Skip to main content

Peptide Bond Formation in Non-ribosomal Systems

  • Chapter
Book cover Progress in Molecular and Subcellular Biology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 6))

Abstract

Biosynthesis of peptides requires (1) carboxyl group activation, and (2) specific addition of acceptor amino (imino) group. Activation reactions include formation of phosphates (peptidoglycan, glutathione) or of adenylates (aminoacyl-tRNA-ligases, gramicidin S-synthetase). Ami-noacyl compounds may be stabilized as tRNA-esters or enzyme thioesters (pantetheine-mediated peptide synthesis), while CoA-derivatives of amino acids have not been observed. Addition reactions generally involve recognition of two substrates (containing donor and acceptor group) by protein structures. Evidence for a linear template regulating the sequence of events has so far only been found in mRNA in the ribosomal system. A scheme for discussion of these reactions is given in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberhart, D.J., Lin, L.J., Chu, J.-R.: Biosynthesis of β-lactam antibiotics. II. Synthesis and incorporation into penicillin G of (2RS, 2′RS, 3R, 3R′)-[3,3′-3H2]-cystine and (2R, 2′RS, 3S, 3′S)-[3,3′-3H2]-cystine. J.C.S. Perkin I 1975, 2517–2523 (1975)

    Google Scholar 

  • Abiko, Y.: Pantothenic acid and coenzyme A: Phosphopantothenoyl-cysteine synthetase from rat liver. Meth. Enz., Vol. XVIII, pt. A, pp. 350–354. New York-London: Academic Press 1970

    Google Scholar 

  • Akashi, K., Kubota, K., Kurahashi, K.: Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81, 269–272 (1977)

    PubMed  CAS  Google Scholar 

  • Akers, H., Lee, S.G., Lipmann, F.: Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Federation Proc. 35, 1533, Abstract No. 908 (1976)

    Google Scholar 

  • Anke, H., Anke, T., Diekmann, H.: Biosynthesis of sideramines in fungi. Fusigen synthetase from extracts of Fusarium cubense. FEBS Lett. 36, 323–325 (1973)

    PubMed  CAS  Google Scholar 

  • Aonuma, S., Hama, T., Aoki, M., Tamaki, N.: Studies on heart. X. Examination of β-aspartyl-L-histidine as a precursor for carnosine and anserine. Yakugaku Zasshi 88, 1–7 (1968)

    PubMed  CAS  Google Scholar 

  • Apontowell, P., Berends, W.: Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. Biochim. Bio-phys. Acta 399, 1–9 (1975)

    Google Scholar 

  • Baranova, I.P., Egorov, N.S.: Nisin, a polypeptide antibiotic from the lactic acid bacterium streptococcus lactis, its biosynthesis, properties and use. Antibiot. Ikh Produtsenty, pp. 55–64, Moscow 1975

    Google Scholar 

  • Bauer, K., Roskoski, Jr., P.., Kleinkauf, H., Lipmann, F.: Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11, 3266–3271 (1972)

    PubMed  CAS  Google Scholar 

  • Blumberg, P.M., Strominger, J.L.: Interaction of penicillin with the bacterial cell: Penicillin-binding proteins and penicillin-sensitive enzymes. Bact. Rev. 38, 291–335 (1974)

    PubMed  CAS  Google Scholar 

  • Booth, H., Bycroft, B.W., Wels, C.M., Corbett, K., Maloney, A.P., Lowe, D.A.: Application of 15N pulsed Fourier transform nuclear magnetic resonance spectroscopy to biosynthetic studies; incorporation of L-[15N] valine into penicillin G. J. Chem. Soc. Chem. Comm. 1976, 110–111 (1976)

    Google Scholar 

  • Bratcher, S.C., Hsu, R.T.: Separation of active enzyme components from the fatty acid synthetase of chicken liver. Biochim. Biophys. Acta 410, 229–235 (1975)

    PubMed  CAS  Google Scholar 

  • Bridger, W.A.: Succinyl-CoA synthetase. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. X, pp. 581–606. New York-London: Academic Press 1974

    Google Scholar 

  • Brown, G.M.: The metabolism of pantothenic acid. J. Biol. Chem. 234, 370–378 (1959)

    PubMed  CAS  Google Scholar 

  • Bryce, G.F.: Enzymes involved in the biosynthesis of cyclic (tris(N-2,3-dihydroxybenzoyl-L-serine)) in Escherichia coli. Kinetic properties of the L-serine activating enzyme. J. Bacterid. 116, 790–796 (1973)

    CAS  Google Scholar 

  • Bryce, G.F., Brot, N.: Synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry 11, 1708–1715 (1972)

    PubMed  CAS  Google Scholar 

  • Buckner, J.S., Kolattukudu, P.E.: One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 15, 1948–1957 (1976)

    PubMed  CAS  Google Scholar 

  • Chan, J.A., Huang, F.-C., Sin, C.J.: The absolute configuration of the amino acids in δ-(α-aminoadipyl)-cysteinylvaline from Penicillum chrysogenum. Biochemistry 15, 177–180 (1976)

    PubMed  CAS  Google Scholar 

  • Conway, T.W., Lansford, E.M., Shive, W.: Purification and substrate specificity of a phenylalanine-activating enzyme from Escherichia coli 9723. J. Biol. Chem. 237, 2850–2854 (1962)

    PubMed  CAS  Google Scholar 

  • Coyette, J., Perkins, H.R., Polachek, I., Shockman, G.D., Ghuysen, J.-M.: Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC 9790. Europ. J. Biochem. 44, 459–468 (1974)

    PubMed  CAS  Google Scholar 

  • Abiko, Y.: Pantothenic acid and coenzyme A: Phosphopantothenoyl-cyste-ine synthetase from rat liver. Meth. Enz., Vol. XVIII, pt. A, pp. 350–354. New York-London: Academic Press 1970

    Google Scholar 

  • Akashi, K., Kubota, K., Kurahashi, K.: Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81, 269–272 (1977)

    PubMed  CAS  Google Scholar 

  • Akers, H., Lee, S.G., Lipmann, F.: Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Federation Proc. 35, 1533, Abstract No. 908 (1976)

    Google Scholar 

  • Anke, H., Anke, T., Diekmann, H.: Biosynthesis of sideramines in fungi. Fusigen synthetase from extracts of Fusarium cubense. FEBS Lett. 36, 323–325 (1973)

    PubMed  CAS  Google Scholar 

  • Aonuma, S., Hama, T., Aoki, M., Tamaki, N.: Studies on heart. X. Examination of β-aspartyl-L-histidine as a precursor for carnosine and anserine. Yakugaku Zasshi 88, 1–7 (1968)

    PubMed  CAS  Google Scholar 

  • Apontowell, P., Berends, W.: Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. Biochim. Biophys. Acta 399, 1–9 (1975)

    Google Scholar 

  • Baranova, I.P., Egorov, N.S.: Nisin, a polypeptide antibiotic from the lactic acid bacterium streptococcus lactis, its biosynthesis, properties and use. Antibiot. Ikh Produtsenty, pp. 55–64, Moscow 1975

    Google Scholar 

  • Bauer, K., Roskoski, Jr., P., Kleinkauf, H., Lipmann, F.: Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11, 3266–3271 (1972)

