Advertisement

Influence of DNA Complexing Compounds on the Kinetoplast of Trypanosomatids

  • S. L. Hajduk
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 6)

Abstract

The members of the family Trypanosomatidae are parasitic flagellates, some of which are the causative agents of several important human and animal diseases (Hoare, 1972; Simpson, 1972). These parasites and other members of the order Kinetoplastida (Honigberg et al., 1964) contain a characteristic Feulgen-positive granule, the kinetoplast, at the base of the flagellum adjacent to the kinetosome. The presence of DNA in the kinetoplast has been confirmed (Cosgrove and Anderson, 1954; Steinert et al., 1958; Steinert and Steinert, 1962; Hill and Anderson, 1969) and its mitochondrial nature firmly established (Shipley, 1916; Clark and Wallace, 1960; Steinert, 1960; Cosgrove, 1966b; Simpson, 1972; Paulin, 1975).

Keywords

Buoyant Density Circular Molecule Cell BioI Respiration Deficient Mutant Trypanocidal Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W., Hill, G.C.: Division and DNA synthesis in the kineto-plast of Crithidia fasculata.J. Cell Sci. 4, 611–620 (1969)PubMedGoogle Scholar
  2. Bacchi, C., Hill, G.C.: Effects of acriflavine on glycolytic enzyme levels of Crithidia fasoioulata.J. Protozool. 16 (suppl.), 11–12 (1969)Google Scholar
  3. Bauer, F.: Über den Wirkungsmechanismus des Berenil (4,4′-diamidino-diazoaminobenzol) bei Trypanosoma oongolense. Zbl. Bakt. 172, 605–620 (1958)Google Scholar
  4. Bauer, W., Vinpgrad, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–171 (1968)PubMedGoogle Scholar
  5. Bauer, W., Vinograd, J.: Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J. Mol. Biol. 47, 419–435 (1970)PubMedGoogle Scholar
  6. Bayne, R.A., Muse, K.E., Roberts, J.F.: Regulation of oxidase enzyme systems in trypanosomes. Comp. Biochem. Physiol. 30, 61–72 (1969)PubMedGoogle Scholar
  7. Benard, J., Riou, G.: Incorporation of 3H-thymidine into the kineto-plastic and nuclear DNA: action of a new intercalating drug, methoxy 9 ellipticine. Progress in Protozoology (1973)Google Scholar
  8. Benard, J., Riou, G.: Biochemical action of ellipticine derivatives on Trypanosoma cruzi. In: Biochemistry of Parasites and Host-Parasite Relationships (ed. H. van den Bossche), pp. 477–484. Amsterdam: Elsevier-North Holland 1976Google Scholar
  9. Borst, B.: Mitochondrial nucleic acids. Ann. Rev. Biochem. 41, 333–375 (1972)PubMedGoogle Scholar
  10. Borst, P., Fairlamb, A.H.: DNA of parasites, with special reference to kinetoplast DNA. In: Biochemistry of Parasites and Host-Parasite Relationships (ed. H. van den Bossche), pp. 169–191. Amsterdam: Elsevier-North Holland 1976Google Scholar
  11. Borst, P., Grivell, L.A.: Mitochondrial ribosomes. FEBS Letters 13, 73–88 (1971)PubMedGoogle Scholar
  12. Brack, C.: Elektronenmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma oruzi.Acta Trop. 25, 289–356 (1968)PubMedGoogle Scholar
  13. Brack, C., Delain, E.: Electron microscopic mapping of A-T rich regions and E.coli RNA polymerase binding sites on the circular kinetoplast DNA of Trypanosoma oruzi. J. Cell Sci. 17, 287–306 (1975)PubMedGoogle Scholar
  14. Brack, C., Delain, E., Riou, G.: Replicating, covalently closed circular DNA from kinetoplasts of Trypanosoma oruzi.Proc. Nat. Acad. Sci. USA 69, 1642–1646 (1972a)PubMedGoogle Scholar
  15. Brack, C., Delain, E., Riou, G., Festy, B.: Molecular organization of the kinetoplast DNA of Trypanosoma cruzi treated with berenil, a DNA interacting drug. J. Ultrastruct. Res. 39, 568–579 (1972b)PubMedGoogle Scholar
  16. Brady, P., Simpson, L., Kretzer, F.: Isolation of kinetoplast-mito-chondrial complexes from Leishmania tarentolae.J. Protozool. 21, 782–790 (1974)Google Scholar
  17. Brener, Z.: Chemotherapy of Trypanosoma cruzi infections. Adv. Chemother. 13, 2–44 (1975)Google Scholar
  18. Brownlee, G., Goss, M.D., Goodwin, L.G., Woodbine, M., Walls, L.P.: The chemotherapeutic action of phenanthridine compounds. Brit. J. Pharmacol. 5, 261–276 (1950)PubMedGoogle Scholar
  19. Bujard, H.: Studies on circular DNA. II. Number of tertiary turns in Papilloma DNA. J. Mol. Biol. 33, 503–505 (1968)PubMedGoogle Scholar
  20. Burton, P.R., Dusanic, D.G.: The fine struture and replication of the kinetoplast of T.lewisi.J. Cell Biol. 39, 318–330 (1968)PubMedGoogle Scholar
  21. Chambron, J., Daune, M., Sadron, C.: Étude thermodynamique de l’ interaction de la proflavine avec l’acide désoxyribonucléique. I. Étude par équilibre de dialyse. Biochim. Biophys. Acta 123, 306–318 (1966a)PubMedGoogle Scholar
  22. Chambron, J., Daune, M., Sadron, C.: Étude thermodynamique de l’interaction de la proflavine avec l’acide désoxyribonucléique. II. Étude de la dissociation du complexe DNA-proflavine par spectrophotométric. Biochim. Biophys. Acta 123, 319–328 (1966b)PubMedGoogle Scholar
  23. Chan, L.M., van Winkle, Q.: Interaction of acriflavine with DNA and RNA. J. Mol. Biol. 40, 491–495 (1969)PubMedGoogle Scholar
