sci. (Wash.) 71, 1910 (1974)Google Scholar
  148. Hierowski, M., Kurylo-Borowska, Z.: On the mode of action of edeine. I. Effect of edeine on the synthesis of polyphenylalanine in a cell-free system. Biochim. Biophys. Acta (Amst.) 95, 578 (1965)Google Scholar
  149. Hollenverg, C.P., Borst, P.: Conditions that prevent p- induction by ethidium bromide. Biochem. Biophys. Res. Commun. 45, 1250 (1971)Google Scholar
  150. Hoober, J.K., Siekevitz, P., Palade, G.E.: Formation of chloroplast membranes in Chlamydomonas reinhardii Y-l, Effects of inhibitors of protein synthesis. J. Biol. Chem. 244, 2621 (1969)PubMedGoogle Scholar
  151. Horwitz, S.B., Chang, S.C., Grollman, A.P., Borkover, A.B.: Chemoster-ilizant action of anthramycin: a proposed mechanism. Science 174, 159 (1971)PubMedGoogle Scholar
  152. Hutner, S.H., Provasoli, L.: The phytoflagellates. In: Biochemistry and Physiology of Protozoa (ed. A. Lwoff), Vol. 1, p. 27. New York: Academic Press 1951Google Scholar
  153. Iijima, T., Hagiwara, A.: Mutagenic action of mitomycin C on Escherichia coli, Nature (London) 185, 395 (1960)Google Scholar
  154. Ireland, H.M.M., Bradbeer, J.W.: Plastid development in primary leaves of Phaseolus vulgaris. The effects of D-threo and L-threo chloramphenicol on the light-induced formation of enzymes of the photosyn-thetic carbon pathway. Planta 96, 254 (1971)Google Scholar
  155. Iyer, V.N., Szybalski, W.: Mitomycins and porfiromycin: chemical mechanism of activation and cross-linking of DNA. Science 145, 55 (1964)PubMedGoogle Scholar
  156. Jeon, K.W.: Development of cellular dependence on infective organisms: micrurgical studies in amoeba. Science 176, 1122 (1972)PubMedGoogle Scholar
  157. Jirovec, O.: Der Einfluß des Streptomycin und Patulins auf einige Protozoen. Experientia 5, (1949)Google Scholar
  158. John, P., Whatley, F.R.: Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature (London) 254, 495 (1975)Google Scholar
  159. Kaji, H., Tanaka, Y.: Binding of dihydrostreptomycin to ribosomal subu-nits. J. Mol. Biology 32, 221 (1968)Google Scholar
  160. Kajiwara, K., Kim, U.H., Mueller, G.C.: Phleomycin, an inhibitor of replication of Hela cells. Cancer Res. 26, 233 (1966)PubMedGoogle Scholar
  161. Kaminek, M., Lustinec, J.: Induction of cytokinin-autonomy and chlorophyll-deficiency in tobacco callus tissue by streptomycin. Z. Pflanzenphysiologie 73, 74 (1974)Google Scholar
  162. Kasemir, P.B., Mohr, H.: Die Wirkung von Phytochrom und Actinomycin D auf die Chlorophyll A-synthese von Senfkeimlingen (Sinapis alba L.). Planta 72, 187 (1967)Google Scholar
  163. Kerr, N.S.: Flagella formation by myxoamoebase of the true slime mold, Didymium nigripes. J. Protozool. 7, 103 (1960)Google Scholar
  164. Kerr, N.S.: The inhibition of flagella formation by streptomycin. Am. Zool. 1, 364 (1961)Google Scholar
  165. Kerr, N.S.: Inhibition by streptomycin of flagella formation in a true slime mold. J. Protozool. 12, 276 (1965)PubMedGoogle Scholar
  166. Kersten, W., Kersten, H., Szybalski, W.: Physico-chemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chromomycin, mithramycin and olivomycin). Biochemistry 5, 236 (1966)PubMedGoogle Scholar
  167. Khudairi, A.K.: Effect of streptomycin on the flowering of two Xanthium species. Physiol. Plantarium 13, 1 (1960)Google Scholar
  168. Kinsky, S.C.: Polyene antibiotics. In: Antibiotics. I. Mechanism of Action (eds. D. Gottlieb, P.D. Shaw), p. 122. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  169. Kirk, J.T.O.: Effect of streptomycin on C14 leucine incorporation in Euglena gracilis. Biochim, Biophys. Acta (Amst.) 59, 476 (1962)Google Scholar
  170. Kirk, J.T.O.: Studies on RNA synthesis in chloroplast preparation. Biochem. Biophys. Res. Commun. 16, 233 (1964)PubMedGoogle Scholar
  171. Kirk, J.T.O.: Nature and function of chloroplast DNA. In: Biochemistry of Chloroplasts (ed. T.W. Goodwin), Vol. I., p. 219. London-New York: Academic Press 1966Google Scholar
  172. Kirk, J.T.O., Allen, R.L.: Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem. Res. Commun. 2, 523 (1965)Google Scholar
  173. Kirk, J.T.O., Juniper, B.E.: The effect of streptomycin on the mitochondria and plastids of barley. Exptl. Cell Res. 30, 621 (1963)Google Scholar
  174. Kirk, J.T.O., Tilney-Bassett, R.A.E.: The Plastids, pp. 325, 531. London-San Francisco: Freeman 1967.Google Scholar
  175. Kivic, P.A., Vesk, M.: Structure and function in the euglenoid eyespot apparatus: the fine structure, and response to environmental changes. Planta (fieri.) 105, 1 (1972)Google Scholar
  176. Kivic, P.A., Vesk, M.: The structure of the eyespot apparatus in bleached strains of Euglena gracilis. Cytobiol. 10, 88 (1974a)Google Scholar
  177. Kivic, P.A., Vesk, M.: An electron microscope search for plastids in bleached Euglena gracilis and in Astasia longa. Can. J. Botany 52, 695 (1974b)Google Scholar
  178. Kohn, K.W., Bono, W.H., Jr., Kann, H.E.: Anthramycin, a new type of DNA-inhibiting antibiotic: Reaction with DNA and effects on nucleic acid synthesis in mouse leukemia cells. Biochim. Biophys. Acta (Amst.) 155, 121 (1968)Google Scholar
  179. Kronestedt, E., Walles, B.: On the presence of plastids and the eye-spot apparatus in a porfiromycin-bleached strain of Euglena gracilis. Protoplasma 84, 75 (1975)Google Scholar
  180. Kurylo-Borowska, Z.: On the mode of action of edeine. Biochim. Biophys. Acta (Amst.) 64, 897 (1962)Google Scholar
  181. Kurylo-Borowska, Z.: On the mode of action of edeine. Effect of edeine on the bacterial DNA. Biochim. Biophys. Acta (Amst.) 87, 305 (1964)Google Scholar