    PubMed  CAS  Google Scholar 

  • Blumberg, P.M., Strominger, J.L.: Interaction of penicillin with the bacterial cell: Penicillin-binding proteins and penicillin-sensitive enzymes. Bact. Rev. 38, 291–335 (1974)

    PubMed  CAS  Google Scholar 

  • Booth, H., Bycroft, B.W., Wels, C.M., Corbett, K., Maloney, A.P., Lowe, D.A.: Application of 15N pulsed Fourier transform nuclear magnetic resonance spectroscopy to biosynthetic studies; incorporation of L-[15N] valine into penicillin G. J. Chem. Soc. Chem. Comm. 1976, 110–111 (1976)

    Google Scholar 

  • Bratcher, S.C., Hsu, R.T.: Separation of active enzyme components from the fatty acid synthetase of chicken liver. Biochim. Biophys. Acta 410, 229–235 (1975)

    PubMed  CAS  Google Scholar 

  • Bridger, W.A.: Succinyl-CoA synthetase. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. X, pp. 581–606. New York-London: Academic Press 1974

    Google Scholar 

  • Brown, G.M.: The metabolism of pantothenic acid. J. Biol. Chem. 234, 370–378 (1959)

    PubMed  CAS  Google Scholar 

  • Bryce, G.F.: Enzymes involved in the biosynthesis of cyclic (tris(N-2,3-dihydroxybenzoyl-L-serine)) in Escherichia coli. Kinetic properties of the L-serine activating enzyme. J. Bacterid. 116, 790–796 (1973)

    CAS  Google Scholar 

  • Bryce, G.F., Brot, N.: Synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry 11, 1708–1715 (1972)

    PubMed  CAS  Google Scholar 

  • Buckner, J.S., Kolattukudu, P.E.: One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 15, 1948–1957 (1976)

    PubMed  CAS  Google Scholar 

  • Chan, J.A., Huang, F.-C., Sih, C.J.: The absolute configuration of the amino acids in δ-(α-aminoadipyl)-cysteinylvaline from Penicillum chrysogenum. Biochemistry 15, 177–180 (1976)

    PubMed  CAS  Google Scholar 

  • Conway, T.W., Lansford, E.M., Shive, W.: Purification and substrate specificity of a phenylalanine-activating enzyme from Escherichia coli 9723. J. Biol. Chem. 237, 2850–2854 (1962)

    PubMed  CAS  Google Scholar 

  • Coyette, J., Perkins, H.R., Polachek, I., Shockman, G.D., Ghuysen, J.-M.: Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC 9790. Europ. J. Biochem. 44, 459–468 (1974)

    PubMed  CAS  Google Scholar 

  • Davis, J.S., Balinsky, J.B., Harington, J.S., Shepherd, J.B.: Assay, purification, properties and mechanism of action of γ-glutamyl-cysteine synthetase from the liver of the rat and Xenopus laevis. Biochem. J. 133, 667–678 (1973)

    CAS  Google Scholar 

  • Diaz-Maurino, T., Nieto, M., Perkins, H.R.: Membrane-bound DD-carboxy-peptidases from Bacillus megaterium KM. Biochem. J. 143, 391–402 (1974)

    CAS  Google Scholar 

  • Dobry, A., Fruton, J.S., Sturtevant, J.M.: Thermodynamics of hydrolysis of peptide bonds. J. Biol. Chem. 195, 149–154 (1952)

    PubMed  CAS  Google Scholar 

  • Egorov, N.S., Vypiyach, A.N., Zharikova, G.G., Maksimov, V.N.: Effect of various factors on spore germination in S and P--variants of Bacillus brevis. Mikrobiologiya 44, 237–240 (1975a)

    CAS  Google Scholar 

  • Egorov, N.S., Vypiyach, A.N., Zharikova, G.G., Markelova, S.I., Minima, E.G.: Growth of spores of Bacillus brevis var. G.B. a producer of gramicidin S in relation to the change in the antibiotic content in them. Antibiot. Ikh Produtsenty, pp. 187–196, Moscow 1975b

    Google Scholar 

  • Elce, J.S., Broxmeyer, B.: γ-Glutamyltransferase of rat kidney, simultaneous assay of the hydrolysis and transfer reaction with (14C-glu)-glutathion. Biochem. J. 153, 223–232 (1976)

    PubMed  CAS  Google Scholar 

  • Fawcett, P.A., Usher, J.J., Abraham, E.P.: Behaviour of tritium labeled isopenicillin N and 6-aminopenicillinic acid as potential penicillin precursors in an extract of penicillum chrysogenum. Biochem. J. 151, 741–746 (1975)

    PubMed  CAS  Google Scholar 

  • Frère, J.-M., Duez, C., Ghuysen, J.-M., Vandekerkhove, J.: Occurence of a serine residue in the penicillin-binding site of the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61. FEBS Lett. 70, 257–260 (1976c)

    PubMed  Google Scholar 

  • Frère, J.-M., Ghuysen, J.-M., Degelaen, J., Loffet, A., Perkins, H.R.: Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39. Nature (London) 258 168–170 (1975)

    Google Scholar 

  • Frère, J.-M., Ghuysen, J.-M., Vanderhaeghe, H., Adriaens, P., Degelaen, J., de Graeve, J.: Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Nature (London) 260, 451–454 (1976b)

    Google Scholar 

  • Frère, J.-M., Ghuysen, J.-M., Zeiger, A.R., Perkins, H.R.: The direction of the peptide trimer synthesis from the donor-acceptor substrate Nα-(acetyl)-Nε-(glycyl)-L-lysyl-D-alanyl-D-alanine by the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. FEBS Lett. 63, 112–116 (1976a)

    PubMed  Google Scholar 

  • Friedmann, T.: Genetic economy of polyoma virus: Capsid proteins are cleavage products of the same viral gene. Proc. Nat. Acad. Sci. USA 71, 257–259 (1974)

    PubMed  CAS  Google Scholar 

  • Frolova, L.Y., Kovaleva, G.K., Agalarova, M.B., Kiselev, L.L.: Irreversible inhibition of beef liver valyl-tRNA synthetase by an alkylating derivative of L-valine. FEBS Lett. 34, 213–216 (1973)

    PubMed  CAS  Google Scholar 

  • Frøyshov, Ø.: Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. FEBS Lett. 44, 75–78 (1974)

    PubMed  Google Scholar 

  • Frøyshov, Ø.: Enzyme-bound intermediates in the biosynthesis of bacitracin. Europ. J. Biochem. 59, 201–206 (1975)

    PubMed  Google Scholar 

  • Frøyshov, Ø., Laland, S.G.: On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Europ. J. Biochem. 46, 235–242 (1974)

    PubMed  Google Scholar 

  • Fruton, J.S.: Chemical aspects of protein synthesis. In: The Proteins (ed. H. Neurath), 2nd ed., Vol. I, pp. 190–310. New York-London: Academic Press 1963

    Google Scholar 

  • Garbutt, J.T., Morehouse, A.L., Hanson, A.M.: Metal binding properties of bacitracin. J. Agr. Food Chem. 9, 285–289 (1961)