  24. Clark, T.B., Wallace, F.G.: A comparative study of kinetoplast ultrastructure in the Trypanosomatidae. J. Protozool. 7, 115–124 (1960)Google Scholar
  25. Clarkson, A.B.: The microbodies of Trypanosoma equiperdum. Ph. D. Thesis, Univ. of Georgia 1975Google Scholar
  26. Clarkson, Jr., A.B., Brohn, F.H.: Trypanosomiasis: An approach to chemotherapy by the inhibition of carbohydrate catabolism. Science 194, 204–206 (1976)PubMedGoogle Scholar
  27. Cohen, G., Eisenberg, H.: Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8, 4 5–55 (1969)Google Scholar
  28. Cosgrove, W.B.: Acriflavine-induced akinetoplasty in Crithidia fasoiculata.Acta Protozool. 4, 155–160 (1966a)Google Scholar
  29. Cosgrove, W.B.: Cytochemical demonstration of mitochondrial enzymes in kinetoplasts. J. Protozool. 13 (suppl.), 16 (1966b)Google Scholar
  30. Cosgrove, W.B.: The cell cycle and cell differentiation in trypano-somatids. In: Developmental Aspects of the Cell Cycle (eds. I.L. Cameron, G.M. Padilla, A.M. Zimmerman), pp. 1–21. New York: Academic Press 1971Google Scholar
  31. Cosgrove, W.B., Anderson, E.: The kinetoplast of Crithidia fasoiculata.Anat. Rec. 120, 813 (1954)Google Scholar
  32. Cosgrove, W.B., McSwain, M.: Absence of the kinetoplast in trypano-somatids of insects. Anat. Rec. 138, 34 (1960)Google Scholar
  33. Crawford, L.V., Waring, M.: Supercoiling of Polyoma virus DNA measured by its interaction with ethidium bromide. J. Mol. Biol. 25, 23–30 (1967)PubMedGoogle Scholar
  34. Curd, F.H.S., Davey, D.G.: “Antrycide”: a new trypanocidal drug. Nature (London) 163, 89–90 (1949)Google Scholar
  35. Curd, F.H.S., Davey, D.G.: “Antrycide”: a new trypanocidal drug. Brit. J. Pharmacol. 5, 25–32 (1950)PubMedGoogle Scholar
  36. Damper, D., Patton, C.L.: Pentamidine transport in Trypanosoma bruoei: kinetics and specificity. J. Biochem. Pharmacol. 25, 271–276 (1976a)Google Scholar
  37. Damper, D., Patton, C.L.: Pentamidine transport and sensitivity in Brucei group trypanosomes. J. Protozool. 23, 349–356 (1976b)PubMedGoogle Scholar
  38. Dann, O., Bergen, E., Volz, G.: Trypanocide diamidine des 2-phenyl-benzofurans, 2-phenyl-indens und 2-phenyl-indols. Ann. Chem. 749, 68–89 (1971)Google Scholar
  39. Dawid, I.B.: Mitochondrial RNA in Xenopus laevis. I. The expression of the mitochondrial genome. J. Mol. Biol. 63, 201–217 (1972)PubMedGoogle Scholar
  40. Deane, M.P., Kloetzel, J.: Differentiation and multiplication of dys-kinetoplastic T.cruzi in tissue culture and mammalian host. J. Protozool. 16, 121–126 (1969)PubMedGoogle Scholar
  41. Delain, E., Brack, C., Riou, G., Festy, B.: Ultrastructure of trypanosomes treated with trypanocides: selective effects on cytoplasmic DNA. J. Parasit. 56, 416 (1970)Google Scholar
  42. Delain, E., Brack, C., Riou, G., Festy, B.: Ultrastructural alterations of Trypanosoma cruzi.kinetoplast induced by the interaction of a trypanocidal drug (Hydroxystilbamidine) with the kinetoplast DNA. J. Ultrastruct. Res. 37, 200–218 (1971)PubMedGoogle Scholar
  43. Delain, E. Riou, G.: Ultrastruture des altérations du DNA du kinétoplaste de Trypanosoma cruzi traite par le bromure d’êthidium. C. R. Acad. Sci. Ser. D. 268, 1327–1330 (1969)Google Scholar
  44. Eagle, H.: The spirochetal and trypanocidal action of acid-substituted phenyl arsenoxides as a function of pH and dissociation constants. J. Pharmacol. Exp. Therap. 85, 265–282 (1945)Google Scholar
  45. Elliott, W.H.: The effects of antimicrobial agents on deoxyribonucleic acid polymerase. Biochem. J. 86, 562–567 (1962)Google Scholar
  46. Ephrussi, B., Hottinguer, H.: Direct demonstration of the mutagenic action of euflavine on Baker’s yeast. Nature (London) 166, 956 (1950)Google Scholar
  47. Ephrussi, B., Hottinguer, H.: Cytoplasmic constituents of heredity. On an unstable cell state in yeast. Cold Spring Harbor Symp. Quant. Biol. 16, 75–85 (1951)PubMedGoogle Scholar
  48. Festy, B.: Interaction de l’hydroxystilbamidine avec les acides nucléiques in vitro et ses incidences enzymatiques. C. R. Acad. Sci. Ser. D. 266, 1433–1436 (1968)Google Scholar
  49. Festy, B., Daune, M.: Hydroxystilbamidine: a non-intercalative drug as a probe of nucleic acid conformation. Biochemistry 12, 4827–4834 (1973)PubMedGoogle Scholar
  50. Festy, B., Lallemant, A.M., Riou, G., Brach, C., Delain, E.: Mécanisme d’action des diamidines trypanocides. Importance de la composition en bases dans l’association berenil-polynucléotides. C. R. Acad. Sci. Ser. D. 271, 684–687 (1970)Google Scholar
  51. Festy, B., Poisson, J., Paoletti, C.: A new DNA intercalating drug: methoxy-9-ellipticine. FEBS Letters 17, 321–323 (1971)PubMedGoogle Scholar
  52. Festy, B., Sturm, J., Daune, M.: Interaction between hydroxystilbamidine and DNA. I. Binding isotherms and thermodynamics of the association. Biochim. Biophys. Acta 407, 24–42 (1975)PubMedGoogle Scholar
  53. Fouts, D.L., Manning, J.E., Wolstenholme, D.R.: Physicochemical properties of kinetoplast DNA from Crithidia acanthocephali, Crithidium lueiliae and Trypanosoma lewisi.J. Cell Biol. 67, 378–399 (1975)PubMedGoogle Scholar