  182. Kurylo-Borowska, Z., Hierowski, M.: On the mode of action of edeine. II. Studies on the binding of edeine to Escherichia coli ribosomes. Biochim. Biophys. Acta (Amst.) 95, 590 (1965)Google Scholar
  183. Kurylo-Borowska, Z., Szer, W.: Inhibition of bacterial DNA synthesis by edeine. Effect on Escherichia coli mutants lacking DNA polymerase I. Biochim. Biophys. Acta (Amst.) 287, 236 (1972)Google Scholar
  184. Küntzel, H., Noll, H.: Mitochondrial and cytoplasmic polysomes from Neurospora crassa. Nature (London) 215, 1340 (1967)Google Scholar
  185. Küntzel, H., Schäfer, K.P.: Mitochondrial RNA polymerase from Neurospora crassa. Nature New Biol. 231, 265 (1971)PubMedGoogle Scholar
  186. Lampen, J.O., Arnow, P.: Inhibition of algae by nystatin. J. Bacteriol. 82, 247 (1961)PubMedGoogle Scholar
  187. Leedale, G.F.: Euglenoid Flagellates. Englewood Cliffs: Prentice-Hall 1967Google Scholar
  188. Lefort, M.: Etude comparative de certains mutants depigmentés chez l’Euglena gracilis et chez d’autres algues. C.R.A. cad. Sci, (Paris) 256, 5190 (1963)Google Scholar
  189. Leimgruber, W., Stefanovic, V., Schenker, F., Karr, A., Berger, J.: Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc. 87, 5791 (1965)PubMedGoogle Scholar
  190. Lesley, S.M., Behki, R.M.: Mode of action of myxin on Escherichia coli. J. Bacteriol. 94, 1837 (1967)PubMedGoogle Scholar
  191. Levine, M., Bortwick, M.: The action of streptonigrin on bacterial DNA metabolism and on induction of phage production in lysogenic bacteria. Virology 21, 568 (1963a)PubMedGoogle Scholar
  192. Levine, M., Bortwick, M.: Action of streptonigrin on genetic recombinations between bacteriophages. Proc. XI. Int. Cong. Genet., The Hague, Netherlands, 1963bGoogle Scholar
  193. Lewis, Ch.: Antiplasmodial activity of halogenated lincomycin analogues on Plasmodium berghei-infected mice. In: Antimicrobial Agents and Chemotherapy-1967 (ed. G.L. Hobby), pp. 537. Ann Arbor: Am. Soc. Microbiology 1968Google Scholar
  194. Linnane, A.W., Stewart, P.R.: The inhibition of chlorophyll formation in Euglena by antibiotics which inhibit bacterial and mitochondrial protein synthesis. Biochem. Biophys. Res. Commun. 27, 511 (1967)PubMedGoogle Scholar
  195. Luha, A.A., Sarcoe, L.E., Whittaker, P.A.: Biosynthesis of yeast mitochondria. Drug effects on the petite negative yeasts Kluyveromyces lactis. Biochem. Biophys. Res. Commun. 44, 3 96 (1971)Google Scholar
  196. Lwoff, A., Schaeffer, P.: Remarques sur une analogie structurale entre streptomycine et chlorophylle. C.R. Acad. Sci. (Paris) 228, 511 (1949)Google Scholar
  197. Lyman, H.: Specific inhibition of chloroplast replication in Euglena gracilis by nalidixic acid. J. Cell Biol. 35, 726 (1967)PubMedGoogle Scholar
  198. Lyman, H.: The role of light in nalidixic acid-induced inhibition of chloroplast replication in Euglena. J. Cell Biol. 39, 83a (1968)Google Scholar
  199. Lyman, H., Epstein, H.T., Schiff, J.A.: Studies of chloroplast development in Euglena. I. Inactivation of green colony formation by U.V. light. Biochim. Biophys. Acta (Amst.) 50, 301 (1961)Google Scholar
  200. Lyman, H., Jupp, A.S., Larrinua, I.: Action of nalidixic acid on chloroplast replication in Euglena gracilis. Plant Physiol. 55, 390 (1975)PubMedGoogle Scholar
  201. Lyttleton, J.W.: Isolation of ribosomes from spinach chloroplasts. Exp. Cell Res. 26, 312 (1962)PubMedGoogle Scholar
  202. Machold, O.: Die Wirkung von Chloramphenicol und Streptomycin auf die Lamellarproteine der Chloroplasten von Vicia faba. Expt. Cell Res. 65, 466 (1971)Google Scholar
  203. Magerlein, B.J.: Modification of lincomycin. Advan. Applied Microbiol. 14, 185 (1971)Google Scholar
  204. Mahler, H.R., Perlman, P., Henson, C., Weber, C.: Selective effects of chloramphenicol and nalidixic acid on the biosynthesis of respiratory enzymes in yeast. Biochem, Biophys. Res. Commun. 31, 474 (1968)Google Scholar
  205. Marcus, A., Feeley, J.: Protein synthesis in imbibed seeds. II. Polysome formation during inhibition. J. Biol. Chem. 240, 1675 (1965)PubMedGoogle Scholar
  206. Margulies, M.M.: Effect of chloramphenicol on chlorophyll synthesis of bean leaves. Plant Physiol. 42, 218 (1967)PubMedGoogle Scholar
  207. Margulies, M.M.: Concerning the sites of synthesis of proteins of chloroplast ribosomes and of fraction I. protein (ribulose-1,5-diphosphate carboxylase). Biochem. Biophys. Res. Commun. 44, 539 (1971)PubMedGoogle Scholar
  208. Margulis, L.: Evolutionary criteria in thallophytes: a radical alternative. Science 161, 1020 (1968)PubMedGoogle Scholar
  209. Margulis, L.: Origin of Eukaryotic Cells. New Haven-London: Yale Univ. Press 1970Google Scholar
  210. Marjai, E., Kiss, L., Ivánovics, G.: Auxotrophic mutation associated with low streptomycin resistance and slow growth in Bacillus subtilis. Acta Microbiologica Academiae Scientiarum Hungaricae 17, 133 (1970)PubMedGoogle Scholar
  211. Marlatt, R.B.: Susceptibility of some vegetables to streptomycin injury. Plant Disease Reptr. 40, 200 (1956)Google Scholar
  212. Masukawa, H., Tanaka, N.: Miscoding activity of aminosugars. J. Anti-biot. (Tokyo), Ser. A., 21, 70 (1968)Google Scholar
  213. Matsushita, K., Mori, Y.: The effects of actinomycin D on the greening of etiolated bean leaves. Plant Cell Physiol. (Tokyo) 13, 191 (1972)Google Scholar
  214. McCalla, D.R.: Chloroplasts of Euglena gracilis affected by furadantin. Science 137, 225 (1962)PubMedGoogle Scholar