    CAS  Google Scholar 

  • Gatenbeck, S.: Acyl CoA: 6-aminopenicillanic acid acyltransferase. Meth. Enz., Vol. XLIII, pp. 474–476. New York-London: Academic Press 1975

    Google Scholar 

  • Gatenbeck, S., Brunsberg, U.: Biosynthesis of penicillins. I. Isolation of a 6-aminopenicillanic acid acyltransferase from Penicillum chrysogenum. Acta Chim. Scand. 22, 1059–1061 (1968)

    CAS  Google Scholar 

  • Georgopapadakou, N., Hammarström, S., Strominger, J.L.: Isolation of the penicillin-binding peptide from D-alanine carboxypeptidase of Bacillus subtilis. Proc. Nat. Acad. Sci. USA 74, 1009–1012 (1977)

    PubMed  CAS  Google Scholar 

  • Ghuysen, J.-M., Bricas, E., Leyh-Bouille, M., Lache, M., Shockman, G.D.: The peptide Nα-(L-alanyl-D-isoglutaminyl)-Nε-(D-isoaspara-ginyl)-L-lysyl-D-alanine and the disaccharide N-acetylglucosamyl-β-1,4-N-acetylmuramic acid in cell wall peptidoglycan of Streptococcus faecalis strain ATCC 9790. Biochemistry 6, 2607–2619 (1967)

    PubMed  CAS  Google Scholar 

  • Ghuysen, J.-M., Frère, J.-M., Leyh-Bouille, M., Dusart, J., Nguyen-Distèche, M., Coyette, J., Marquet, A., Perkins, H.R., Nieto, M.: Bacterial transpeptidases and penicillin. Bull. Inst. Pasteur 73, 101–140 (1975)

    CAS  Google Scholar 

  • Ghuysen, J.-M., Reynolds, P.E., Perkins, H.R., Frère, J.-M., Moreno, R.: Effects of donor and acceptor peptides on concomitant hydrolysis and transfer reaction catalysed by the exocellular DD-carboxypep-tidase-transpeptidase from Streptomyces R39. Biochemistry 13, 2539–2547 (1974)

    PubMed  CAS  Google Scholar 

  • Ghuysen, J.-M., Shockman, G.D.: Biosynthesis of peptidoglycan. In: Bacterial Membranes and Walls (ed. L. Leive), pp. 37–208. New York: Dekker 1973

    Google Scholar 

  • Ghuysen, J.-M., Strominger, J.L., Tipper, D.J.: Bacterial Cell Walls. In: Comprehensive Biochemistry (eds. M. Florkin, H. Stotz), Vol. 26A, pp. 53–104. Amsterdam-London-New York: Elsevier 1968

    Google Scholar 

  • Gondre, B., Flouret, B., van Heijenoort, J.: DD-carboxypeptidase activity in Escherichia coli K12. Biochimie 55, 1175–1178 (1973)

    PubMed  CAS  Google Scholar 

  • Griffin, M.J., Brown, G.M.: The biosynthesis of folic acid. III. Enzymatic formation of dihydrofolic acid from dihydropteroic acid and of tetrahydropteroyl-polyglutamic acid compounds from tetrahydrofolic acid. J. Biol. Chem. 239, 310–316 (1964)

    PubMed  CAS  Google Scholar 

  • Gross, E.: Structural relationships in and between peptides with α, β-unsaturated amino acids. In: Proc. 3rd Am. Peptide Symp. Ann Arbor (ed. J. Meienhofer), pp. 671–678. Ann Arbor 1972

    Google Scholar 

  • Gross, E., Kiltz, H.H., Nebelin, E.: Subtilin, VI. Die Struktur des Subtilins. Hoppe Seyler’s Z. Physiol. Chem. 354, 810–812 (1973)

    CAS  Google Scholar 

  • Gross, E., Morell, J.L.: The structure of nisin. J. Am. Chem. Soc. 93, 4634–4635 (1971)

    PubMed  CAS  Google Scholar 

  • Haavik, H.I.: Effect of bacitracin and Mn(II)ions upon the producer strain Bacillus licheniformis. Acta Pathol. Microbiol. Scand., Sect. B, Microbiol. 83 B, 513–518 (1975)

    CAS  Google Scholar 

  • Haavik, H.I.: On the role of bacitracin peptides in trace metal transport by Bacillus licheniformis. J. Gen. Microbiol. 96, 393–399 (1976)

    PubMed  CAS  Google Scholar 

  • Haavik, H.I., Frøyshov, Ø.: Function of peptide antibiotics in producer organisms. Nature (London) 254, 79–82 (1975)

    CAS  Google Scholar 

  • Hamilton, B.K., Montgomery, J.P., Wang, D.I.C.: Enzyme reactions for preparative scale synthesis. In: Enzyme Engineering (eds. E.K. Pye, L.B. Wingard Jr.), Vol. 2, pp. 154–159. New York: Plenum Press 1974

    Google Scholar 

  • Hammarström, S., Strominger, J.L.: Degradation of penicillin G to phe-nylacetylglycine by D-alanine carboxypeptidase from Bacillus stearo-thermophilus. Proc. Nat. Acad. Sci. 72, 3463–3467 (1975)

    PubMed  Google Scholar 

  • Hammarström, S., Strominger, J.L.: Formation of 5,5-dimethyl-Δ2-thiazoline-4-carboxylic acid during cleavage of penicillin G by D-alanine carboxypeptidase from Bacillus stearothermophilus. J. Biol. Chem. 251, 7947–7949 (1976)

    PubMed  Google Scholar 

  • Hartman, S.C.: Glutaminases and γ-glutaminyltransferases. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. 4, pp. 79–100. New York, London: Academic Press 1971

    Google Scholar 

  • Heinrich, C.P., Fruton, J.S.: The action of dipeptidyl transferase as a polymerase. Biochemistry 7, 3556–3565 (1968)

    PubMed  CAS  Google Scholar 

  • Hendrix, R.W., Casjens, S.R.: Protein fusion: A novel reaction in bacteriophage X head assembly. Proc. Nat. Acad. Sci. USA 71, 1451–1455 (1974)

    PubMed  CAS  Google Scholar 

  • Hettinger, T.P., Craig, L.C.: Edeine. IV. Structures of the antibiotic peptides edeines A1 and B1. Biochemistry 9, 1224–1232 (1970)

    PubMed  CAS  Google Scholar 

  • Hilton, J.L.: Inhibition of enzymatic synthesis of pantothenate by 2,3-dichloroisobutyrate. Science 128, 1509–1510 (1958)

    PubMed  CAS  Google Scholar 

  • Huang, F.-C., Chan, J.A., Sih, C.J., Fawcett, P., Abraham, E.P.: The non-partizipation of α, β-dihydrovalinyl intermediates in the formation of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine. J. Am. Chem. Soc. 97, 3858–3859 (1975)

    PubMed  CAS  Google Scholar 

  • Ingram, L.C.: A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. Acta 224, 263–265 (1970)

    PubMed  CAS  Google Scholar 

  • Ishihara, H., Endo, Y., Abe, S., Shimura, K.: The presence of 4′-phos-phopantetheine in the bacitracin synthetase. FEBS Lett. 50, 43–46 (1975)