  54. Fromentin, H.: Apparitition de formes dyskinétoplastiques de Trypanosoma gambiense provoquée par le bromure d’éthidium chez la Souris expérimentalement infectée. C. R. Acad. Sci. Ser. D. 273, 1032–1034 (1971)Google Scholar
  55. Fromentin, H.: Ultrastructure comparée de souches dyskinétoplastiques de Trypanosoma gambiense et de Trypanosoma evansi.C. R. Acad. Sci. Ser. D. 278, 1859–1861 (1974)Google Scholar
  56. Fukahara, H., Kujawa, C.: Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and acriflavine. Biochem. Biophys. Res. Comm. 41, 1002–1008 (1970)Google Scholar
  57. Fulton, J.D., Grant, P.T.: The preparation of a strain of Trypanosoma rhodesiense resistant to stilbamidine and some observation on its nature. Exp. Parasit. 4, 377–386 (1955)PubMedGoogle Scholar
  58. Fulton, J.D., Mathew, K.K.: Tracer studies on the distribution and trypanocidal action of stilbamidine in rats. Brit. J. Pharmacol. 14, 137–141 (1959)PubMedGoogle Scholar
  59. Gill, B.S.: Resistance of Trypanosoma evansi to quinapyramine, suramin, stilbamidine and tryparasamide and analysis of cross resistance. Trans. Roy. Soc. Trop. Med. Hyg. 65, 352–357 (1971)PubMedGoogle Scholar
  60. Goldberg, B., Lambros, C., Bacchi, C.J., Hutner, S.H.: Inhibition by several standard antiprotozoal drugs of growth and O2 uptake of cells and particulate preparations of a Leptomonas. J. Protozool. 21, 322–326 (1974)PubMedGoogle Scholar
  61. Goldring, E.S., Grossman, L.I., Krupnick, D., Cryer, D.R., Marmur, J.: The petite mutation in yeast. Loss of mitochondrial DNA during induction of petites with ethidium bromide. J. Mol. Biol. 52, 323–335 (1970)PubMedGoogle Scholar
  62. Grant, P.T., Sargent, J.R.: L-α-glycerophosphate dehydrogenase, a component of an oxidase system in Trypanosoma rhodesiense. Biochem. J. 81, 206–214 (1961)PubMedGoogle Scholar
  63. Grant, P.T., Sargent, J.R., Ryley, J.F.: Respiratory systems in the Trypanosomatidae. Biochem. J. 81, 200–206 (1961)PubMedGoogle Scholar
  64. Gray, A.R., Roberts, C.J.: The cyclical transmission of strains of Trypanosoma eongolense and T.vivax Resistant to normal therapeutic doses of trypanocidal drugs. Parasit. 63, 67–89 (1971)Google Scholar
  65. Gutteridge, W.E., Stuart, K., Williamson, D.H., Vickerman, K.: Analysis of DNA from some dyskinetoplastic species of trypanosome. Trans. Roy. Soc. Trop. Med. Hyg. 65, 247 (1971)Google Scholar
  66. Hajduk, S.L.: Comparison of the kinetoplasts of normal, spontaneously dyskinetoplastic, and dye induced dyskinetoplastic strains of Trypanosoma equiperdum. Progress in Protozoology, p. 168 (1973)Google Scholar
  67. Hajduk, S.L.: Demonstration of kinetoplast DNA in dyskinetoplastic strains of Trypanosoma equiperdum. Science 191, 858–859 (1976a)PubMedGoogle Scholar
  68. Hajduk, S.L.: Fate of kinetoplast DNA in dyskinetoplastic strains of Trypanosoma equiperdum and Crithidia fasciculata.J. Protozool. 23, 17A (1976b)Google Scholar
  69. Hawking, F.: The absorption of 4,4′-diamidine-stilbene (stilbamidine) by trypanosomes and its blood concentration in animals. J. Pharmacol. Exp. Therap. 82, 31–41 (1944)Google Scholar
  70. Hawking, F.: Chemotherapy of Trypanosomiasis. In: Experimental Chemotherapy (eds. R.J. Schnitzer, F. Hawking), Vol. 1, pp. 131–238. New York: Academic Press 1963Google Scholar
  71. Hawking, F., Smiles, J.: The distribution of 4,4′-diamidino-stilbene in trypanosomes and mice as shown by fluorescence. Ann. Trop. Med. Parasit. 35, 45–52 (1949)Google Scholar
  72. Hill, G.C.: Electron transport systems in kinetoplastida. Biochim. Biophys. Acta 456, 149–193 (1977)Google Scholar
  73. Hill, G.C., Anderson, W.A.: Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata.Correlation of fine structure changes with decreased mitochondrial enzyme activity. J. Cell Biol. 41, 547–561 (1969)PubMedGoogle Scholar
  74. Hill, G.C., Anderson, W.A.: Electron transport systems and mitochondrial DNA in Trypanosomatidae: A Review. Exp. Parasit. 28, 356–380 (1970)PubMedGoogle Scholar
  75. Hill, G.C., Bonilla, C.A.: In vitro transcription of kinetoplast and nuclear DNA in kinetoplastida. J. Protozool. 21, 632–638 (1974)PubMedGoogle Scholar
  76. Hill, G.C., Brown, C.A., Clark, M.V.: Structure and function of mitochondria in Crithidia fasciculata.J. Protozool. 15, 102–109 (1968)PubMedGoogle Scholar
  77. Hill, G.C., Hutner, S.H.: Effect of trypanocidal drugs on terminal respiration of Crithidia fasciculata.Exp. Parasit. 22, 207–212 (1968)PubMedGoogle Scholar
  78. Hill, G.C., White, D.C.: Respiratory pigments of Crithidia fasciculata.J. Bact. 95, 2151–2157 (1968)PubMedGoogle Scholar
  79. Hoare, C.A.: The Trypanosomes of Mammals. Oxford: Blackwell 1972Google Scholar
  80. Hoare, C.A., Bennett, S.C.J.: Morphological and taxonomic studies on mammalian trypanosomes. III. Spontaneous occurrence of strains of Trypanosoma evansi devoid of the kinetoplast. Parasit. 29, 43–56 (1937)Google Scholar