  215. McCalla, D.R.: Effects of some nitrofurans on DNA synthesis and prophage induction. Can. J. Biochem. 42, 1245 (1964)PubMedGoogle Scholar
  216. McCalla, D.R.: Effect of nitrofurans on the chloroplast system of Euglena gracilis. J. Protozool. 12, 34 (1965a)PubMedGoogle Scholar
  217. McCalla, D.R.: Chloroplast mutagenesis: Effect of N-methyl-N’ — nitro-N-nitrosoguanidine and some other agents on Euglena. Science 148, 497 (1965b)PubMedGoogle Scholar
  218. McCalla, D.R.: Action of some analogs of nitrosoguanidine on the chloroplasts of Euglena gracilis. J. Protozool. 13, 472 (1966)PubMedGoogle Scholar
  219. McCalla, D.R., Allan, R.K.: Effect of actinomycin D on Euglena chloroplast formation. Nature (London) 201, 504 (1964)Google Scholar
  220. McCalla, D.R., Baerg, W.: Action of myxin on the chloroplast system of Euglena gracilis. J. Protozool. 16, 425 (1969)PubMedGoogle Scholar
  221. McCalla, D.R., Reuvers, A.: Action of nitrofuran derivatives on the chloroplast system of Euglena gracilis: effect of light. J. Protozool. 17, 129 (1970)Google Scholar
  222. McCalla, D.R., Reuvers, A., Kaiser, Ch.: Breakage of bacterial DNA by nitrofuran derivatives. Cancer Res. 31, 2184 (1971)PubMedGoogle Scholar
  223. McCalla, D.R., Voutsinos, D.: On mutagenicity of nitrofurans. Mutat. Res. 26, 3 (1974)PubMedGoogle Scholar
  224. McLaughlin, P.J., Dayhoff, M.O.: Eukaryotic evolution: a new based on cytochrome c sequence data. J. Molec. Evolution 2, 99 (1973)Google Scholar
  225. Mego, J.L.: The effect of hadacidin on chloroplast development in non-dividing Euglena cells. Biochim. Biophys. Acta (Amst.) 79, 221 (1964)Google Scholar
  226. Mego, J.L.: Inhibitors of the chloroplast system in Euglena, In: The Biology of Euglena (ed. D.E. Buetow), Vol, 2, p. 351. New York: Academic Press 1969Google Scholar
  227. Mego, J.L., Buetow, D.E.: Studies on chloroplast development in heat-bleached Euglena. In: Le chloroplaste, Croissance et Vieillissement (ed. C. Sironval), p. 274, Paris: Masson et Cie 1967Google Scholar
  228. Melandri, B.A., Baccarini, A., Forti, G.: Selective inhibition by actinomycin D of the synthesis in photosynthetic and non-photosynthetic enzymes during the greening of etiolated bean leaves. Plant Physiol. 44, 95 (1969)PubMedGoogle Scholar
  229. Mereschkowsky, C.: Über Natur und Ursprung der Chromotophoren im Pflanzenreiche. Biol. Zentr. 25, 593 (1905)Google Scholar
  230. Merz, T.: Effect of mitomycin C on lateral root-tip chromosomes of Vicia faba. Science 133, 329 (1961)PubMedGoogle Scholar
  231. Michaels, A., Gibor, A.: Ultrastructural changes in Euglena after ultraviolet irradiation. J. Cell Sci. 13, 799 (1973)PubMedGoogle Scholar
  232. Morgan, C., Rosenkranz, H.S., Carr, H.S., Rose, H.M.: Electron microscopy of chloramphenicol-treated Escherichia coli. J. Bacterid. 93, 1987 (1967)Google Scholar
  233. Moriber, L.G., Hershenov, B., Aaronson, S., Bensky, B.: Teratological chloroplast structure in Euglena gracilis permanently bleached by exogenous physical and chemical agents. J. Protozool. 10, 80 (1963)Google Scholar
  234. Morris, J.E., Price, J.M., Lalich, J.J., Stein, R.: The carcinogenic activity of some 5-nitrofuran derivatives in the rat. Cancer Res. 29, 2145 (1969)PubMedGoogle Scholar
  235. Moskowitz, M.: Differences in precipitability of nucleic acids with streptomycin and dihydrostreptomycin. Nature (London) 200, 335 (1963)Google Scholar
  236. Murakami, H.: Electron aspects of the mode of action of the mitomycin molecule. J. Theoret. Biol. 10, 236 (1966)Google Scholar
  237. Nakamura, S., Shimizu, M.: Inhibition of the synthesis of macromolecules in Escherichia coli by nitrofuran derivatives. I. 5-Nitro-2-furyl vinylpyridines. Chem. Pharm. Bull. 21, 130 (1973a)PubMedGoogle Scholar
  238. Nakamura, S., Shimizu, M.: Inhibition of the synthesis of macromolecules in Escherichia coli by nitrofuran derivatives. II. Various nitrofuran derivatives. Chem. Pharm. Bull. 21, 137 (1973b)PubMedGoogle Scholar
  239. Nass, M.: Uptake of isolated chloroplasts by mammalian cells. Science 165, 1128 (1969)PubMedGoogle Scholar
  240. Nečas, J.: Responses of cell populations of three chlorococcal algae to the action of streptomycin. Biologia Plantarum (Praha) 13, 338 (1971)Google Scholar
  241. Nêtien, C., Lacharme, J.: Recherche sur l’action de la terramycin dans la formation des pigments de la plantule de radis. Bull. Soc. Chim. Biol. 37, 643 (1955)PubMedGoogle Scholar
  242. Nêtien, C., Lacharme, J.: Influence des tetracyclines dans la biogénèse des pigments chlorophylliens des plantules de radis et de blé. Compt. Rend. Soc. Biol. 151, 127 (1957)Google Scholar
  243. Neumann, D., Parthier, B.: Effects of nalidixic acid, chloramphenicol, cycloheximide, and anisomycin on structure and development of plastids and mitochondria in greening Euglena gracilis. Exp. Cell Res. 81, 255 (1973)PubMedGoogle Scholar
  244. Obe, G.: Die Wirkung von Streptomycin und Dihydrostreptomycin auf menschliche Chromosomen in vitro. Molec. Gen. Genetics 107, 361 (1970)Google Scholar
  245. Parthier, B., Krauspe, R.: Assignment to chloroplast and cytoplasm of three Euglena gracilis aminoacyl-tRNA synthetases with ambiguous specifity for transfer RNA. Plant Science Lett. 1, 221 (1973)Google Scholar
  246. Parthier, B., Krauspe, R.: Chloroplast and cytoplasmic transfer RNA of Euglena gracilis. Transfer RNALeu of blue green algae as a substitute for chloroplast t RNALeu. Biochem. Physiol. Pflanzen 165, 1 (1974)Google Scholar