    CAS  Google Scholar 

  • Ishihara, H., Shimura, K.: Biosynthesis of bacitracin. III. Partial purification of a bacitracin synthesizing enzyme system from Bacillus licheniformis. Biochim. Biophys. Acta 338, 588–600 (1974)

    CAS  Google Scholar 

  • Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. II. Enzymatic synthesis and addition of D-alanyl-D-alanine. J. Biol. Chem. 237, 2696–2703 (1962)

    CAS  Google Scholar 

  • Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. III. Purification and properties of L-lysine adding enzyme. J. Biol. Chem. 239, 210–214 (1964)

    PubMed  CAS  Google Scholar 

  • Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides: Comparative biochemistry. J. Biol. Chem. 248, 3131–3136 (1973)

    PubMed  CAS  Google Scholar 

  • Izaki, K., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XIV. Purification and properties of two D-alanine carboxypeptidases from Escherichia coli. J. Biol. Chem. 243, 3193–3201 (1968)

    PubMed  CAS  Google Scholar 

  • Kalyankar, G.D., Meister, A.: Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides. J. Biol. Chem. 234, 3210–3218 (1959a)

    PubMed  CAS  Google Scholar 

  • Kalyankar, D.G., Meister, A.: Enzymatic synthesis of carnosine from β-alanyl adenylate and histidine. J. Am. Chem. Soc. 81, 1515–1516 (1959b)

    CAS  Google Scholar 

  • Kambe, M., Imae, Y., Kurahashi, K.: Biochemical studies on gramicidin S nonproducing mutants of Bacillus brevis ATCC 9999. J. Biochem. 75, 481–493 (1974)

    PubMed  CAS  Google Scholar 

  • Kamiryo, T., Matsuhashi, M.: Sequential addition of glycine from glycyl-tRNA to the lipid linked precursors of cell wall peptidoglycan in Staphylococcus aureus. Biochem. Biophys. Res. Comm. 36, 215–222 (1969)

    PubMed  CAS  Google Scholar 

  • Kanda, M., Hori, K., Hasegawa, S., Saito, Y.: Phenylalanine activating and racemizing enzyme of Bacillus brevis deficient in gramicidin S formation. Personal communication, 1976

    Google Scholar 

  • Katsunuma, N., Shoda, A.: Folic acid synthesizing system in Mycobacterium avium. Koso Kagaku Shinpojiumu 12, 124–128 (1957)

    CAS  Google Scholar 

  • Kiselev, L.L., Kochkina, L.L.: Mechanism of amino acid activation during the biosynthesis of proteins. High energy compound of adenosine monophosphate with aminoacyl-tRNA synthetases. Dokl. Akad. Nauk SSSR 214, 215–217 (1974)

    CAS  Google Scholar 

  • Kleinkauf, H., Koischwitz, H.: Gramicidin S synthetase. Active form of the multienzyme complex is undissociable by sodium dodecylsulfate. In: Lipmann-Symposium: Energy, Biosynthesis and Regulation in Molecular Biology (ed. D. Richter), pp. 336–344. Berlin: De Gruyter 1974

    Google Scholar 

  • Kleinkauf, H., Rindfleisch, H.: Non-ribosomal biosynthesis of the cyclic octadecapeptide alamethicin. Acta microbiol. Acad. Sci. Hung. 22, 411–418 (1975)

    PubMed  CAS  Google Scholar 

  • Kleinkauf, H., Roskoski, Jr., R., Lipmann, F.: Pantetheine-linked peptide intermediates in gramicidin S and tyrocidine biosynthesis. Proc. Nat. Acad. Sci. USA 68, 2069–2072 (1971)

    PubMed  CAS  Google Scholar 

  • Koischwitz, H.: Non-ribosomal polypeptide formation: A model for peptide sequence fixation on protein templates. Abstr. 10th FEBS meeting, abstract 860, Paris 1975

    Google Scholar 

  • Koischwitz, H.: Preparative biosynthesis of gramicidin S and related peptides. 5th Intern. Fermentation Symp., abstract 12.14, Berlin 1976

    Google Scholar 

  • Koischwitz, H., Kleinkauf, H.: Gramicidin S synthetase. Preparation of the multienzyme with high specific activity. Biochim. Biophys. Acta 429, 1041–1051 (1976a)

    PubMed  CAS  Google Scholar 

  • Koischwitz, H., Kleinkauf, H.: Gramicidin S synthetase. Electropho-retic characterization of the multienzyme. Biochim. Biophys. Acta 429, 1052–1061 (1976b)

    PubMed  CAS  Google Scholar 

  • Kovaleva, G.K., Agalarova, M.B., Sashchenko, L.P., Demushkin, U.P., Severin, E.S.: Synthesis of halomethylketones, analogs of L-phenyl-alanine, and their interaction with phenylalanine-tRNA synthetase from Escherichia coli. Biokhimiya 39, 1036–1039 (1974)

    CAS  Google Scholar 

  • Kowalski, D., Leary, T.R., Mc Kee, R.E., Sealock, R.W., Wang, D., Laskowski, Jr., M.: Replacements, insertions, and modifications of amino acid residues in the reactive site of soybean trypsin inhibitor (Kunitz) In: Proteinase Inhibitors. Bayer-Symp., V., pp. 311–324. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Kristensen, T., Gilhuus-Moe, C.C., Zimmer, T.-L., Laland, S.G.: The inhibitory effect of AMP on the activation reactions of the amino acids involved in gramicidin S biosynthesis. Europ. J. Biochem. 34, 548–550 (1973)

    PubMed  CAS  Google Scholar 

  • Kurahashi, K.: Biosynthesis of small peptides. Ann. Rev. Biochem. 43, 445–459 (1974)

    PubMed  CAS  Google Scholar 

  • Kurahashi, K., Yamada, M., Mori, K., Fujikawa, K., Kambe, M., Imae, Y., Sato, E., Takahashi, H., Sakamoto, Y.: Biosynthesis of cyclic oligopeptide. Cold Spring Harb. Symp. Quant. Biol. 34, 815–826 (1968)

    Google Scholar 

  • Kurylo-Borowska, Z.: Biosynthesis of edeine. I. Fractionation and characterization of enzymes responsible for biosynthesis of edeine A and B. Biochim. Biophys. Acta 351, 42–56 (1974)

    PubMed  CAS  Google Scholar 

  • Kurylo-Borowska, Z.: Biosynthesis of edeine. II. Localization of edeine synthetase within Bacillus brevis Vm4. Biochim. Biophys. Acta 399, 31–41 (1975)

    PubMed  CAS  Google Scholar 

  • Lacey, J.C., White, Jr., W.E.: Aminoacyl transfer: Chemical conversion of an aminoacyl adenylate to an imidazolide. Biochem. Biophys. Res. Comm. 47, 565–573 (1972)

    PubMed  CAS  Google Scholar 

  • Laland, S.G., Zimmer, T.-L.: The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 9, 31–57 (1973)

    PubMed  CAS  Google Scholar 

  • Lamont, H.C., Staudenbauer, W., Strominger, J.L.: Partial purification and characterization of an aspartate racemase from Streptococcus feacalis. J. Biol. Chem. 247, 5103–5106 (1972)