  81. Honigberg, B., Balamuth, W., Bovee, E., Corliss, J., Gojdics, M., Hall, R., Kudo, R., Levine, N., Loeblich, A., Weiser, J., Wenrich, D.: A revised classification of the phylum Protozoa. J. Protozool. 11, 7–20 (1964)PubMedGoogle Scholar
  82. Horwitz, H.B., Holt, C.E.: Specific inhibition by ethidium bromide of mitochondrial DNA synthesis in Physarum polycephalum.J. Cell Biol. 49, 546–553 (1971)PubMedGoogle Scholar
  83. Inoki, S., Matsushiro, A.: Relationship between kinetoplast elimination and para-rosaniline resistance in Trypanosoma gambiense.Biken J. 2, 372–374 (1959)Google Scholar
  84. Inoki, S., Ozeki, Y., Ono, T.: Effects of p-rosaniline on the ultra-structure of the kinetoplast in Trypanosoma gambiense and evansi.Biken. J. 2, 187–199 (1969)Google Scholar
  85. Inoki, S., Sakamoto, H., Ono, T., Kubo, R.: Studies of AK forms of Trypanosoma evansi.Biken J. 5, 127–131 (1962)Google Scholar
  86. Jansco, N. von: Photobiologische Studien in der Chemotherapie. II. Photodynamisches und therapeutisches Interferenzphänomen bei der experimentellen Naganinfektion. Zentralb. Bakteriol. Parasitenk. Infektionskr. Hyg., Abt. I: Orig. 122, 388–403 (1931)Google Scholar
  87. Jirovec, O.: Studien über blepharoplastlose Trypanosomen. Arch. Pro-tistenk. 68, 187–195 (1929)Google Scholar
  88. Kersten, W., Kersten, H., Szybabski, W.: Physiochemical properties of complexes between deoxyribonucleic acid and antibiotics which affect ribonucleic acid synthesis. Biochemistry 5, 236–244 (1966)PubMedGoogle Scholar
  89. Killick-Kendrick, R.: The apparent loss of the kinetoplast of Trypanosoma evansi after treatment of an experimentally infected horse with berenil. Ann. Trop. Med. Parasit. 58, 481–490 (1964)PubMedGoogle Scholar
  90. Kleinwächter, V., Balcarova, Z., Bohacek, J.: Thermal stability of complexes of diamino-acridines with deoxyribonucleic acids of varying base content. Biochim. Biophys, Acta 174, 188–201 (1969)Google Scholar
  91. Kleisen, C.M., Borst, P.: Sequence heterogeneity of the mini-circles of kinetoplast DNA of Cvithidia luciliae and evidence for the presence of a component more complex than mini-cirle DNA in the kinetoplast network. Biochim. Biophys. Acta 407, 473–478 (1975)PubMedGoogle Scholar
  92. Kleisen, C.M., Borst, P., Weijers, P.J.: The structure of kinetoplast DNA. I. The mini-circles of Cvithidia luoiliae are heterogeneous in base composition. Eur. J. Biochem. 64, 141–151 (1976a)PubMedGoogle Scholar
  93. Kleisen, C.M., Weislogel, P.O., Fonck, K., Borst, P.: The structure of kinetoplast DNA. II. Characterization of a novel component of high complexity present in the kinetoplast DNA network of Cvithidia luciliae.Eur. J. Biochem. 64, 153–160 (1976b)PubMedGoogle Scholar
  94. Knight, E., Jr.: Mitochondria-associated ribonucleic acid of the HeLa cell. Effect of ethidium bromide on the synthesis of ribosomal and 4S ribonucleic acid. Biochemistry 8, 5089–5093 (1969)PubMedGoogle Scholar
  95. Kusel, J.P., Moore, K.E., Weber, M.M.: The ultrastructure of Cvithidia fasciculata and morphological changes induced by growth in acrifla-vine. J. Protozool. 14, 283–296 (1967)PubMedGoogle Scholar
  96. Kusel, J.P., Suriano, J.R., Weber, M.M.: Isolation, purification, and characterization of Cvithidia fasciculata cytochrome C555. Arch. Biochem. Biophys. 133, 293–304 (1969)PubMedGoogle Scholar
  97. Laurent, M., Steinert, M.: Electron microscopy of kinetoplast DNA from Trypanosoma mega.Proc. Nat. Acad. Sci. USA 66, 419–424 (1970)PubMedGoogle Scholar
  98. Laurent, M., van Assel, S., Steinert, M.: Kinetoplast DNA: A unique macromolecular structure of considerable size and mechanical resistance. Biochem. Biophys. Res. Comm. 43, 278–284 (1971)PubMedGoogle Scholar
  99. Lavier, G.: Existence de formes naturellement “ablepharoplastiques” chez Trypanosoma evansi et Tvypanosoma equipevdum.Compt. Rend. Soc. Biol. 98, 1320–1321 (1928)Google Scholar
  100. Leibowitz, R.D.: The effect of ethidium bromide on mitochondrial DNA synthesis and mitochondrial DNA structure in HeLa cells. J. Cell Biol. 51, 116–122 (1971)PubMedGoogle Scholar
  101. Le Pecq, J.B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 27, 87–106 (1967)Google Scholar
  102. Le Pecq, J.B., Xuong, N.D., Gosse, C., Paoletti, C.: A new antitumoral agent: 9-hydroxyellipticine. Possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proc. Nat. Acad. Sci. USA 71, 5078–5082 (1974)PubMedGoogle Scholar
  103. Lerman, L.S.: Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30 (1961)PubMedGoogle Scholar
  104. Lock, J.A.: The chemotherapeutic action of phenanthridine compounds. 4. Activity in vitro. Brit. J. Pharmacol. 5, 398–408 (1950)PubMedGoogle Scholar
  105. Lourie, E.M., Yorke, W.: Studies in chemotherapy. XXI. The trypanocidal action of certain aromatic diamidines. Ann. Trop. Med. Parasit. 33, 289–304 (1939)Google Scholar
  106. MacAdam, R.F., Williamson, J.: Lesions in the fine structure of Trypanosoma rhodesiense specifically associated with drug treatment. Trans. Roy. Soc. Trop. Med. Hyg. 63, 421–422 (1969)PubMedGoogle Scholar