  247. Pedrini, A.M., Geroldl, D., Siccardi, A., Falaschi, A.: Studies on the mode of nalidixic acid. Eur. J. Biochem. 25, 359 (1972)PubMedGoogle Scholar
  248. Pestka, S.: Chloramphenicol. In: Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents (eds. J.W. Corcoran, F.E. Hahn), p. 370. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  249. Peterson, E.A., Gillespie, D.C., Cook, F.D.: A wide spectrum antibiotic produced by a species of Sorangium. Can. J. Microbiol. 12, 221 (1966)PubMedGoogle Scholar
  250. Pigott, G.H., Carr, N.G.: Homology between nucleic acids of blue green algae and chloroplasts of Euglena gracilis. Sience 175, 1259 (1972)Google Scholar
  251. Pogo, B.G.T., Pogo, A.O.: DNA dependence of plastid differentiation. Inhibition by actinomycin D. J. Cell Biol. 22, 296 (1964)PubMedGoogle Scholar
  252. Pogo, B.G.T., Pogo, A.O.: Inhibition by chloramphenicol of chlorophyll and protein synthesis and growth in Euglena. J. Protozool. 12, 96 (1965)PubMedGoogle Scholar
  253. Polya, G.M., Jagendorf, A.T.: Wheat leaf RNA polymerases. I. Partial purification and characterization of nuclear, chloroplast and soluble DNA-dependent enzymes. Arch. Biochem. Biophy. 146, 635 (1971)Google Scholar
  254. Powers, K.G., Jacobs, R.L.: Activity of two chlorinated lincomycin analogues against chloroquine-resistant falciparum malaria in owl monkeys. Antimicrob. Ag. Chemother. 1, 49 (1972)Google Scholar
  255. Pramer, D.: Absorption of antibiotics by plant cells. II. Streptomycin. Arch. Biochem. Biophys. 62, 265 (1956)PubMedGoogle Scholar
  256. Pramer, D., Wright, J.M.: Some phytotoxic effects of five actinomycete antibiotics. Plant Disease Reptr. 39, 118 (1955)Google Scholar
  257. Preer, J.R., Jr., Preer, L.B., Jurand, A.: Kappa and other endosym-bionts in Paramecium aurelia. Bacteriol. Rev. 38, 113 (1974)PubMedGoogle Scholar
  258. Pringsheim, E.G.: Contribution toward a monograph of the genus Euglena. Nova Acta Leopold. 125, 1 (1956)Google Scholar
  259. Pringsheim, E.G., Hovasse, R.: The loss of chromatophores in Euglena gracilis. New Phytologist 47, 52 (1948)Google Scholar
  260. Pringsheim, E.G., Pringsheim, O.: Experimental elimination of chromatophores and eye-spot in Euglena gracilis. New Phytologist 51, 65 (1952)Google Scholar
  261. Provasoli, L., Hutner, S.H., Schatz, A.: Streptomycin-induced chlorophyll-less races of Euglena. Proc. Soc. Exptl. Biol. Med. 69, 279 (1948)Google Scholar
  262. Rabussay, D., Herzlich, P., Schweiger, M., Zillig, W.: More evidence for bacteria-like protein synthesizing apparatus in chloroplasts and mitochondria. FEES Lett. 4, 55 (1969)Google Scholar
  263. Radding, C.M.: Incorporation of H3-thymidine induced by streptonigrin. In: Genetics Today (ed. S.J. Geerts), Vol. I., p. 22, Oxford: Pergaraon Press 1963Google Scholar
  264. Raketien, N., Nadkarni, M.V., Raketien, M.L.: Toxicological and pharmacological evaluation of phleomycin including special studies on its nephrotoxicity. Toxicol. Appl. Physiol. 14, 590 (1969)Google Scholar
  265. Raven, P.H.: A multiply origin for plastids and mitochondria, Science 169, 641 (1970)PubMedGoogle Scholar
  266. Rawson, J.R., Stutz, E.: Isolation and characterization of Euglena gracilis cytoplasmic and chloroplast ribosomes and their ribosomal RNA components. Biochim. Biophys. Acta (Amst.) 190, 368 (1969)Google Scholar
  267. Ray, D.S., Hanawalt, P.C.: Satellite DNA components in Euglena gracilis cells which lack chloroplasts. J. Mol. Biol. 11, 760 (1965)PubMedGoogle Scholar
  268. Ray, D.S., Hanawalt, P.C.: Properties of the satellite DNA associated with the chloroplasts of Euglena gracilis. J. Mol. Biol. 9, 812 (1969)Google Scholar
  269. Reich, E.: Binding of actinomycin as a model for the complex-forming capacity of DNA. In: The Role of Chromosome in Development (ed. M. Locke), p. 73. New York: Academic Press 1965Google Scholar
  270. Reich, E., Franklin, R.M., Shatkin, Tatum, E.L.: Action of actinomycin D on animal cells and viruses. Proc. Nat, Acad. Sci. (Wash.) 48, 1238 (1962)Google Scholar
  271. Reid, B.D., Parsons, P.: Partial purification of mitochondrial RNA polymerase from rat liver. Proc, Nat, Acad, Sci. (Wash.) 68, 2830 (1971)Google Scholar
  272. Richards, O.C.: Hybridization of Euglena gracilis chloroplast and nuclear DNA. Proc. Nat. Acad. Sci. (Wash.) 57, 156 (1967)Google Scholar
  273. Ridley, S.M., Leech, R.M.: Chloroplast survival in vitro. In: Progress in Photosynthetic Research (ed. H. Metzner), Vol. 1., p. 229. Tübingen 1969Google Scholar
  274. Ris, H., Plaut, W.: Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell Biol. 13, 383 (1962)PubMedGoogle Scholar
  275. Rodriguez-Lopez, M., Muñoz, M., Vazquez, D.: The effects of rifamycin antibiotics on algae. FEBS Lett. 9, 171 (1970)PubMedGoogle Scholar
  276. Rogers, P.J., Preston, B.N., Tritchener, E.B., Linnane, A.W.: Differences between the sedimentation characteristics of the ribonucleic acids prepared from yeast cytoplasmic ribosomes and mitochondria. Biochem. Biophys. Res. Commun. 27, 405 (1967)PubMedGoogle Scholar
  277. Rønnike, F.: Influence of preliminary growth condition on elongation of rooths in nutrient solution. Experiments with Lupinus albus. Physiol. Plantarum 11, 421 (1958)Google Scholar
  278. Rosen, W.G.: Effects of streptomycin on certain green plants. Ohio J. Sci. 54, 73 (1954a)Google Scholar
  279. Rosen, W.G.: Plant growth inhibition by streptomycin and its prevention by manganese. Proc. Soc. Exptl. Biol, Med. 85, 385 (1954b)Google Scholar
  280. Rosen, W.G., Gawlik, S.R.: Effect of streptomycin on chlorophyll accumulation in Euglena gracilis. J. Protozool. 8, 90 (1961)Google Scholar
  281. Sager, R.: Streptomycin as a mutagen for nonchromosomal genes. Proc. Nat. Acad. Sci. (Wash.) 48, 2018 (1962)Google Scholar
  282. Sager, R., Ramanis, Z.: A genetic map of non-mendelian genes in Chlamydomonas. Proc. Nat. Acad. Sci. (Wash.) 65, 593 (1970)Google Scholar
  283. Sala, F., Sensi, S., Parisi, B.: Peptide chain initiation in a species of Nostoc and in chloroplasts of Euglena gracilis. FEBS Lett. 10, 89 (1970)PubMedGoogle Scholar
  284. Sato, Y.: Effect of streptomycin on the chlorophyll formation in the timothy. Keio J. Med. 8, 187 (1959)Google Scholar
  285. Sato, Y.: Effect of streptomycin on the chlorophyll formation in the timothy. II. Influences of inorganic salts upon the streptomycin effect on the timothy seeds (under a resting conditions). Keio J. Med. 9, 25 (1960a)Google Scholar
  286. Sato, Y.: Effect of streptomycin on the chlorophyll formation in the timothy. III. Further studies on the streptomycin-treated seeds (under a resting conditions). Keio J. Med. 9, 185 (1960b)Google Scholar
  287. Sato, Y.: Effect of streptomycin on chlorophyll formation in timothy. IV. Further studies on the action of metal salts and pH values upon streptomycin-treated seeds. Keio J. Med. 10, 99 (1961)PubMedGoogle Scholar
  288. Sato, K., Shiratori, O., Katagiri, K.: The mode of action of quinoxaline antibiotics. Interaction of quinomycin A with deoxyribonucleic acid. J. Antibiot.(Tokyo) Ser. A, 20, 270 (1967)Google Scholar
  289. Schaller, H., Otto, B., Nüsslein, V., Huf, J., Herrman, R., Bonhoeffer, F.: Deoxyribonucleic acid replication in vitro. J. Mol. Biol. 63, 183 (1972)PubMedGoogle Scholar
  290. Schiff, J.A.: Development interactions among cellular compartments in Euglena. In: Autonomy and Biogenesis of Mitochondria and Chloro-plasts (eds. N.K. Boardman, A.W. Linnane, R.M. Smillie), p. 98. Amsterdam: North-Holland 1970Google Scholar
  291. Schiff, J.A.: The control of chloroplast differentiation in Euglena. In: Proc. 3 rd Int. Congress on Photosynthesis (ed. M. Avron), p. 1691. Amsterdam: Elsevier 1974Google Scholar
  292. Schiff, J.A., Epstein, H.T.: The continuity of chloroplast in Euglena. In: Reproduction: Molecular, Subcellular, and Cellular (ed. M. Locke), p. 131. New York: Academic Press 1965Google Scholar
  293. Schiff, J.A., Epstein, H.T.: The continuity of the chloroplast in Euglena. In: The Biology of Euglena (ed. D.E. Buetow), Vol. II, p. 285, New York-London: Academic Press 1968Google Scholar
  294. Schiff, J.A., Lyman, H., Epstein, H.T.: Studies of chloroplast development in Euglena. II. Photoreversal of the U.V. inhibition of green colony formation. Biochim. Biophys. Acta (Amst.) 50, 310 (1961)Google Scholar
  295. Schiff, J.A., Zeldin, M.H.: The developmental aspect of chloroplast continuity in Euglena. J. Cell Physiol. 72, 103 (1968)PubMedGoogle Scholar
  296. Schimper, A.F.W.: Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot. Ztschr. 41, 105 (1883)Google Scholar
  297. Schmerling, Z.G.: The effect of rifamycin on RNA synthesis in the rat liver mitochondria. Biochem. Biophys. Res. Commun. 37, 965 (1969)Google Scholar
  298. Schmidt, L.H., Harrison, J., Ellison, P., Worcester, P.: The activities of chlorinated lincomycin derivatives against infections with Plasmodium cynomolgi in Macaca mulatta. Am. J. Trop. Med. Hyg. 19, 1 (1970)PubMedGoogle Scholar
  299. Schnepf, E., Brown, R.M.: On relationships between endosymbiosis and the origin of plastids and mitochondria. In: Origin and Continuity of Cell Organelles (eds. J. Reinert, H. Ursprung), p. 299. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  300. Schopfer, P.: Der Einfluß von Actinomycin D und Paromycin auf die phy-tochrominduzierte Wachstumshemmung des Hypokotyls beim Senfkeimling Sinapis alba L. Planta (Berl.) 72, 306 (1967)Google Scholar
  301. Schopfer, W.H., Beim, M., Besson, G.: Action de la streptomycine et de la chloramycetine sur la biogenese de la chlorophylle et des caro-tenoides chez Pisum. Acta Soc. Helv. Sci. Natur. 131, 148 (1951)Google Scholar
  302. Schwarz, J.H., Eisenstadt, J.M., Brawerman, G., Zinder, N.D.: Biosynthesis of the coat protein of coliphage f2 by extracts of Euglena gracilis. Proc. Nat, Acad. Sci. (Wash.) 53, 195 (1965)Google Scholar
  303. Schwarz, J.H., Meyer, R., Eisenstadt, J.M., Brawerman, G.: Involvement of N-Formylmethionine in initiation of protein synthesis in cell-free extracts of Euglena gracilis. J. Molec. Biol. 25, 571 (1967)Google Scholar
  304. Schwartzbach, S.D., Freyssinet, G., Schiff, J.A.: The chloroplast and cytoplasmic ribosomes of Euglena, I. Stability of chloroplast ribo-somes prepared by an improved procedure. Plant Physiol. 53, 533 (1974)PubMedGoogle Scholar
  305. Schwartzbach, S.D., Schiff, J.A.: Chloroplast and cytoplasmic ribosomes of Euglena: selective binding of dihydrostreptomycin to chloroplast ribosomes. J. Bacteriol. 120, 334 (1974)PubMedGoogle Scholar
  306. Scott, N.S.: The Direction of Chloroplast Ribosomal RNA Synthesis by DNA. Abstract of Annual Meeting Australian Biochemical Soc., Adelaide 1969Google Scholar
  307. Scott, N.S., Munns, R., Graham, D., Smillie, R.M.: Origin and synthesis of chloroplast ribosomal RNA and photoregulation during chloroplast biogenesis. In: Autonomy and Biogenesis of Mitochondria and Chloro-plasts (eds. N.K. Boardman, A.W. Linnane, R.M. Smillie), p. 383. Amsterdam: North-Holland 1971Google Scholar
  308. Scott, N.S., Munns, R., Smillie, R.M.: Chloroplast and cytoplasmic ribosomes in Euglena gracilis. FEBS Lett. 10, 149 (1970)PubMedGoogle Scholar
  309. Scott, N.S., Smillie, R.M.: Evidence for the direction of chloroplast ribosomal RNA synthesis by chloroplast DNA. Biochem. Biophys. Res. Commun. 28, 598 (1967)PubMedGoogle Scholar
  310. Sekerka, V., Ebringer, L.: Induction of chromosomal abberations in plants by 5-nitro-2-furaldehyde. Biológia (Bratislava), in press (1977)Google Scholar
  311. Sekiguchi, M., Takagi, Y.: Effect of mitomycin C on the synthesis of bacterial and viral deoxyribonucleic acid. Biochim. Biophys. Acta (Amst.) 41, 434 (1960)Google Scholar
  312. Selsky, M.I.: Effects of puromycin aminonucleoside on growth and chloroplast development of Euglena gracilis. Exptl. Cell Res. 47, 237 (1967)PubMedGoogle Scholar
  313. Shafei, A.Z.: The treatment of amebic dysentery with paromomycin. A preliminary report. Antib. Med. Clin. Ther. 6, 275 (1959)Google Scholar
  314. Shah, V.C., Lyman, H.: DNA-dependent RNA synthesis in chloroplasts of Euglena gracilis. J. Cell Biol. 29, 174 (1966)PubMedGoogle Scholar
  315. Shigeura, H.T., Gordon, C.N.: Further studies on the activity of hada-cidin. Cancer Res. 22, 1356 (1962)PubMedGoogle Scholar
  316. Shmerling, Z.G.: The effect of rifamycin on RNA synthesis in the rat liver mitochondria. Biochem. Biophys. Res. Commun. 37, 965 (1969)PubMedGoogle Scholar
  317. Siegesmund, K.A., Rosen, W.G., Gawlik, S.R.: Effects of darkness and of streptomycin on the fine structure of Euglena gracilis. Am. J. Botany 49, 137 (1962)Google Scholar
  318. Signol, M.: Action de la dihydrostreptomycine sur les chloroplastes de prothalles de fourgere cultives in vitro. Compt. Rend. Acad. Sci. (Paris) 238, 2332 (1954)Google Scholar
  319. Smillie, R.M., Bishop, D.G., Gibbons, G.C., Graham, D., Grieve, A.M., Raison, J.K., Reger, B.J.: Determination of the site of synthesis of proteins and lipids of the chloroplast using chloramphenicol and cycloheximide. In: Autonomy and Biogenesis of Mitochondria and Chloroplasts, (eds. N.K. Boardman, A.W. Linnane, R.M. Smillie), p. 422. Amsterdam: North-Holland 1971Google Scholar
  320. Smillie, R.M., Ewans, W.R., Lyman, H.: Metabolic events during the formation of a photosynthetic from a nonphotosynthetic cell. Brook-haven Symp. Biol. 16, 89 (1963)Google Scholar
  321. Smillie, R.M., Scott, N.S.: Organelle biosynthesis: The chloroplast. In: Progress in Molecular and Subcellular Biology (ed. F.E. Hahn), Vol. 1, p. 136. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  322. Smillie, R.M., Scott, N.S., Bishop, D.G.: Gene expression in chloroplasts and regulation of chloroplast differentiation. In: Biochemistry and Gene Expression in Higher Organisms (eds, J.K. Pollak, W. Lee), p. 479. Sydney: Australian and New Zealand Book 1973Google Scholar
  323. Smith, D.H., Davis, B.D.: Mode of action of novobiocin in Escherichia coli. J. Bacteriol. 93, 73 (1967)Google Scholar
  324. Smith, U., Smith, D.S., Yunis, A.A.: Chloramphenicol-related changes in mitochondrial ultrastructure. J. Cell Sci. 7, 501 (1970)PubMedGoogle Scholar
  325. Stefanovic, V.: Spectrophotometric studies of the interaction of an-thramycin with DNA. Biochem. Pharmacol. 17, 315 (1968)Google Scholar
  326. Stein, H.: Actinomycin D: Its inhibitory effect on the development of epidermal hairs on seedlings on Sinapis alba L. Israel J. Botany 16, 124 (1967)Google Scholar
  327. Stern, J.L., Barner, H.D., Cohen, S.S.: The lethality of streptomycin and the stimulator of RNA synthesis in the absence of protein synthesis. J. Mol. Biol. 17, 188 (1966)PubMedGoogle Scholar
  328. Strain, G.C., Mullinix, K.P., Bogorad, L.: RNA polymerases of maize: nuclear RNA polymerases. Proc. Nat. Acad. Sci. (Wash.) 68, 2647 (1971)Google Scholar
  329. Strominger, J.L., Threnn, R.H.: Theoretical configuration of the alanine residues in a uridine nucleotide and in the cell wall of Staphylococcus aureus. Biochim. Biophys. Acat (Amst.) 33, 280 (1959)Google Scholar
  330. Stutz, E., Noll, H.: Characterization of cytoplasmic and chloroplast polysomes in plants: evidence for three classes of ribosomal RNA in nature. Proc. Nat. Acad. Sci, (Wash.) 57, 774 (1967)Google Scholar
  331. Sung, S.C., Quastel, J.H.: Sarcomycin inhibition of deoxyribonucleic acid synthesis in Ehrlich ascites carcinoma cells. Cancer Res, 23, 1549 (1963)PubMedGoogle Scholar
  332. Surzycki, S.J.: Genetic functions of the chloroplast of Chlamydomonas reinhardi: effect of rifampin on chloroplast DNA-dependent RNA polymerase. Proc. Nat. Acad. Sci. (Wash.) 63, 1327 (1969)Google Scholar
  333. Suzuki, H., Pangborn, J., Kilgore, W.W.: Filamentous cells of Escherichia coli formed in the presence of mitomycin. J. Bacteriol. 93, 683 (1967)PubMedGoogle Scholar
  334. Szczukowski, M.J., Daywitt, A.L., Elrick, H.: Metastatic testicular tumor treated, with nitrofurazone. Report of Case. J. Am. Med. Assoc. 167, 1066 (1958)PubMedGoogle Scholar
  335. Szilágyi, I., Szabó, I.: Microchemical method for the determination of Sakaguchi-positive antibiotics. Nature (London) 181, 52 (1958)Google Scholar
  336. Szybalski, W., Iyer, V.N.: Crosslinking of DNA by enzymatically or chemically activated mitomycins, bifuncionally “alkylating” antibiotics. Federation Proc. 23, 946 (1964)Google Scholar
  337. Tanaka, N., Masukawa, H., Umezawa, H.: Structural basis of kanamycin for miscoding activity. Biochem. Biophys. Res. Commun. 26, 544 (1967)PubMedGoogle Scholar
  338. Tanaka, N., Yamaguchi, N., Umezawa, H.: Mechanism of action of phleomycin, a tumorinhibitory antibiotic. Biochem. Biophys. Res. Commun. 10, 171 (1963)PubMedGoogle Scholar
  339. Taylor, D.L.: Chloroplasts as symbiotic organelles. Intern. Rev. Cytol. 27, 29 (1970)Google Scholar
  340. Taylor, F.J.R.: Origin and evolution of the eukaryotic cell, II, Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23, 229 (1974)Google Scholar
  341. Tazima, Y., Kada, T., Murakami, A.: Mutagenicity of nitrofuran derivatives, including furylfuramide, a food preservative. Mutat. Res. 32, 55 (1975)PubMedGoogle Scholar
  342. Terawaki, A., Greenberg, J.: Effect of some radiomimetic agents on deoxyribonucleic acid synthesis and transformation in Bacillus subtilis. Biochim. Biophys. Acta (Amst.) 95, 170 (1965)Google Scholar
  343. Terawaki, A., Greenberg, J.: Inactivation of transforming deoxyribonucleic acid by carzinophillin and mitomycin. C. Biochim. Biophys. Acta (Amst.) 119, 59 (1966a)Google Scholar
  344. Terawaki, A., Greenberg, J.: Effect of carzinophillin on bacterial deoxyribonucleic acid: formation of interstrand cross-links in deoxyribonucleic acid and their disappearance during post-treatment incubation. Nature (London) 209, 481 (1966b)Google Scholar
  345. Ternetz, C.: Beiträge zur Morphologie und Physiologie der Euglena gracilis Klebs. Jahrb. Wiss. Botan. 51, 435 (1912)Google Scholar
  346. Tessman, J., Ishiva, H., Kumar, S.: Mutagenic effect of hydroxylamine in vivo. Science 148, 507 (1965)PubMedGoogle Scholar
  347. Tewari, K.K., Wildman, S.G.: Function of chloroplast DNA. I. Hybridization studies involving nuclear and chloroplast DNA with RNA from cytoplasmic (80S) and chloroplast (70S) ribosomes. Proc. Nat, Acad. Sci. (Wash.) 55, 569 (1968)Google Scholar
  348. Toyama, S.: Electron microscope studies on the morphogenesis of plastids. VII. Effects of streptomycin on the development of plastids in tomato cotyledon. Botan. Mag. (Tokyo) 85, 89 (1972)Google Scholar
  349. Tsai, M., Michaelis, G., Griddle, R.S.: DNA-dependent RNA polymerase from yeast mitochondria. Proc. Nat. Acad. Sci. (Wash.) 68, 473 (1971)Google Scholar
  350. Umezawa, H., Mizuno, S., Yamazaki, H., Nitta, K.: Inhibition of DNA-dependent RNA synthesis by rifamicine. J. Antibiot. (Tokyo), Ser. A. 21, 234 (1968)Google Scholar
  351. Umezawa, H., Takeuchi, T., Nitta, K., Okami, Y., Yamamoto, T., Yamaoka, S.: Studies on antitumor substances produced by microorganisms. III. On sarkomycin produced by a strain resembling to Streptomyces erythrochromogene. J. Antibiot. (Tokyo) Ser. A. 6, 147 (1953a)Google Scholar
  352. Umezawa, H., Takeuchi, T., Nitta, K., Yamamoto, T., Yamaoka, S.: Sarkomycin, an antitumor substance produced by Streptomyces. J. Antibiot. (Tokyo) Ser. A. 6, 101 (1953b)Google Scholar
  353. Umezawa, H., Yamamoto, T., Takeuchi, T., Osato, T., Okami, Y., Yamamoka, S., Okuda, T., Nitta, K., Yagishita, K., Utahara, R., Umezawa, S.: Sarkomycin, an anti-cancer substance produced by Streptomyces. Antibiotics and Chemotherapy 4, 514 (1954)Google Scholar
  354. Pel, B. van, Bronchart, R., Kebers, F., Cocito, C.: Structure and function of cytoplasmic organelles in transiently- und permanently-bleached Euglena. Exptl. Cell Res. 78, 103 (1973)PubMedGoogle Scholar
  355. Pel, B. van, Cocito, C.: Formation of chloroplast ribosomes and ribo-somal RNA in Euglena gracilis incubated with protein inhibitors. Exptl. Cell Res. 78, 111 (1973)PubMedGoogle Scholar
  356. Vávra, J.: Toxicita streptomycinu pro bičíkovce Euglena gracilis Klebs a inhibice rustu jeho kultury streptomycinem. Čs. Biologie (Praha) 6, 107 (1957a)Google Scholar
  357. Vávra, J.: Pusobení streptomycinu na chloroplasty bičíkovce Euglena gracilis Klebs. Čs. Biológie (Praha) 6, 209 (1957b)Google Scholar
  358. Vazquez, D.: Antibiotics which affect protein synthesis: The uptake of 14C-chloramphenicol by bacteria. Biochem. Biophys. Res. Commun. 12, 409 (1963)PubMedGoogle Scholar
  359. Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. Biophys. Acta (Amst.) 114, 277 (1966)Google Scholar
  360. Vazquez, D.: Macrolide antibiotics — spiramycin, carbomycin, angolamycin, methymycin, and lancamycin. In: Antibiotics. I. Mechanism of Action (eds. D. Gottlieb, P.D. Shaw), p. 366. Berlin-Heidelberg-New York: Springer 1967aGoogle Scholar
  361. Vazquez, D.: The streptogramin family of antibiotics. In: Antibiotics. I. Mechanism of Action (eds. D. Gottlieb, P.D. Shaw), p. 387. Berlin-Heidelberg-New York: Springer 1967bGoogle Scholar
  362. Vazquez, D.: The macrolide antibiotics. In: Antibiotics. III. Mechanism of Action of Antimicrobial and Antitumor Agents (eds. J.W. Corcoran, F.E. Hahn), p. 459. Berlin-Heidelberg-New York: Springer 1975aGoogle Scholar
  363. Vazquez, D.: The streptogramin family of antibiotics. In: Antibiotics. III. Mechanism of Action of Antimicrobial and Antitumor Agents (eds. J.W. Corcoran, F.E. Hahn), p. 521. Berlin-Heidelberg-New York: Springer 1975bGoogle Scholar
  364. Vazquez, D., Stachelin, T., Celma, M.L., Battaner, E., Fernández-Muñoz, R., Monro, R.E.: Inhibitors as tools in elucidating ribosomal function. In: 20. Colloquium der Gesellschaft für Biologische Chemie in Mosbach/Baden, p. 100. Berlin-Heidelberg-New York: Sprnger 1968Google Scholar
  365. Ventura, M.M., Hollanda, L.I.: Effect of antibiotics on respiration of plant tissues. Fyton 7, 1 (1956)Google Scholar
  366. Vrbovsky, L., Horáková, K., Navarová, J., Veber, P., Ebringer, L.: The study of correlation between in vivo and in vitro toxicity. Proc. Eur. Soc. Tox. 16, 236 (1975)Google Scholar
  367. Wallin, I.E.: Symbioticism and the Origin of Species. London: Baillière, Tindall and Cox 1927Google Scholar
  368. Wallis, O.C., Ottolenghi, P., Whittaker, P.A.: Induction of petite in yeast by starvation in glycerol. Biochem. J. 127, 46P (1972)PubMedGoogle Scholar
  369. Wanka, F., Moors, J.: Selective inhibition by cycloheximide of nuclear DNA synthesis in synchronous cultures of Chlorella. Biochem. Biophys. Res. Commun. 41, 85 (1970)PubMedGoogle Scholar
  370. Ward, D.C., Reich, E., Goldberg, I.H.: Base specificity in the interaction of polynucleotides with antibiotic drugs. Science 149, 1259 (1965)PubMedGoogle Scholar
  371. Wehr, C.T., Kudrna, R.D., Parks, L.W.: Effect of putative deoxyribonucleic acid inhibitors on macromolecular synthesis in Saccharomyces cerevisiae. J. Bacteriol. 102, 636 (1970)PubMedGoogle Scholar
  372. Wehrli, W., Niiesh, J., Knüsel, F., Stehelin, M.: Action of rifamycins on RNA polymerase. Biochim. Biophys. Acta (Amst.) 157, 215 (1968)Google Scholar
  373. Weissbach, A., Lisio, A.: Alkylation of nucleic acids by mitomycin C and porfiromycin. Biochemistry 4, 196 (1965)Google Scholar
  374. White, H.L., White, J.R.: The binding of porfiromycin to deoxyribonucleic acid. J. Elisha Mitchell Sci. Soc. 81, 37 (1965)Google Scholar
  375. White, H.L., White, J.R.: Binding of rubiflavin to deoxyribonucleic acid in relation to antibacterial action. In: Antimicrobial Agents and Chemotherapy-1966, (ed. G.L. Hobby), p. 227. Ann Arbor: Am. Soc. for Microbiology, 1967Google Scholar
  376. White, J.R., Dearman, H.H.: Generation of free radicals from phenozine methosulphate, streptonigrin, and rubiflavin in bacterial suspensions. Proc. Nat. Acad. Sci. (Wash.) 54, 887 (1965)Google Scholar
  377. Whittaker, P.A., Hammond, R.C., Luha, A.A.: Mechanism of mitochondrial mutation in yeast. Nature (New Biol.) 238, 266 (1972)Google Scholar
  378. Whitton, B.A., Carr, N.G., Craig, I.W.: A comparison of the fine structure and nucleic acid biochemistry of chloroplasts and blue-green algae. Protoplasma 72, 325 (1971)PubMedGoogle Scholar
  379. Wilhelm, J.M., Oleinick, N.L., Corcoran, J.W.: Interaction of antibiotics with ribosomes: structure-function relationships and a possible common mechanism for the antimicrobial action of the macrolides and lincomycin. In: Antimicrobial Agents and Chemotherapy-1967, (ed. G.L. Hobby), p. 236. Ann Arbour: Am. Soc, for Microbiology, 1968Google Scholar
  380. Wintersberger, E.: DNA-dependent RNA polymerase from mitochondria of a cytoplasmic “petite” mutant of yeast. Biochem. Biophys. Res. Commun. 40, 1179 (1970)PubMedGoogle Scholar
  381. Wintersberger, E.: Isolation of a distinct rifampicin-resistant RNA polymerase from mitochondria of yeast, neurospora and liver. Biochem. Biophys. Res. Commun. 48, 1287 (1972)PubMedGoogle Scholar
  382. Wintersberger, E., Wintersberger, U.: Rifamycin sensitivity of RNA synthesis in Yeast. FEBS Lett. 6, 58 (1970)PubMedGoogle Scholar
  383. Wishnow, R.M., Strominger, J.L., Birge, C.H., Threnn, R.H.: Biochemical effects of novobiocin on Staphylococcus aureus. J. Bacteriol. 89, 1117 (1965)PubMedGoogle Scholar
  384. Wolfe, A.D., Hahn, F.E.: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosomes. Biochim. Biophys. Acta (Amst.) 95, 146 (1965)Google Scholar
  385. Woody-Karrer, P., Greenverg, J.: Resistance and cross-resistance of Escherichia coli S mutants to the radiomemetic agent nitrofurazone. J. Bacteriol. 85, 1208 (1963)PubMedGoogle Scholar
  386. Wright, J.M.: Phytotoxic effects of some antibiotics. Ann. Botany (London) 60, 493 (1951)Google Scholar
  387. Yahagi, T., Nagao, M., Hara, K., Matsushima, T., Sugimura, T., Bryan, G.T.: Relationships between the carcinogenic and mutagenic or DNA-modifying effects of nitrofuran derivatives, including 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide, a food additive. Cancer Res. 34, 2266 (1974)PubMedGoogle Scholar
  388. Yamada, T.: The growth and chlorophyll as affected by antibiotics. Botan. Mag. (Tokyo) 66, 181 (1953)Google Scholar
  389. Yoshikawa, M.: Drug sensitivity and mutability to drug resistance associated with the presence of an R factor. Genet. Res. 17, 1 (1971)PubMedGoogle Scholar
  390. Yukioka, M.: Gougerotin. In: Antibiotics. III. Mechanism of Action of Antimicrobial and Antitumor Agents (eds. J.W. Corcoran, F.E. Hahn), p. 448. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  391. Zablen, L.B., Kissil, M.S., Woese, C.R., Buetow, D.E.: Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc. Nat. Acad. Sci. (Wash.) 72, 2418 (1975)Google Scholar
  392. Zahalsky, A., Hutner, S.H., Keane, M., Burger, R.M.: Bleaching Euglena gracilis with antihistamines and streptomycin-type antibiotics. Arch. Mikrobiol. 42, 46 (1962)PubMedGoogle Scholar
  393. Zahn, G.: Streptomycin und Metallionen. I. Der Einfluß einiger Schwermetalle, mikro und Makronährstoffe auf die Phytotoxizität des Streptomycins. Phytopath. 45, 345 (1962a)Google Scholar
  394. Zahn, G.: Streptomycin und Metallionen. II. Untersuchungen mit Kalzium, Magnesium and Mangan. Flora 152, 655 (1962b)Google Scholar
  395. Zampieri, A., Greenberg, J.: Nitrofurazone as a mutagen in Escherichia coli. Biochem. Biophys. Res. Commun. 14, 172 (1964)PubMedGoogle Scholar
  396. Zimmer, C., Triebel, H., Thrum, H.: Interaction of streptothricin and related antibiotics with nucleic acids. Biochim. Biophys. Acta (Amst.) 145, 742 (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1978

Authors and Affiliations

  • L. Ebringer

There are no affiliations available

Personalised recommendations