    PubMed  CAS  Google Scholar 

  • Lee, S.G.: Interrelation between tyrocidine synthesis and sporulation in Bacillus brevis. In: Lipmann-Symposium: Energy, Biosynthesis and Regulation in Molecular Biology (ed. D. Richter), pp. 368–376. Berlin: De Gruyter 1974

    Google Scholar 

  • Lee, S.G.: On the mechanism of racemisation of thioester-linked L-phenylalanine by an enzyme participating in tyrocidine biosynthesis. 10th Intern. Congr. Biochem. abstract 43-352, Hamburg 1976

    Google Scholar 

  • Lee, S.G., Lipmann, F.: Isolation of a peptidylpantetheine protein from tyrocidine synthesizing polyenzymes. Proc. Nat. Acad. Sci. USA 21, 607–611 (1974)

    Google Scholar 

  • Lee, S.G., Lipmann, F.: Tyrocidine synthetase system. Meth. Enz., Vol. XLIII, pp. 585–602. New York-London: Academic Press 1975

    Google Scholar 

  • Lee, S.G., Roskoski, Jr., R., Bauer, K., Lipmann, F.: Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry 12, 398–405 (1973)

    PubMed  CAS  Google Scholar 

  • Leung, D.C., Baxter, R.M.: Substrate-derived reversible and irreversible inhibitors of the multienzyme I of gramicidin S biosynthesis. Biochim. Biophys. Acta 279, 34–47 (1972)

    PubMed  CAS  Google Scholar 

  • Leyh-Bouille, M., Coyette, J., Ghuysen, J.-M., Idczak, J., Perkins, H.R., Nieto, M.: Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R61. Biochemistry 10, 2163–2170 (1971)

    PubMed  CAS  Google Scholar 

  • Leyh-Bouille, M., Nakel, M., Frère, J.-M., Johnson, K., Ghuysen, J.-M., Perkins, H.R.: Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry 11, 1290–1298 (1972)

    PubMed  CAS  Google Scholar 

  • Linnett, P.E., Roberts, R.J., Strominger, J.L.: Biosynthesis and cross-linking of the γ-glutamylglycine containing peptidoglycan of vegetative cells of Sporosarcina ureae. J. Biol. Chem. 249, 2497–2506 (1974)

    PubMed  CAS  Google Scholar 

  • Linnett, P.E., Strominger, J.L.: Amidation and cross-linking of the enzymatically synthesized peptidoglycan of Bacillus stearothermophilus. J. Biol. Chem. 249, 2489–2496 (1974)

    PubMed  CAS  Google Scholar 

  • Lipmann, F.: On the mechanism of some ATP-linked reactions and certain aspects of protein synthesis. In: Mechanism of Enzyme Action (eds. W.D. Mc Elroy, B. Glass), p. 599. Baltimore: Hopkins 1954

    Google Scholar 

  • Lipmann, F.: The relation between direction and mechanism of polymerisation. Essays Biochem. 4, 1–23 (1968)

    PubMed  CAS  Google Scholar 

  • Lipmann, F.: Attempts to map a process evolution of peptide biosynthesis. Science 173, 875–884 (1973)

    Google Scholar 

  • Lipmann, F.: Nonribosomal polypeptide synthesis on polyenzyme templates. Acc. Chem. Res. 6, 361–367 (1973)

    CAS  Google Scholar 

  • Lipmann, F.: Search for remnants of early evolution in present-day metabolism. Biosystems 6, 234–238 (1975)

    PubMed  CAS  Google Scholar 

  • Lipmann Gevers, W., Kleinkauf, H., W., Roskoski, Jr., R.: Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Advan. Enz. 35, 1–34 (1971)

    Google Scholar 

  • Loder, P.B., Abraham, E.P.: Biosynthesis of peptides containing α-aminoadipic acid and cysteine in extracts of a Cephalosporium sp. Biochem. J. 123, 477–482 (1971)

    CAS  Google Scholar 

  • Lukens, L.N., Buchanan, J.M.: Biosynthesis of purines. XXIII. The enzymatic synthesis of N-(5-amino-1-ribosyl-4-imidazolylcarbonyl-L-aspartic acid 5′-phosphate. J. Biol. Chem. 234, 1791–1798 (1959a)

    PubMed  CAS  Google Scholar 

  • Lukens, L.N., Buchanan, J.M.: Biosynthesis of purines. XXIV. The enzymatic synthesis of 5-amino-1-ribosyl-4-imidazole carboxylic acid 5′-phosphate from 5-amino-1-ribosylimidazole 5′-phosphate and carbon dioxide. J. Biol. Chem. 214, 1799–1805 (1959b)

    Google Scholar 

  • Lynen, F.: Functional sulphydryl groups in enzymic catalysis. In: Chemical Reactivity and Biological Role of functional Groups in Enzymes (ed. R.M.S. Smellie), p. 18. New York-London: Academic Press 1970

    Google Scholar 

  • Maas, W.K.: Enzymic synthesis of pantothenate from β-alanine and pan-toate. Congr. Intern. Biochim. Resumes commun. 3e congr. Brussels, p. 32, 1955

    Google Scholar 

  • Maas, W.K.: Biosynthesis of pantothenic acid. Proc. Intern. Congr. Vienna 1958, 11, 161–168 (1959)

    CAS  Google Scholar 

  • McDonald, J.K., Zeitman, B.B., Reilly, T.S., Ellis, S.: New observations on the substrate specificity of cathepsin C (dipeptidyl amino-peptidase I). J. Biol. Chem. 244, 2639–2709 (1969)

    Google Scholar 

  • Martin, D.R., Williams, J.P.: Chemical nature and sequence of alamethicin. Biochem. J. 153, 181–190 (1976)

    PubMed  CAS  Google Scholar 

  • Matteo, C.C., Glade, M., Tanaka, A., Piret, J.M., Demain, A.L.: Microbiological studies on the formation of gramicidin S synthetases. Biotechnol. Bioeng. 17, 129–142 (1975)

    CAS  Google Scholar 

  • Meister, A.: Glutathione synthesis. In: The Enzymes (ed. P.D. Boyer), 3rd, Vol. X, pp. 699–754. New York-London: Academic Press 1974

    Google Scholar 

  • Meister, A., Tate, S.S.: Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization. Ann. Rev. Biochem. 45, 559–604 (1976)

    PubMed  CAS  Google Scholar 

  • Metrione, R.M., Neves, A.G., Fruton, J.S.: Purification and properties of dipeptidyl transferase (Cathepsin C). Biochemistry 5, 1597–1604 (1966)

    CAS  Google Scholar 

  • Mirelman, D., Bracha, R., Sharon, N.: Role of penicillin-sensitive transpeptidation reaction in attachment of newly synthesized pep-tidoglycan to cell walls of Micrococcus luteus. Proc. Nat. Acad. Sci. USA 69, 3355–3359 (1972)

    PubMed  CAS  Google Scholar 

  • Mirelman, D., Sharon, N.: Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin. Biochem. Biophys. Res. Comm. 46, 1909–1917 (1972)

    PubMed  CAS  Google Scholar 

  • Mizuno, Y., Yaegashi, M., Ito, E.: Purification and properties of uridine-diphosphate N-acetylmuramate: L-alanine ligase. J. Biochem. 74, 525–538 (1973)