  107. MacAdam, R.F., Williamson, J.: Drug effects on the fine structure of Trypanosoma rhodesiensei diamidines. Trans. Roy. Soc. Trop. Med. Hyg. 66, 897–904 (1972)PubMedGoogle Scholar
  108. MacAdam, R.F., Williamson, J.: Drug effects on the fine structure of Trypanosoma rhodesiense.Ann. Trop. Med. Parasit. 68, 291–299 (1974)PubMedGoogle Scholar
  109. Mahler, H.R., Perlman, P.S.: Induction of respiration deficient mutants in Saecharomyces cerevisiae by berenil. I. Berenil, a novel, non-intercalating mutagen. Molec. Gen. Genet. 121, 285–294 (1973)PubMedGoogle Scholar
  110. Manning, J., Wolstenholme, D.: Replication of kinetoplast DNA of Crithidia aoanthoeephali: density shift experiment using deuterium oxide. J. Cell Biol. 2 (2), 215a (1973)Google Scholar
  111. Manning, J.E., Wolstenholme, D.: Replication of kinetoplast DNA of Crithidia acanthocephali.I. Density shift experiments using deuterium oxide. J. Cell Biol. 70, 406–418 (1976)PubMedGoogle Scholar
  112. Marcovich, H.: Action de l’acriflavine sur les levures. VIII. Determination du composant actif et étude de 1’euflavine. Ann. Inst. Pasteur. 81, 452–468 (1951)Google Scholar
  113. Meyer, R.R., Simpson, M.V.: DNA biosynthesis in mitochondria: differential inhibition of mitochondrial and nuclear DNA polymerases by mutagenic dyes ethidium and acriflavin. Biochem. Biophys. Res. Comm. 34, 238–244 (1969)PubMedGoogle Scholar
  114. Milder, R., Deane, M.P.: Ultrastructure of Trypanosoma conorhoni in the crithidial phase. J. Protozool. 14, 65–72 (1967)Google Scholar
  115. Milder, R., Deane, M.P.: On the chondriome of naturally dyskinetopls-tic trypanosomes, Trypanosoma equinum and T.equiperdum.Rev. Inst. Med. Trop. Sao Paulo 11, 187–198 (1969)PubMedGoogle Scholar
  116. Morales, N.M., Schaefer, F.W. III, Keller, S.J., Meyer, R.R.: Effects of ethidium bromide and several acridine dyes on the kinetoplast DNA of Leishmania tropica, J. Protozool. 19, 667–672 (1972)PubMedGoogle Scholar
  117. Mounolow, J.C., Jakob, H., Slonimski, P.P.: Mitochondrial DNA from yeast “petite” mutants: Specific changes of buoyant density corresponding to different cytoplasmic mutations. Biochim. Biophys. Acta 14, 218–224 (1966)Google Scholar
  118. Mühlpfordt, H.: Vergleichende Untersuchung über die Wirkung Trypaflavins auf den Blepharoplast verschiedener Trypanomenarten. Z. Tropenmed. Parasitol. 10, 19–30 (1959)Google Scholar
  119. Mühlpfordt, H.: Über die Bedeutung und Feinstruktur des Blepharoplasten bei parasitischen Flagellaten. I. Teil. Z. Tropenmed. Parasitol. 14, 357–398 (1963a)Google Scholar
  120. Mühlpfordt, H.: Über die Bedeutung und Feinstruktur des Blepharoplasten bei parasitischen Flagellaten. II. Teil. Z. Tropenmed. Parasitol. 14, 475–501 (1963b)Google Scholar
  121. Müller, M.: Biochemistry of protozoan microbodies: Peroxisomes, α-glycerophosphate oxidase bodies, hydrogenosomes. Ann. Rev. Microbiol. 29, 467–483 (1975)Google Scholar
  122. Müller, W., Crothers, D.M.: Studies of the binding of actinomycin and related compounds to DNA. J. Mol. Biol. 35, 251–290 (1968)PubMedGoogle Scholar
  123. Nass, M.M.K.: Mitochondrial DNA: Advances, problems, and goals. Science 165, 25–35 (1969)PubMedGoogle Scholar
  124. Nass, M.M.K.: Abnormal DNA patterns in animal mitochondria: Ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc. Nat. Acad. Sci. USA 67, 1926–1933 (1970)PubMedGoogle Scholar
  125. Newton, B.A.: The mode of action of phenanthridines: The effect of ethidium bromide on cell division and nucleic acid synthesis. J. Gen. Microbiol. 12, 718–730 (1957)Google Scholar
  126. Newton, B.A.: The action of antrycide on nucleic acid synthesis in a trypanosomid flagellate. J. Gen. Microbiol. 19, ii (1958)Google Scholar
  127. Newton, B.A.: Mechanisms of action of phenanthridines and aminoquinaldine trypanocides. In: Advances in Chemotherapy. (eds. A. Golden, F. Hawking), Vol. 1, pp. 35–83. New York: Academic Press 1964Google Scholar
  128. Newton, B.A.: Effect of antrycide on nucleic acid synthesis and function. Symp. Soc. Gen. Microbiol. 16, 213–234 (1966)Google Scholar
  129. Newton, B.A.: Interaction of berenil with deoxyribonucleic acid and some characteristics of the berenil-deoxyribonucleic acid complex. Biochem. J. 105, 50 (1967)Google Scholar
  130. Newton, B.A.: Recent studies on the mechanism of action of berenil (diminozene) and related compounds. In: Comparative Biochemistry of Parasites (ed. H. van den Bossche), pp. 127–138. New York: Academic Press 1972Google Scholar
  131. Newton, B.A.: Trypanocides as biochemical probes. In: Chemotherapeutic Agents in the Study of Parasites (eds. A.E.R. Taylor, R. Müller), pp. 29–59. Oxford: Blackwell 1973Google Scholar
  132. Newton, B.A.: Chemotherapy of trypanosomiasis and leishmaniasis: towards a more rational approach. In: Trypanosomiasis and Leishmaniasis with special reference to Chagas’ disease. Ciba Foundation Symposium 20 (New Series) pp. 285–307 (1974)Google Scholar
  133. Newton, B.A., Burnett, J.K.: DNA of kinetoplastidae: A comparative study. In: Comparative Biochemistry of Parasites (ed. H. van den Bossche), pp. 185–198. New York: Academic Press 1972Google Scholar
  134. Newton, B.A., le Page, R.W.F.: Preferential inhibition of extranuclear deoxyribonucleic acid synthesis by the trypanocide berenil. Biochem. J. 105, 50 p. (1967)Google Scholar
  135. Newton, B.A., le Page, R.W.F.: Interaction of berenil with trypanosome DNA. Trans. Roy. Soc. Trop. Med. Hyg. 62, 131–132 (1968)Google Scholar
  136. O’Brien, R.L., Allison, J.L., Hahn, F.E.: Evidence for intercalation of chloroquine into DNA. Biochim. Biophys. Acta 129, 622–624Google Scholar
  137. Okasaki, R., Okasaki, T., Sakabe, K., Sugimotok, K., Kainuma, R., Sugino, A., Iwatsuki, N.: In vivo mechanism of DNA chain growth. Cold Spring Harbor Symp. Quant. Biol. 33, 129–143 (1968)Google Scholar
  138. Ono, T., Inoki, S.: Studies on the effect of p-rosaniline on the ki-netoplast of p-rosaniline resistant Trypanosoma evansi.Biken J. 14, 419–422 (1971)PubMedGoogle Scholar
  139. Ormerod, W.E.: The mode of action of antrycide. Brit. J. Pharmacol. 6, 325–333 (1951)PubMedGoogle Scholar
  140. Ormerod, W.E.: A study of resistance to antrycide in a strain of Trypanosoma equiperdum.Brit. J. Pharmacol. 7, 674–684 (1952)PubMedGoogle Scholar
  141. Ormerod, W.E., Shaw, J.J.: A study of granules and other changes in phase-contrast appearance produced by chemotherapeutic agents in trypanosomes. Brit. J. Pharmacol. 21, 259–272 (1963)PubMedGoogle Scholar
  142. Paulin, J.J.: The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. J. Cell Biol. 66, 404–413 (1975)PubMedGoogle Scholar
  143. Paulin, J.J., McGhee, R.B.: An ultrastructural study of the trypano-somatid, Phytomonas elmassiani, from the milkweed, Asclepias syriaoa.J. Parasit. 57, 1279–1287 (1971)PubMedGoogle Scholar
  144. Perlman, P.S., Mahler, H.R.: Induction of respiration deficient mutants in Saceharomyces eerevisiae by berenil. II. Characteristics of the process. Molec. Gen. Genet. 121, 295–306 (1973)PubMedGoogle Scholar
  145. Peters, M.L.: DNA base composition differences between species of Leishmania.Trans. Roy. Soc. Trop. Med. Hyg. 66, 352 (1972)Google Scholar
  146. Peters, W.: Drug resistance in trypanosomiasis and leishmaniasis. In: Trypanosomiasis and Leishmaniasis with special reference to Chagas’ disease. Ciba Foundation Symposium 20 (New Series) pp. 309–334 (1974)Google Scholar
  147. Radloff, R., Bauer, W., Vinograd, J.: A dye buoyant density method for the detection and isolation of closed circular duplex DNA: The closed circular DNA in HeLa cells. Proc. Nat. Acad. Sci. USA 57, 1514–1521 (1967)PubMedGoogle Scholar
  148. Renger, H.C., Wolstenholme, D.R.: Kinetoplast deoxyribonucleic acid of the hemoflagellate Trypanosoma lewisi.J. Cell Biol. 47, 689–702 (1970)PubMedGoogle Scholar
  149. Renger, H.C., Wolstenholme, D.R.: Kinetoplast and other satellite DNAs of kinetoplastic and dyskinetoplastic strains of Trypanosoma.J. Cell Biol. 50, 533–540 (1971)PubMedGoogle Scholar
  150. Renger, H.C., Wolstenholme, D.R.: The form and structure of the kinetoplast DNA of Crithidia.J. Cell Biol. 54, 346–364 (1972)PubMedGoogle Scholar
  151. Riou, G.: Induction d’une “dyskinétoplastie” par le bromure d’éthidium chez T.cruzi cultive in vitro. C. R. Acad. Sci. Ser. D. 265, 2004–2007 (1967)Google Scholar
  152. Riou, G.: Disparition de l’ADN au kinétoplaste de Trypanosorna cruzi cultive en presence de bromure d’éthidium. C. R. Acad. Sci. Ser. D. 266, 250–252 (1968)Google Scholar
  153. Riou, G., Brack, C., Festy, B., Delain, E.: Kinetoplast DNA: action of trypanocidal drugs on its biosynthesis. J. Parasit. 56, 464 (1970)Google Scholar
  154. Riou, G., Delain, E.: Electron microscopy of circular kinetoplast DNA from Trypanosoma cruzi: Occurrence of catenated forms. Proc. Nat. Acad. Sci. USA 62, 210–217 (1969a)PubMedGoogle Scholar
  155. Riou, G., Delain, E.: Abnormal circular DNA molecules induced by ethidium bromide in the kinetoplast of Trypanosoma cruzi. Proc. Nat. Acad. Sci. USA 64, 618–625 (1969b)PubMedGoogle Scholar
  156. Riou, G., Delain, E.: Ultrastructural alterations of the nucleus and kinetoplast of Trypanosoma cruzi exposed to ethidium bromide. Biochem. Pharmacol. 19, 2521–2522 (1970)PubMedGoogle Scholar
  157. Riou, G., Paoletti, C.: Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi.J. Mol. Biol. 28, 377–382 (1967)PubMedGoogle Scholar
  158. Riou, G., Pautrizel, R.: Nuclear and kinetoplast DNA from trypanosomes. J. Protozool. 16, 509–513 (1969)PubMedGoogle Scholar
  159. Riou, G., Yot, P.: Étude de l’ADN kinétoplastique de Trypanosoma cruzi à l’aide d’endonucléases de restriction. C. R. Acad. Sci. 280, 2701–2704 (1975)Google Scholar
  160. Ris, H.: Ultrastructure of certain self dependent cytoplasmic organelles. Electron Microsc. Proc. 5th Int. Congr., Philadelphia 2, XX–1 (1962)Google Scholar
  161. Roth, D., Manjon, M.L.: Studies of a specific association between acri-flavine and DNA in intact cells. Biopolymers 7, 695–705 (1969)PubMedGoogle Scholar