    PubMed  CAS  Google Scholar 

  • Mohr, H.: Biosynthese von Alamethicin. Dissertation TU Berlin 1977

    Google Scholar 

  • Nathenson, S.G., Strominger, J.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides; IV. Purification and properties of D-glutamic acid adding enzyme. J. Biol. Chem. 239, 1773–1776 (1964)

    PubMed  CAS  Google Scholar 

  • Neuss, N.: The use of 13C labeling in the study of antibiotic synthesis. Meth. Enz., Vol. XLIII, pp. 404–425. New York-London: Academic Press 1975

    Google Scholar 

  • Neuss, N., Nash, C.H., Baldwin, J.E., Lemke, P.A., Grutzner, J.B.: Incorporation of (2RS,3S)-[4–13C]valine into cephalosporin C. J. Am. Chem. Soc. 95, 3797–3798, 6511 (1973)

    Google Scholar 

  • Nguyen-Distèche, M., Ghuysen, J.-M., Pollock, J.J., Reynolds, P., Perkins, H.R., Coyette, J., Salton, M.R.J.: Enzymes involved in wall peptide crosslinking in Escherichia coli K12, strain 44. Europ. J. Biochem. 41, 447–455 (1974)

    PubMed  Google Scholar 

  • Nguyen Huu, M.C., von Dungen, A., Kleinkauf, H.: Irreversible inhibition of the light enzyme of gramicidin S synthetase by halogeno-methylketones of phenylalanine. FEBS Lett. 62, 75–79 (1976)

    Google Scholar 

  • Nieto, M., Perkins, H.R., Leyh-Bouille, M., Frère, J.-M., Ghuysen, J.-M.: Peptide inhibitors of Streptomyces DD-carboxypeptidases. Biochem. J. 131, 163–171 (1973)

    PubMed  CAS  Google Scholar 

  • Niyomporn, B., Dahl, J.L., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. IX. purification and properties of glycyl-transfer ribonucleic acid synthetase from Staphylococcus aureus. J. Biol. Chem. 243, 773–778 (1968)

    PubMed  CAS  Google Scholar 

  • Ong, D.E., Emery, T.F.: Ferrichrome biosynthesis: Enzyme catalyzed formation of the hydroxamic acid group. Arch. Biochim. Biophys. 148, 77–83 (1972)

    CAS  Google Scholar 

  • Ooka, T., Takeda, I.: Peptide antibiotic suzukacillin. III. Relation between a-aminoisobutyrate and L-valine for the suzukacillin formation. Agr. Biol. Chem. 38, 19–27 (1974)

    CAS  Google Scholar 

  • Orlowski, M., Meister, A.: Partial reactions catalyzed by γ-glutamyl-cysteine synthetase and evidence for an activated glutamate intermediate. J. Biol. Chem. 246, 7095–7105 (1971)

    PubMed  CAS  Google Scholar 

  • Papas, T.S., Mehler, A.H.: Analysis of the amino acid binding in the proline transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 245, 1588–1595 (1970)

    PubMed  CAS  Google Scholar 

  • Pass, L., Zimmer, T.-L., Laland, S.G.: The use of affinity chromatography in determining the sites of protein-protein interaction relative to the binding of substrates in gramicidin S synthetase. Europ. J. Biochem. 40, 43–48 (1973)

    PubMed  CAS  Google Scholar 

  • Pass, L., Zimmer, T.-L., Laland, S.G.: On the use of affinity chromatography in demonstrating the transfer of thioester-bound D-phenyl-alanine from the light enzyme of gramicidin S synthetase to an acceptor site for this amino acid on the heavy enzyme. Europ. J. Biochem. 47, 607–611 (1974)

    PubMed  CAS  Google Scholar 

  • Perkins, H.R., Nieto, M., Frère, J.-M., Leyh-Bouille, M., Ghuysen, J.-M.: Streptomyces DD-carboxypeptidases as transpeptidases. The specificity for amino compounds acting as carboxyl acceptors. Biochem. J. 131, 707–718 (1973)

    PubMed  CAS  Google Scholar 

  • Petit, J.-F., Strominger, J.L., Söil, D.: Biosynthesis of the peptido-glycan of bacterial cell walls. VII. The incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J. Biol. Chem. 243, 757–767 (1968)

    PubMed  CAS  Google Scholar 

  • Plapp, R., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens. J. Biol. Chem. 245, 3667–3674 (1970a)

    PubMed  CAS  Google Scholar 

  • Plapp, R., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XVIII. Purification and properties of L-alanyl transfer ribonucleic acid-uridine diphosphate-N-Acetylmuramyl-penta-peptide transferase from Lactobacillus viridescens. J. Biol. Chem. 245, 3675–3682 (1970b)

    PubMed  CAS  Google Scholar 

  • Pollock, J.J., Nguyen-Disteche, M., Ghuysen, J.-M., Coyette, J., Linder, R., Salton, M.R.J., Kim, K.S., Perkins, H.R., Reynolds, P.: Fractionation of the DD-carboxypeptidase-transpeptidase activities solubilized from membranes of Escherichia coli K12, strain 44. Europ. J. Biochem. 41, 439–446 (1974)

    PubMed  CAS  Google Scholar 

  • Pruess, D.L., Johnson, L.J.: Penicillin acyltransferase in Penicillin chrysogenum. J. Bacteriol. 94, 1502–1508 (1967)

    PubMed  CAS  Google Scholar 

  • Qureshi, A.A., Lornitzo, F.A., Porter, J.W.: The isolation of acyl carrier protein from the pigeon liver fatty acid synthetase complex II. Biochem. Biophys. Res. Comm. 60, 158–165 (1974)

    CAS  Google Scholar 

  • Rainey, P., Holler, E., Kula, M.-R.: Labeling of L-isoleucyl tRNA ligase from Escherichia coli with L-isoleucyl-bromomethylketone. Europ. J. Biochem. 63, 419–426 (1976)

    PubMed  CAS  Google Scholar 

  • Repmann, H.: Personal communication, 1977

    Google Scholar 

  • Rindfleisch, H., Kleinkauf, H.: Biosynthesis of alamethicin. FEBS Lett. 62, 276–280 (1976)

    PubMed  CAS  Google Scholar 

  • Ristow, H., Schazschneider, B., Bauer, K., Kleinkauf, H.: Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation? Biochim. Biophys. Acta 390, 246–252 (1975)

    PubMed  CAS  Google Scholar 

  • Roberts, R.J.: Staphylococcal transfer ribonucleic acids. I. Sequence analysis of isoaccepting glycine transfer ribonucleic acids IA and IB from Staphylococcus epidermidis Texas 26. J. Biol. Chem. 249, 4787–4796 (1974)

    PubMed  CAS  Google Scholar 

  • Roberts, W.S.L., Petit, J.F., Strominger, J.L.: Biosynthesis of peptidoglycan of bacterial cell walls. VIII. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes. J. Biol. Chem. 243, 768–772 (1968)

    PubMed  CAS  Google Scholar 

  • Roberts, W.S.L., Strominger, J.L., Söll, D.: Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus. J. Biol. Chem. 243, 749–756 (1968)

    PubMed  CAS  Google Scholar 

  • Roncari, D.A.K.: Mammalian acyl carrier protein. Dissociation of the acyl carrier protein subunit from dog liver fatty acid synthetase complex. J. Biol. Chem. 249, 7035–7037 (1974)

    PubMed  CAS  Google Scholar 

  • Roskoski, Jr., R., Gevers, W., Kleinkauf, H., Lipmann, F.: Tyrocidine biosynthesis by three complementary enzyme fractions from Bacillus brevis (ATCC 8185). Biochemisty 9, 4839–4845 (1970a)

    Google Scholar 

  • Roskoski, Jr., R., Kleinkauf, H., Gevers, W., Lipmann, F.: Isolation of enzyme-bound peptide intermediates in tyrocidine biosynthesis. Biochemistry 9, 4846–4851 (1970b)

    PubMed  Google Scholar 

  • Roskoski, Jr., R., Ryan, G., Kleinkauf, H., Gevers, W., Lipmann, F.: Polypeptide biosynthesis from thioesters of amino acids. Arch. Biochim. Biophys. 143, 485–492 (1971)

    CAS  Google Scholar 

  • Santi, D.V., Danenberg, P.V., Satterly, P.: Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Reaction parameters and order of substrate addition. Biochemistry 10, 4804–4812 (1971a)

    PubMed  CAS  Google Scholar 

  • Santi, D.V., Danenberg, P.V., Satterly, P.: Analysis of phenylalanine binding site. Biochemistry 10, 4813–4820 (1971b)

    PubMed  CAS  Google Scholar 

  • Santi, D.V., Danenberg, P.V., Satterly, P.: Analysis of adenosine triphosphate binding site. Biochemistry 10, 4821–4824 (1971c)

    PubMed  CAS  Google Scholar 

  • Saxholm, H., Zimmer, T.-L., Laland, S.G.: The mechanism of the inhibition of gramicidin S synthesis by D-leucine. Europ. J. Biochem. 30, 138–144 (1972)

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H., Kandier, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972)

    PubMed  CAS  Google Scholar 

  • Schweizer, E., Kniep, B., Castorph, H., Holzner, U.: Pantetheine-free mutants of the yeast fatty acid synthetase complex. Europ. J. Biochem. 19, 352–362 (1973)

    Google Scholar 

  • Sealock, R.W., Laskowski, Jr., M.: Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor. Biochemistry 8, 3703–3710 (1969)

    PubMed  CAS  Google Scholar 

  • Sengupta, S., Bose, S.K.: Properties and localization of mycobacillin synthesizing enzyme system in Bacillus’ subtilis B3. Biochim. Biophys. Acta 217, 120–122 (1971)

    Google Scholar 

  • Sengupta, S., Bose, S.K.: Peptides from a mycobacillin synthesizing cell-free system. Biochem. J. 128, 47–52 (1972)

    PubMed  CAS  Google Scholar 

  • Sengupta, S., Bose, S.K.: Stereoconfiguration of amino acids in peptides from a mycobacillin sythesizing cell-free system. Biochem. J. 131, 623–624 (1973)

    PubMed  CAS  Google Scholar 

  • Sengupta, S., Bose, S.K.: Proline-dependent ATP-phosphorous-32-labeled inorganic phosphate exchange in Bacillus subtilis B3 producing mycobacillin. Indian J. Biochem. Biophys. 11, 335–336 (1974)

    PubMed  CAS  Google Scholar 

  • Shimura, K., Iwaki, M., Kanda, M., Hori, K., Kaji, E., Hasegawa, S., Salto, Y.: On the enzyme system obtained from some mutants of Bacillus brevis deficient in gramicidin S formation. Biochim. Biophys. Acta 338, 577–587 (1974)

    CAS  Google Scholar 

  • Silver, J., Laursen, R.A.: Inactivation of aminoacyl-tRNA synthetases by amino acid chloromethyl ketones. Biochim. Biophys. Acta. 340, 77–89 (1974)

    PubMed  CAS  Google Scholar 

  • Simon, R.D.: The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim. Biophys. Acta 422, 407–418 (1976)

    PubMed  CAS  Google Scholar 

  • Skaper, S.D., Das, S., Marshall, F.D.: Some properties of a homocarno-sine-carnosine synthetase isolated from rat brain. J. Neurochemistry 21, 1429 (1973)

    CAS  Google Scholar 

  • Staudenbauer, W., Strominger, J.L.: D-aspartic acid activating enzyme (Streptococcus faecalis). Meth. Enz. Vol. XVII, part A, pp. 718–721. New York-London: Academic Press 1970

    Google Scholar 

  • Staudenbauer, W., Strominger, J.L.: Activation of D-aspartic acid for incorporation into peptidoglycan. J. Biol. Chem. 247, 5095–5102 (1972)

    PubMed  CAS  Google Scholar 

  • Staudenbauer, W., Willoughby, E., Strominger, J.L.: Further studies of the D-aspartic acid-activating enzyme of Streptococcus faecalis and its attachment to the membrane. J. Biol. Chem. 247, 5289–5296 (1972)

    PubMed  CAS  Google Scholar 

  • Stenesh, J.J., Winnick, T.: Carnosine-anserine synthetase of muscle. 4. Partial purification of the enzyme and further studies of β-alanyl peptide synthesis. Biochem. J. 77, 575–581 (1960)

    PubMed  CAS  Google Scholar 

  • Stoll, E., Frøyshov, Ø., Holm, H., Zimmer, T.-L., Laland, S.G.: On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 11, 348–352 (1970)

    PubMed  CAS  Google Scholar 

  • Stoops, J.K., Arslanian, M.J., Oh, Y.H., Aune, K.C., Vanaman, T.C., Wakil, S.J.: Presence of two polypeptide chains comprising fatty acid synthetase. Proc. Nat. Acad. Sci. USA 72, 1940–1944 (1975)

    PubMed  CAS  Google Scholar 

  • Stramondo, J.G., Wang, D.I.C.: Total enzymatic synthesis of the polypeptide antibiotic gramicidin S. 5th Intern. Fermentation Symp., abstract 12.13. Berlin 1976

    Google Scholar 

  • Takahashi, H., Sato, E., Kurahashi, K.: Racemisation of phenylalanine by adenosine-triphosphate dependent phenylalanine racemase of Bacillus brevis. J. Biochem. 69, 973–976 (1971)

    PubMed  CAS  Google Scholar 

  • Tamura, T., Imae, Y., Strominger, J.L.: Purification to homogeneity and properties of two D-alanine carboxypeptidases I from Escherichia coli. J. Biol. Chem. 251, 414–423 (1976)

    PubMed  CAS  Google Scholar 

  • Tate, S.S., Meister, A.: Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives, and analogs of glutathione. J. Biol. Chem. 249, 7593–7601 (1974)

    PubMed  CAS  Google Scholar 

  • Thompson, G.A., Meister, A.: Hydrolysis and transfer reactions catalyzed by y-glutamyl transpeptidase. Evidence for separate substrate sites and for high affinity of L-cystine. Biochem. Biophys. Res. Comm. 71, 32–36 (1976)