  162. Rudzinska, M.A., D’Alesandro, P.A., Trager, W.: The fine structure of Leishmania donovani and the role of the kinetoplast in the leishmania-leptomonad transformation. J. Protozool. 11, 166–191 (1964)PubMedGoogle Scholar
  163. Rudzinska, M., Vickerman, K.: The fine structure. In: Infectious Blood Diseases of Man and Animals (eds. D. Weiman, M. Ristic), Vol. 1, pp. 217–306. New York: Academic Press 1968Google Scholar
  164. Russell, W.C., Newman, C., Williamson, D.H.: A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature (London) 253, 461–462 (1975)Google Scholar
  165. Shipley, P.G.: The vital staining of mitochondria in Trypanosoma lewisi with Janus Green. Anat. Rec. 10, 439–445 (1916)Google Scholar
  166. Simpson, A., Simpson, L.: Isolation and characterization of kinetoplast DNA networks and mini-circles from Crithidia fasciculata.J. Protozool. 21, 774–781 (1974)PubMedGoogle Scholar
  167. Simpson, A., Simpson, L.: Pulse-labeling of kinetoplast DNA: Localization of 2 sites of synthesis within the network and kinetics of labeling of closed mini-circles. J. Protozool. 23, 583–587 (1976)PubMedGoogle Scholar
  168. Simpson, L.: The leishmania-leptomonad transformation of Leishmania donovani: Nutritional requirements, respiration changes and antigenic changes. J. Protozool. 15, 201–207 (1968a)PubMedGoogle Scholar
  169. Simpson, L.: Effect of acriflavine on the kinetplast of Leishmania tarentolae. Mode of action and physiological correlates of the loss of kinetoplast DNA. J. Cell Biol. 37, 660–682 (1968b)PubMedGoogle Scholar
  170. Simpson, L.: The kinetoplast of the hemoflagellates. Int. Rev. Cytol. 32, 139–207 (1972)Google Scholar
  171. Simpson, L.: The structure and function of kinetoplast DNA. J. Protozool. 20, 2–8 (1973)PubMedGoogle Scholar
  172. Simpson, L.: Isolation of kinetoplast DNA from Leishmania tarentolae in the form of a network. J. Protozool. 21, 382–391 (1974)PubMedGoogle Scholar
  173. Simpson, L., da Silva, A.: Isolation and characterization of kinetoplast DNA from Leishmania tarentolae.J. Mol. Biol. 56, 443–473 (1971)PubMedGoogle Scholar
  174. Simpson, L., Hyman, A.: Restriction enzyme analysis of Leishmania tarentolae kinetoplast DNA. In: Biochemistry of parasites and Host-Parasite Relationships (ed. H. van den Bossche), pp. 219–224. Amsterdam: Elsevier-North Holland 1976Google Scholar
  175. Simpson, L., Lasky, L.: Kinetoplast messenger RNA. J. Cell Biol. 67, 402A (1975)Google Scholar
  176. Simpson, L., Simpson, A., Lasky, L.: Kinetoplast RNA from Leishmania tarentolae culture forms. In: Biochemistry of Parasites and Host-Parasite Relationships (ed. H. van den Bossche), pp. 225–228. Amsterdam: Elsevier-North Holland 1976Google Scholar
  177. Simpson, L., Simpson, A.M., Wesley, R.D.: Replication of the kinetoplast DNA of Leishmania tarentolae and Crithidia faseieulata.Bio-chim. Biophys. Acta 349, 161–172 (1974)Google Scholar
  178. Slonimski, P.P., Perrodin, G., Croft, J.H.: Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells to respiratory deficient nonchromosomal “petites”. Biochem. Biophys. Res. Comm. 30, 232–234 (1968)PubMedGoogle Scholar
  179. Steck, E.A.: The Chemotherapy of Protozoan Diseases. Washington, D.C.: Walter Reed Army Institute of Research 1972Google Scholar
  180. Steinert, M.: Mitochondria associated with the kinetonucleus of Trypanosoma mega.J. Biophys. Biochem. Cytol. 8, 542–546 (1960)PubMedGoogle Scholar
  181. Steinert, M.: L’absence d’histone dans le kinetonucleus des trypanosomes. Exp. Cell Res. 39, 69–73 (1965)PubMedGoogle Scholar
  182. Steinert, M.: Specific loss of the kinoteplast DNA in Trypanosomatidae treated with ethidium bromide. Exp. Cell Res. 55, 248–252 (1969a)PubMedGoogle Scholar
  183. Steinert, M.: Reversible inhibition of the division of Crithidia luciliae by hydroxyurea and its use for obtaining synchronized cultures. FEBS Letters 5, 291–294 (1969b)PubMedGoogle Scholar
  184. Steinert, M., Firket, H., Steinert, G.: Synthese d’acide désoxyribo-nucléique dans le corps parabasal de Trypanosoma mega.Exp. Cell Res. 15, 632–634 (1958)PubMedGoogle Scholar
  185. Steinert, M., Steinert, G.: La synthèse de l’acide désoxyribonucléique au cours du cycle de division de Trypanosoma mega.J. Protozool. 9, 203–211 (1962)PubMedGoogle Scholar
  186. Steinert, M., van Assel, S.: The loss of kinetoplast DNA in two species of Trypanosomatidae treated with acriflavine. J. Cell Biol. 34, 489–503 (1967)PubMedGoogle Scholar
  187. Steinert, M., van Assel, S.: Base composition heterogeneity in kinetoplast DNA from four species of hemoflagellates. Biochem. Biophys. Res. Comm. 61, 1249–1255 (1974)PubMedGoogle Scholar
  188. Steinert, M., van Assel, S.: Large circular mitochondrial DNA in Crithidia luciliae.Exp. Cell Res. 96, 406–409 (1975)PubMedGoogle Scholar
  189. Steinert, M., van Assel, S., Borst, P., Mol, J.N.M., Kleisen, C.M., Newton, B.A.: Specific detection of kDNA in cytological preparations of trypanosomes by hybridization with complementary RNA. Exp. Cell Res. 76, 175–185 (1973)PubMedGoogle Scholar
  190. Steinert, M., van Assel, S., Steinert, G.: Étude par autoradiographie, des effects du bromure d’éthidium sur la synthèse des acides nucléiques de Crithidia lueiliae.Exp. Cell Res. 56, 69–74 (1969)PubMedGoogle Scholar
  191. Steinert, M., van Assel, S., Steinert, G.: Minicircular and non-mini-circular components of kinetoplast DNA. In: Biochemistry of Parasites and Host-Parasite Relationships (ed. H. van den Bossche), pp. 193–203. Amsterdam: Elsevier-North Holland 1976Google Scholar
  192. Stuart, K.D.: An acriflavine-induced dyskinetoplastic strain of Trypanosoma brueei which contains kinetoplast DNA. Trans. Roy. Soc. Trop. Med. Hyg. 64, 178–179 (1970)PubMedGoogle Scholar
  193. Stuart, K.D.: Evidence for the retention of kinetoplast DNA in an acri-flavine-induced dyskinetoplastic strain of Trypanosoma brucei which replicates the altered central element of the kinetoplast. J. Cell Biol. 49, 189–195 (1971)PubMedGoogle Scholar
  194. Stuart, K.D., Hanson, E.D.: Acriflavine induction of dyskinetoplasty in Leptomonas karyophilus.J. Protozool. 14, 39–43 (1967)Google Scholar
  195. Sturm, J., Zana, R., Daune, M.: Interaction between hydroxystilbamidine and DNA. II. Temperature jump relaxation study: Dynamics of nucleic and polynucleotides. Biochim. Biophys. Acta 407, 43–60 (1975)PubMedGoogle Scholar
  196. Temu, S.E.: Summary of cases of human early trypanosomiasis treated with berenil. Trans. Roy. Soc. Trop. Med. Hyg. 69, 277–279 (1975)Google Scholar
  197. Tobie, E.J.: Loss of the kinetoplast in a strain of Trypanosoma equiperdum.Trans. Amer. Microsc. Soc. 70, 251–254 (1951)Google Scholar
  198. Trager, W., Rudzinska, M.: The riboflavine requirement and the effects of acriflavine on the fine structure of the kinetoplast of Leishmania tarentolae.J. Protozool. 11, 133–145 (1964)PubMedGoogle Scholar
  199. Tubbs, R.K., Ditmars, W.E., Jr., Winkle, Q. van: Heterogeneity of interaction of DNA with acriflavine. J. Mol. Biol. 9, 545–557 (1964)PubMedGoogle Scholar
  200. Vickerman, K.: Electron microscopic studies on akinetoplastic trypano-somes. J. Protozool. 10 (suppl.), 15 (1963)Google Scholar
  201. Waring, M.J.: Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 13, 269–282 (1965)PubMedGoogle Scholar
  202. Waring, M.J.: Structural requirements for the binding of ethidium bromide to nucleic acids. Biochim. Biophys. Acta 114, 234–244 (1966)PubMedGoogle Scholar
  203. Waring, M.J.: Drugs which affect the structure and function of DNA. Nature (London) 219, 1320–1325 (1968)Google Scholar
  204. Waring, M.: Variation of supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J. Mol. Biol. 54, 247–279 (1970)PubMedGoogle Scholar
  205. Watkins, T.I., Woolfe, G.: Effect of changing the quaternizing group on the trypanocidal activity of dimidium bromide. Nature (London) 169, 506 (1952)Google Scholar
  206. Wenyon, C.M.: The loss of the parabasal body in trypanosomes. Trans. Roy. Soc. Trop. Med. Hyg. 22, 85–87 (1928)Google Scholar
  207. Werbitzki, F.: Ueber blepharoblastlose Trypanosomen. Zbl. Bakt. Abt. I, Orig. 53, 303–315Google Scholar
  208. Wesley, R.D., Simpson, L.: Studies on kinetoplast DNA. II. Biophysical properties of minicircular DNA from Leishmania tarentolae. Biochim. Biophys. Acta 319, 254–266 (1973a)PubMedGoogle Scholar
  209. Wesley, R.D., Simpson, L.: Studies on kinetoplast DNA. III. Kinetic complexity of kinetoplast and nuclear DNA from Leishmania tarentolae.Biochim. Biophys. Acta 319, 267–280 (1973b)PubMedGoogle Scholar
  210. Williamson, D.H., Fennell, D.J.: The use of a fluorescent DNA binding agent for detecting and separating yeast mitochondrial DNA. In: Methods in Cell Biology, Vol. 12, Yeast Cells (ed. D.M. Prescott), pp. 335–351. New York-London: Academic Press 1976Google Scholar
  211. Williamson, J.: Review of chemotherapeutic and chemoprophylactic agents. In: The African Trypanosomiases, (ed. H.W. Mulligan), pp. 125–221. London: Allen and Unwin 1970Google Scholar
  212. Williamson, J.: Chemotherapy of African trypanosomiasis. Trop. Dis. Bull. 73, 531–542 (1976)PubMedGoogle Scholar
  213. Williamson, J., MacAdam, R.F., Dixon, H.: Drug-induced lesions in try-panosome fine structure: a guide to modes of trypanocidal action. Biochem. Pharmacol. 24, 147–151 (1975)PubMedGoogle Scholar
  214. Wintersberger, F.W., Viehauser, G.: Function of mitochondrial DNA in yeast. Nature (London) 220, 699–702 (1968)Google Scholar
  215. Wolstenholme, D.R., Renger, H.C., Manning, J.E., Fouts, D.L.: Kinetoplast DNA of Crithidia.J. Protozool. 21, 622–631 (1974)PubMedGoogle Scholar
  216. Woolfe, G.: The trypanocidal activity of phenanthridine compounds. Ann. Trop. Med. Parasit. 46, 285–288 (1952)PubMedGoogle Scholar
  217. Zylber, E., Vesco, C., Penman, S.: Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J. Mol. Biol. 44, 195–204 (1969)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1978

Authors and Affiliations

  • S. L. Hajduk

There are no affiliations available

Personalised recommendations