    PubMed  CAS  Google Scholar 

  • Thorndike, J., Park, J.T.: A method for demonstrating the stepwise addition of glycine from transfer RNA into the murein precursor of Staphylococcus aureus. Biochem. Biophys. Res. Comm. 35, 642–647 (1969)

    PubMed  CAS  Google Scholar 

  • Troy, F.A.: Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane mediated biosynthetic reaction. J. Biol. Chem. 248, 305–315 (1973a)

    PubMed  CAS  Google Scholar 

  • Troy, F.A.: Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J. Biol. Chem. 248, 316–324 (1973b)

    PubMed  CAS  Google Scholar 

  • Van Damme, E.J., Demain, A.L.: Nutrition and physiology of gramicidin S production by Bacillus brevis. 5th Intern. Fermentation Symp., abstract 12–12. Berlin 1976

    Google Scholar 

  • Vater, J.: Studies with substrate analogs of the heavy enzyme of gramicidin S synthetase (GSS I). 10th Intern. Congr. Biochem., abstract 16–7–252. Hamburg 1976

    Google Scholar 

  • Vater, J., Kleinkauf, H.: Substrate specificity of the amino acyl adenylate activation sites of gramicidin S-synthetase (GSS). Acta microbiol. Acad. Sci. Hung. 22, 419–425 (1975)

    PubMed  CAS  Google Scholar 

  • Vater, J., Kleinkauf, H.: Gramicidin S synthetase. A further characterization of phenylalanine racemase, the light enzyme of gramicidin S synthetase. Biochim. Biophys. Acta 429, 1062–1072 (1976)

    PubMed  CAS  Google Scholar 

  • Volpe, J.J., Vagelos, P.R.: Saturated fatty acid biosynthesis and its regulation. Ann. Rev. Biochem. 42, 21–60 (1973)

    PubMed  CAS  Google Scholar 

  • Von Dungen, A., Vater, J., Kleinkauf, H.: Biosynthesis of gramicidin S with the aid of dipeptides by gramicidin S synthetase. Europ. J. Biochem. 66, 623–626 (1976)

    Google Scholar 

  • Voronina, O.I., Khokhlov, A.S.: Pathways of biosynthesis of the peptide moiety of streptothricin antibiotics. Post. Hig. I Med. Dosw. 26, 541–548 (1972)

    CAS  Google Scholar 

  • Vypiyach, A.N., Egorov, N.S., Zharikova, G.G.: Effect of β-phenyl-β-alanine on the biosynthesis of gramicidin S by Bacillus brevis. Anti-biotiki 5, 392–395 (1970)

    Google Scholar 

  • Wang, D.I.C., Stramondo, J.G., Fleischaker, R.: Exploitation of Multi-enzyme systems for synthesis. In: Biotechnological Applications of Proteins and Enzymes (eds. N. Sharon, Z. Bohak). New York-London: Academic Press 1977

    Google Scholar 

  • Waylishen, R.E., Graham, M.R.: A nmr study of the metal binding sites in bacitracin. Can. J. Biochem. 53, 1250–1254 (1975)

    Google Scholar 

  • Weber, A.L., Lacey, J.C., Jr.: Aminoacyl transfer: Peptide synthesis and other properties of an amino acid imidazolide. Biochim. Biophys. Acta 349, 226–243 (1974)

    PubMed  CAS  Google Scholar 

  • Wendel, A.: Biosynthesis of glutathione in red blood cells. In: Glutathione (eds. L. Flohe, H.C. Benöhr, H. Sies, H.D. Waller, A. Wendel), pp. 69–76. Stuttgart: Thieme 1974

    Google Scholar 

  • Wieland, T., Koch, H.: D- and L-isoserine as the substrates of pantothenic acid synthetase and as initial components for the formation of diastereomeric hydroxypantothenic acids. Biochem. Z. 344, 413–417 (1966)

    CAS  Google Scholar 

  • Winnick, R.E., Winnick, T.: Carnosine-anserine synthetase of muscle. I. Preparation and properties of a soluble enzyme from chick muscle. Biochim. Biophys. Acta 31, 47–55 (1959)

    PubMed  CAS  Google Scholar 

  • Winnick, T., Winnick, R.E., Bergmann, E.D.: Some metabolic and enzymic experiments with α-fluoro-β-alanine. Biochim. Biophys. Acta 69, 48–58 (1963)

    PubMed  CAS  Google Scholar 

  • Wyke, A.W., Perkins, H.R.: Specificity of enzymes adding amino acids in the synthesis of the peptidoglycan precursors of Corynebacterium poinsettiae and Corynebacterium insidiosum. J. Gen. Microbiol. 88, 159–168 (1975)

    PubMed  CAS  Google Scholar 

  • Yamada, M., Kurahashi, K.: Further purification and properties of adenosine triphosphate-dependent phenylalanine racemase of Bacillus brevis. J. Biochem. 66, 529–540 (1969)

    PubMed  CAS  Google Scholar 

  • Yocum, R.R., Blumberg, P.M., Strominger, J.L.: Purification and Characterization of the thermophilic D-alanine carboxypeptidase from membranes of Bacillus stearothermophilus. J. Biol. Chem. 249, 4863–4871 (1974)

    PubMed  CAS  Google Scholar 

  • Young, D.W., Morecombe, D.J., Sen, P.K.: The stereochemistry of β-lactam formation in penicillin biosynthesis. Europ. J. Biochem. 75, 133–147 (1977)

    PubMed  CAS  Google Scholar 

  • Zeiger, A.R., Frère, J.-M., Ghuysen, J.-M., Perkins, H.R.: A donor-acceptor substrate of the exocellular DD-carboxypeptidase-transpep-tidase from Streptomyces R61. FEBS Lett. 52, 221–225 (1976)

    Google Scholar 

  • Zelazo, P., Orlowski, M.: γ-Glutamyl transpeptidase of sheep-kidney cortex. Isolation, catalytic properties and dissociation into two polypeptide chains. Europ. J. Biochem. 61, 147–155 (1976)

    PubMed  CAS  Google Scholar 

  • Zharikova, G.G., Katruha, G.S., Silaev, A.B., Radzhapov, R.A.: Formation of polypeptide antibiotics by variants of Bacillus brevis var. G.B. In: Biology of Bacillus brevis var. G.-B., pp. 45–61. Moscow 1968

    Google Scholar 

  • Zharikova, G.G., Zarubina, A.P., Kherat, D.M., Myaskovskaya, S.P., Maksimov, V.N.: Formation of polypeptide antibiotics by spontaneous and induced mutants of Bacillus brevis var. G.-B. Antibiot. Ikh Pro-dutsenty, pp. 163–186. Moscow: Nauka 1975

    Google Scholar 

  • Zimmer, T.-L., Laland, S.G.: Gramicidin S-synthetase. Meth. Enz., Vol. XLIII, pp. 567–579. New York-London: Academic Press 1975

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kleinkauf, H., Koischwitz, H. (1978). Peptide Bond Formation in Non-ribosomal Systems. In: Hahn, F.E., Kersten, H., Kersten, W., Szybalski, W. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66856-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66856-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66858-6

  • Online ISBN: 978-3-642-66856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics