Advertisement

Peptide Bond Formation in Non-ribosomal Systems

  • H. Kleinkauf
  • H. Koischwitz
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 6)

Abstract

Biosynthesis of peptides requires (1) carboxyl group activation, and (2) specific addition of acceptor amino (imino) group. Activation reactions include formation of phosphates (peptidoglycan, glutathione) or of adenylates (aminoacyl-tRNA-ligases, gramicidin S-synthetase). Ami-noacyl compounds may be stabilized as tRNA-esters or enzyme thioesters (pantetheine-mediated peptide synthesis), while CoA-derivatives of amino acids have not been observed. Addition reactions generally involve recognition of two substrates (containing donor and acceptor group) by protein structures. Evidence for a linear template regulating the sequence of events has so far only been found in mRNA in the ribosomal system. A scheme for discussion of these reactions is given in Fig. 1.

Keywords

Peptide Synthesis Bacillus Licheniformis Fatty Acid Synthetase Peptide Antibiotic Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberhart, D.J., Lin, L.J., Chu, J.-R.: Biosynthesis of β-lactam antibiotics. II. Synthesis and incorporation into penicillin G of (2RS, 2′RS, 3R, 3R′)-[3,3′-3H2]-cystine and (2R, 2′RS, 3S, 3′S)-[3,3′-3H2]-cystine. J.C.S. Perkin I 1975, 2517–2523 (1975)Google Scholar
  2. Abiko, Y.: Pantothenic acid and coenzyme A: Phosphopantothenoyl-cysteine synthetase from rat liver. Meth. Enz., Vol. XVIII, pt. A, pp. 350–354. New York-London: Academic Press 1970Google Scholar
  3. Akashi, K., Kubota, K., Kurahashi, K.: Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81, 269–272 (1977)PubMedGoogle Scholar
  4. Akers, H., Lee, S.G., Lipmann, F.: Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Federation Proc. 35, 1533, Abstract No. 908 (1976)Google Scholar
  5. Anke, H., Anke, T., Diekmann, H.: Biosynthesis of sideramines in fungi. Fusigen synthetase from extracts of Fusarium cubense. FEBS Lett. 36, 323–325 (1973)PubMedGoogle Scholar
  6. Aonuma, S., Hama, T., Aoki, M., Tamaki, N.: Studies on heart. X. Examination of β-aspartyl-L-histidine as a precursor for carnosine and anserine. Yakugaku Zasshi 88, 1–7 (1968)PubMedGoogle Scholar
  7. Apontowell, P., Berends, W.: Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. Biochim. Bio-phys. Acta 399, 1–9 (1975)Google Scholar
  8. Baranova, I.P., Egorov, N.S.: Nisin, a polypeptide antibiotic from the lactic acid bacterium streptococcus lactis, its biosynthesis, properties and use. Antibiot. Ikh Produtsenty, pp. 55–64, Moscow 1975Google Scholar
  9. Bauer, K., Roskoski, Jr., P.., Kleinkauf, H., Lipmann, F.: Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11, 3266–3271 (1972)PubMedGoogle Scholar
  10. Blumberg, P.M., Strominger, J.L.: Interaction of penicillin with the bacterial cell: Penicillin-binding proteins and penicillin-sensitive enzymes. Bact. Rev. 38, 291–335 (1974)PubMedGoogle Scholar
  11. Booth, H., Bycroft, B.W., Wels, C.M., Corbett, K., Maloney, A.P., Lowe, D.A.: Application of 15N pulsed Fourier transform nuclear magnetic resonance spectroscopy to biosynthetic studies; incorporation of L-[15N] valine into penicillin G. J. Chem. Soc. Chem. Comm. 1976, 110–111 (1976)Google Scholar
  12. Bratcher, S.C., Hsu, R.T.: Separation of active enzyme components from the fatty acid synthetase of chicken liver. Biochim. Biophys. Acta 410, 229–235 (1975)PubMedGoogle Scholar
  13. Bridger, W.A.: Succinyl-CoA synthetase. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. X, pp. 581–606. New York-London: Academic Press 1974Google Scholar
  14. Brown, G.M.: The metabolism of pantothenic acid. J. Biol. Chem. 234, 370–378 (1959)PubMedGoogle Scholar
  15. Bryce, G.F.: Enzymes involved in the biosynthesis of cyclic (tris(N-2,3-dihydroxybenzoyl-L-serine)) in Escherichia coli. Kinetic properties of the L-serine activating enzyme. J. Bacterid. 116, 790–796 (1973)Google Scholar
  16. Bryce, G.F., Brot, N.: Synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry 11, 1708–1715 (1972)PubMedGoogle Scholar
  17. Buckner, J.S., Kolattukudu, P.E.: One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 15, 1948–1957 (1976)PubMedGoogle Scholar
  18. Chan, J.A., Huang, F.-C., Sin, C.J.: The absolute configuration of the amino acids in δ-(α-aminoadipyl)-cysteinylvaline from Penicillum chrysogenum. Biochemistry 15, 177–180 (1976)PubMedGoogle Scholar
  19. Conway, T.W., Lansford, E.M., Shive, W.: Purification and substrate specificity of a phenylalanine-activating enzyme from Escherichia coli 9723. J. Biol. Chem. 237, 2850–2854 (1962)PubMedGoogle Scholar
  20. Coyette, J., Perkins, H.R., Polachek, I., Shockman, G.D., Ghuysen, J.-M.: Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC 9790. Europ. J. Biochem. 44, 459–468 (1974)PubMedGoogle Scholar
  21. Abiko, Y.: Pantothenic acid and coenzyme A: Phosphopantothenoyl-cyste-ine synthetase from rat liver. Meth. Enz., Vol. XVIII, pt. A, pp. 350–354. New York-London: Academic Press 1970Google Scholar
  22. Akashi, K., Kubota, K., Kurahashi, K.: Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81, 269–272 (1977)PubMedGoogle Scholar
  23. Akers, H., Lee, S.G., Lipmann, F.: Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Federation Proc. 35, 1533, Abstract No. 908 (1976)Google Scholar
  24. Anke, H., Anke, T., Diekmann, H.: Biosynthesis of sideramines in fungi. Fusigen synthetase from extracts of Fusarium cubense. FEBS Lett. 36, 323–325 (1973)PubMedGoogle Scholar
  25. Aonuma, S., Hama, T., Aoki, M., Tamaki, N.: Studies on heart. X. Examination of β-aspartyl-L-histidine as a precursor for carnosine and anserine. Yakugaku Zasshi 88, 1–7 (1968)PubMedGoogle Scholar
  26. Apontowell, P., Berends, W.: Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. Biochim. Biophys. Acta 399, 1–9 (1975)Google Scholar
  27. Baranova, I.P., Egorov, N.S.: Nisin, a polypeptide antibiotic from the lactic acid bacterium streptococcus lactis, its biosynthesis, properties and use. Antibiot. Ikh Produtsenty, pp. 55–64, Moscow 1975Google Scholar
  28. Bauer, K., Roskoski, Jr., P., Kleinkauf, H., Lipmann, F.: Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11, 3266–3271 (1972)PubMedGoogle Scholar
  29. Blumberg, P.M., Strominger, J.L.: Interaction of penicillin with the bacterial cell: Penicillin-binding proteins and penicillin-sensitive enzymes. Bact. Rev. 38, 291–335 (1974)PubMedGoogle Scholar
  30. Booth, H., Bycroft, B.W., Wels, C.M., Corbett, K., Maloney, A.P., Lowe, D.A.: Application of 15N pulsed Fourier transform nuclear magnetic resonance spectroscopy to biosynthetic studies; incorporation of L-[15N] valine into penicillin G. J. Chem. Soc. Chem. Comm. 1976, 110–111 (1976)Google Scholar
  31. Bratcher, S.C., Hsu, R.T.: Separation of active enzyme components from the fatty acid synthetase of chicken liver. Biochim. Biophys. Acta 410, 229–235 (1975)PubMedGoogle Scholar
  32. Bridger, W.A.: Succinyl-CoA synthetase. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. X, pp. 581–606. New York-London: Academic Press 1974Google Scholar
  33. Brown, G.M.: The metabolism of pantothenic acid. J. Biol. Chem. 234, 370–378 (1959)PubMedGoogle Scholar
  34. Bryce, G.F.: Enzymes involved in the biosynthesis of cyclic (tris(N-2,3-dihydroxybenzoyl-L-serine)) in Escherichia coli. Kinetic properties of the L-serine activating enzyme. J. Bacterid. 116, 790–796 (1973)Google Scholar
  35. Bryce, G.F., Brot, N.: Synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry 11, 1708–1715 (1972)PubMedGoogle Scholar
  36. Buckner, J.S., Kolattukudu, P.E.: One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 15, 1948–1957 (1976)PubMedGoogle Scholar
  37. Chan, J.A., Huang, F.-C., Sih, C.J.: The absolute configuration of the amino acids in δ-(α-aminoadipyl)-cysteinylvaline from Penicillum chrysogenum. Biochemistry 15, 177–180 (1976)PubMedGoogle Scholar
  38. Conway, T.W., Lansford, E.M., Shive, W.: Purification and substrate specificity of a phenylalanine-activating enzyme from Escherichia coli 9723. J. Biol. Chem. 237, 2850–2854 (1962)PubMedGoogle Scholar
  39. Coyette, J., Perkins, H.R., Polachek, I., Shockman, G.D., Ghuysen, J.-M.: Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis ATCC 9790. Europ. J. Biochem. 44, 459–468 (1974)PubMedGoogle Scholar
  40. Davis, J.S., Balinsky, J.B., Harington, J.S., Shepherd, J.B.: Assay, purification, properties and mechanism of action of γ-glutamyl-cysteine synthetase from the liver of the rat and Xenopus laevis. Biochem. J. 133, 667–678 (1973)Google Scholar
  41. Diaz-Maurino, T., Nieto, M., Perkins, H.R.: Membrane-bound DD-carboxy-peptidases from Bacillus megaterium KM. Biochem. J. 143, 391–402 (1974)Google Scholar
  42. Dobry, A., Fruton, J.S., Sturtevant, J.M.: Thermodynamics of hydrolysis of peptide bonds. J. Biol. Chem. 195, 149–154 (1952)PubMedGoogle Scholar
  43. Egorov, N.S., Vypiyach, A.N., Zharikova, G.G., Maksimov, V.N.: Effect of various factors on spore germination in S and P--variants of Bacillus brevis. Mikrobiologiya 44, 237–240 (1975a)Google Scholar
  44. Egorov, N.S., Vypiyach, A.N., Zharikova, G.G., Markelova, S.I., Minima, E.G.: Growth of spores of Bacillus brevis var. G.B. a producer of gramicidin S in relation to the change in the antibiotic content in them. Antibiot. Ikh Produtsenty, pp. 187–196, Moscow 1975bGoogle Scholar
  45. Elce, J.S., Broxmeyer, B.: γ-Glutamyltransferase of rat kidney, simultaneous assay of the hydrolysis and transfer reaction with (14C-glu)-glutathion. Biochem. J. 153, 223–232 (1976)PubMedGoogle Scholar
  46. Fawcett, P.A., Usher, J.J., Abraham, E.P.: Behaviour of tritium labeled isopenicillin N and 6-aminopenicillinic acid as potential penicillin precursors in an extract of penicillum chrysogenum. Biochem. J. 151, 741–746 (1975)PubMedGoogle Scholar
  47. Frère, J.-M., Duez, C., Ghuysen, J.-M., Vandekerkhove, J.: Occurence of a serine residue in the penicillin-binding site of the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61. FEBS Lett. 70, 257–260 (1976c)PubMedGoogle Scholar
  48. Frère, J.-M., Ghuysen, J.-M., Degelaen, J., Loffet, A., Perkins, H.R.: Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39. Nature (London) 258 168–170 (1975)Google Scholar
  49. Frère, J.-M., Ghuysen, J.-M., Vanderhaeghe, H., Adriaens, P., Degelaen, J., de Graeve, J.: Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Nature (London) 260, 451–454 (1976b)Google Scholar
  50. Frère, J.-M., Ghuysen, J.-M., Zeiger, A.R., Perkins, H.R.: The direction of the peptide trimer synthesis from the donor-acceptor substrate Nα-(acetyl)-Nε-(glycyl)-L-lysyl-D-alanyl-D-alanine by the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. FEBS Lett. 63, 112–116 (1976a)PubMedGoogle Scholar
  51. Friedmann, T.: Genetic economy of polyoma virus: Capsid proteins are cleavage products of the same viral gene. Proc. Nat. Acad. Sci. USA 71, 257–259 (1974)PubMedGoogle Scholar
  52. Frolova, L.Y., Kovaleva, G.K., Agalarova, M.B., Kiselev, L.L.: Irreversible inhibition of beef liver valyl-tRNA synthetase by an alkylating derivative of L-valine. FEBS Lett. 34, 213–216 (1973)PubMedGoogle Scholar
  53. Frøyshov, Ø.: Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. FEBS Lett. 44, 75–78 (1974)PubMedGoogle Scholar
  54. Frøyshov, Ø.: Enzyme-bound intermediates in the biosynthesis of bacitracin. Europ. J. Biochem. 59, 201–206 (1975)PubMedGoogle Scholar
  55. Frøyshov, Ø., Laland, S.G.: On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Europ. J. Biochem. 46, 235–242 (1974)PubMedGoogle Scholar
  56. Fruton, J.S.: Chemical aspects of protein synthesis. In: The Proteins (ed. H. Neurath), 2nd ed., Vol. I, pp. 190–310. New York-London: Academic Press 1963Google Scholar
  57. Garbutt, J.T., Morehouse, A.L., Hanson, A.M.: Metal binding properties of bacitracin. J. Agr. Food Chem. 9, 285–289 (1961)Google Scholar
  58. Gatenbeck, S.: Acyl CoA: 6-aminopenicillanic acid acyltransferase. Meth. Enz., Vol. XLIII, pp. 474–476. New York-London: Academic Press 1975Google Scholar
  59. Gatenbeck, S., Brunsberg, U.: Biosynthesis of penicillins. I. Isolation of a 6-aminopenicillanic acid acyltransferase from Penicillum chrysogenum. Acta Chim. Scand. 22, 1059–1061 (1968)Google Scholar
  60. Georgopapadakou, N., Hammarström, S., Strominger, J.L.: Isolation of the penicillin-binding peptide from D-alanine carboxypeptidase of Bacillus subtilis. Proc. Nat. Acad. Sci. USA 74, 1009–1012 (1977)PubMedGoogle Scholar
  61. Ghuysen, J.-M., Bricas, E., Leyh-Bouille, M., Lache, M., Shockman, G.D.: The peptide Nα-(L-alanyl-D-isoglutaminyl)-Nε-(D-isoaspara-ginyl)-L-lysyl-D-alanine and the disaccharide N-acetylglucosamyl-β-1,4-N-acetylmuramic acid in cell wall peptidoglycan of Streptococcus faecalis strain ATCC 9790. Biochemistry 6, 2607–2619 (1967)PubMedGoogle Scholar
  62. Ghuysen, J.-M., Frère, J.-M., Leyh-Bouille, M., Dusart, J., Nguyen-Distèche, M., Coyette, J., Marquet, A., Perkins, H.R., Nieto, M.: Bacterial transpeptidases and penicillin. Bull. Inst. Pasteur 73, 101–140 (1975)Google Scholar
  63. Ghuysen, J.-M., Reynolds, P.E., Perkins, H.R., Frère, J.-M., Moreno, R.: Effects of donor and acceptor peptides on concomitant hydrolysis and transfer reaction catalysed by the exocellular DD-carboxypep-tidase-transpeptidase from Streptomyces R39. Biochemistry 13, 2539–2547 (1974)PubMedGoogle Scholar
  64. Ghuysen, J.-M., Shockman, G.D.: Biosynthesis of peptidoglycan. In: Bacterial Membranes and Walls (ed. L. Leive), pp. 37–208. New York: Dekker 1973Google Scholar
  65. Ghuysen, J.-M., Strominger, J.L., Tipper, D.J.: Bacterial Cell Walls. In: Comprehensive Biochemistry (eds. M. Florkin, H. Stotz), Vol. 26A, pp. 53–104. Amsterdam-London-New York: Elsevier 1968Google Scholar
  66. Gondre, B., Flouret, B., van Heijenoort, J.: DD-carboxypeptidase activity in Escherichia coli K12. Biochimie 55, 1175–1178 (1973)PubMedGoogle Scholar
  67. Griffin, M.J., Brown, G.M.: The biosynthesis of folic acid. III. Enzymatic formation of dihydrofolic acid from dihydropteroic acid and of tetrahydropteroyl-polyglutamic acid compounds from tetrahydrofolic acid. J. Biol. Chem. 239, 310–316 (1964)PubMedGoogle Scholar
  68. Gross, E.: Structural relationships in and between peptides with α, β-unsaturated amino acids. In: Proc. 3rd Am. Peptide Symp. Ann Arbor (ed. J. Meienhofer), pp. 671–678. Ann Arbor 1972Google Scholar
  69. Gross, E., Kiltz, H.H., Nebelin, E.: Subtilin, VI. Die Struktur des Subtilins. Hoppe Seyler’s Z. Physiol. Chem. 354, 810–812 (1973)Google Scholar
  70. Gross, E., Morell, J.L.: The structure of nisin. J. Am. Chem. Soc. 93, 4634–4635 (1971)PubMedGoogle Scholar
  71. Haavik, H.I.: Effect of bacitracin and Mn(II)ions upon the producer strain Bacillus licheniformis. Acta Pathol. Microbiol. Scand., Sect. B, Microbiol. 83 B, 513–518 (1975)Google Scholar
  72. Haavik, H.I.: On the role of bacitracin peptides in trace metal transport by Bacillus licheniformis. J. Gen. Microbiol. 96, 393–399 (1976)PubMedGoogle Scholar
  73. Haavik, H.I., Frøyshov, Ø.: Function of peptide antibiotics in producer organisms. Nature (London) 254, 79–82 (1975)Google Scholar
  74. Hamilton, B.K., Montgomery, J.P., Wang, D.I.C.: Enzyme reactions for preparative scale synthesis. In: Enzyme Engineering (eds. E.K. Pye, L.B. Wingard Jr.), Vol. 2, pp. 154–159. New York: Plenum Press 1974Google Scholar
  75. Hammarström, S., Strominger, J.L.: Degradation of penicillin G to phe-nylacetylglycine by D-alanine carboxypeptidase from Bacillus stearo-thermophilus. Proc. Nat. Acad. Sci. 72, 3463–3467 (1975)PubMedGoogle Scholar
  76. Hammarström, S., Strominger, J.L.: Formation of 5,5-dimethyl-Δ2-thiazoline-4-carboxylic acid during cleavage of penicillin G by D-alanine carboxypeptidase from Bacillus stearothermophilus. J. Biol. Chem. 251, 7947–7949 (1976)PubMedGoogle Scholar
  77. Hartman, S.C.: Glutaminases and γ-glutaminyltransferases. In: The Enzymes (ed. P.D. Boyer), 3rd ed., Vol. 4, pp. 79–100. New York, London: Academic Press 1971Google Scholar
  78. Heinrich, C.P., Fruton, J.S.: The action of dipeptidyl transferase as a polymerase. Biochemistry 7, 3556–3565 (1968)PubMedGoogle Scholar
  79. Hendrix, R.W., Casjens, S.R.: Protein fusion: A novel reaction in bacteriophage X head assembly. Proc. Nat. Acad. Sci. USA 71, 1451–1455 (1974)PubMedGoogle Scholar
  80. Hettinger, T.P., Craig, L.C.: Edeine. IV. Structures of the antibiotic peptides edeines A1 and B1. Biochemistry 9, 1224–1232 (1970)PubMedGoogle Scholar
  81. Hilton, J.L.: Inhibition of enzymatic synthesis of pantothenate by 2,3-dichloroisobutyrate. Science 128, 1509–1510 (1958)PubMedGoogle Scholar
  82. Huang, F.-C., Chan, J.A., Sih, C.J., Fawcett, P., Abraham, E.P.: The non-partizipation of α, β-dihydrovalinyl intermediates in the formation of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine. J. Am. Chem. Soc. 97, 3858–3859 (1975)PubMedGoogle Scholar
  83. Ingram, L.C.: A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. Acta 224, 263–265 (1970)PubMedGoogle Scholar
  84. Ishihara, H., Endo, Y., Abe, S., Shimura, K.: The presence of 4′-phos-phopantetheine in the bacitracin synthetase. FEBS Lett. 50, 43–46 (1975)Google Scholar
  85. Ishihara, H., Shimura, K.: Biosynthesis of bacitracin. III. Partial purification of a bacitracin synthesizing enzyme system from Bacillus licheniformis. Biochim. Biophys. Acta 338, 588–600 (1974)Google Scholar
  86. Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. II. Enzymatic synthesis and addition of D-alanyl-D-alanine. J. Biol. Chem. 237, 2696–2703 (1962)Google Scholar
  87. Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. III. Purification and properties of L-lysine adding enzyme. J. Biol. Chem. 239, 210–214 (1964)PubMedGoogle Scholar
  88. Ito, E., Strominger, J.L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides: Comparative biochemistry. J. Biol. Chem. 248, 3131–3136 (1973)PubMedGoogle Scholar
  89. Izaki, K., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XIV. Purification and properties of two D-alanine carboxypeptidases from Escherichia coli. J. Biol. Chem. 243, 3193–3201 (1968)PubMedGoogle Scholar
  90. Kalyankar, G.D., Meister, A.: Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides. J. Biol. Chem. 234, 3210–3218 (1959a)PubMedGoogle Scholar
  91. Kalyankar, D.G., Meister, A.: Enzymatic synthesis of carnosine from β-alanyl adenylate and histidine. J. Am. Chem. Soc. 81, 1515–1516 (1959b)Google Scholar
  92. Kambe, M., Imae, Y., Kurahashi, K.: Biochemical studies on gramicidin S nonproducing mutants of Bacillus brevis ATCC 9999. J. Biochem. 75, 481–493 (1974)PubMedGoogle Scholar
  93. Kamiryo, T., Matsuhashi, M.: Sequential addition of glycine from glycyl-tRNA to the lipid linked precursors of cell wall peptidoglycan in Staphylococcus aureus. Biochem. Biophys. Res. Comm. 36, 215–222 (1969)PubMedGoogle Scholar
  94. Kanda, M., Hori, K., Hasegawa, S., Saito, Y.: Phenylalanine activating and racemizing enzyme of Bacillus brevis deficient in gramicidin S formation. Personal communication, 1976Google Scholar
  95. Katsunuma, N., Shoda, A.: Folic acid synthesizing system in Mycobacterium avium. Koso Kagaku Shinpojiumu 12, 124–128 (1957)Google Scholar
  96. Kiselev, L.L., Kochkina, L.L.: Mechanism of amino acid activation during the biosynthesis of proteins. High energy compound of adenosine monophosphate with aminoacyl-tRNA synthetases. Dokl. Akad. Nauk SSSR 214, 215–217 (1974)Google Scholar
  97. Kleinkauf, H., Koischwitz, H.: Gramicidin S synthetase. Active form of the multienzyme complex is undissociable by sodium dodecylsulfate. In: Lipmann-Symposium: Energy, Biosynthesis and Regulation in Molecular Biology (ed. D. Richter), pp. 336–344. Berlin: De Gruyter 1974Google Scholar
  98. Kleinkauf, H., Rindfleisch, H.: Non-ribosomal biosynthesis of the cyclic octadecapeptide alamethicin. Acta microbiol. Acad. Sci. Hung. 22, 411–418 (1975)PubMedGoogle Scholar
  99. Kleinkauf, H., Roskoski, Jr., R., Lipmann, F.: Pantetheine-linked peptide intermediates in gramicidin S and tyrocidine biosynthesis. Proc. Nat. Acad. Sci. USA 68, 2069–2072 (1971)PubMedGoogle Scholar
  100. Koischwitz, H.: Non-ribosomal polypeptide formation: A model for peptide sequence fixation on protein templates. Abstr. 10th FEBS meeting, abstract 860, Paris 1975Google Scholar
  101. Koischwitz, H.: Preparative biosynthesis of gramicidin S and related peptides. 5th Intern. Fermentation Symp., abstract 12.14, Berlin 1976Google Scholar
  102. Koischwitz, H., Kleinkauf, H.: Gramicidin S synthetase. Preparation of the multienzyme with high specific activity. Biochim. Biophys. Acta 429, 1041–1051 (1976a)PubMedGoogle Scholar
  103. Koischwitz, H., Kleinkauf, H.: Gramicidin S synthetase. Electropho-retic characterization of the multienzyme. Biochim. Biophys. Acta 429, 1052–1061 (1976b)PubMedGoogle Scholar
  104. Kovaleva, G.K., Agalarova, M.B., Sashchenko, L.P., Demushkin, U.P., Severin, E.S.: Synthesis of halomethylketones, analogs of L-phenyl-alanine, and their interaction with phenylalanine-tRNA synthetase from Escherichia coli. Biokhimiya 39, 1036–1039 (1974)Google Scholar
  105. Kowalski, D., Leary, T.R., Mc Kee, R.E., Sealock, R.W., Wang, D., Laskowski, Jr., M.: Replacements, insertions, and modifications of amino acid residues in the reactive site of soybean trypsin inhibitor (Kunitz) In: Proteinase Inhibitors. Bayer-Symp., V., pp. 311–324. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  106. Kristensen, T., Gilhuus-Moe, C.C., Zimmer, T.-L., Laland, S.G.: The inhibitory effect of AMP on the activation reactions of the amino acids involved in gramicidin S biosynthesis. Europ. J. Biochem. 34, 548–550 (1973)PubMedGoogle Scholar
  107. Kurahashi, K.: Biosynthesis of small peptides. Ann. Rev. Biochem. 43, 445–459 (1974)PubMedGoogle Scholar
  108. Kurahashi, K., Yamada, M., Mori, K., Fujikawa, K., Kambe, M., Imae, Y., Sato, E., Takahashi, H., Sakamoto, Y.: Biosynthesis of cyclic oligopeptide. Cold Spring Harb. Symp. Quant. Biol. 34, 815–826 (1968)Google Scholar
  109. Kurylo-Borowska, Z.: Biosynthesis of edeine. I. Fractionation and characterization of enzymes responsible for biosynthesis of edeine A and B. Biochim. Biophys. Acta 351, 42–56 (1974)PubMedGoogle Scholar
  110. Kurylo-Borowska, Z.: Biosynthesis of edeine. II. Localization of edeine synthetase within Bacillus brevis Vm4. Biochim. Biophys. Acta 399, 31–41 (1975)PubMedGoogle Scholar
  111. Lacey, J.C., White, Jr., W.E.: Aminoacyl transfer: Chemical conversion of an aminoacyl adenylate to an imidazolide. Biochem. Biophys. Res. Comm. 47, 565–573 (1972)PubMedGoogle Scholar
  112. Laland, S.G., Zimmer, T.-L.: The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 9, 31–57 (1973)PubMedGoogle Scholar
  113. Lamont, H.C., Staudenbauer, W., Strominger, J.L.: Partial purification and characterization of an aspartate racemase from Streptococcus feacalis. J. Biol. Chem. 247, 5103–5106 (1972)PubMedGoogle Scholar
  114. Lee, S.G.: Interrelation between tyrocidine synthesis and sporulation in Bacillus brevis. In: Lipmann-Symposium: Energy, Biosynthesis and Regulation in Molecular Biology (ed. D. Richter), pp. 368–376. Berlin: De Gruyter 1974Google Scholar
  115. Lee, S.G.: On the mechanism of racemisation of thioester-linked L-phenylalanine by an enzyme participating in tyrocidine biosynthesis. 10th Intern. Congr. Biochem. abstract 43-352, Hamburg 1976Google Scholar
  116. Lee, S.G., Lipmann, F.: Isolation of a peptidylpantetheine protein from tyrocidine synthesizing polyenzymes. Proc. Nat. Acad. Sci. USA 21, 607–611 (1974)Google Scholar
  117. Lee, S.G., Lipmann, F.: Tyrocidine synthetase system. Meth. Enz., Vol. XLIII, pp. 585–602. New York-London: Academic Press 1975Google Scholar
  118. Lee, S.G., Roskoski, Jr., R., Bauer, K., Lipmann, F.: Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry 12, 398–405 (1973)PubMedGoogle Scholar
  119. Leung, D.C., Baxter, R.M.: Substrate-derived reversible and irreversible inhibitors of the multienzyme I of gramicidin S biosynthesis. Biochim. Biophys. Acta 279, 34–47 (1972)PubMedGoogle Scholar
  120. Leyh-Bouille, M., Coyette, J., Ghuysen, J.-M., Idczak, J., Perkins, H.R., Nieto, M.: Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R61. Biochemistry 10, 2163–2170 (1971)PubMedGoogle Scholar
  121. Leyh-Bouille, M., Nakel, M., Frère, J.-M., Johnson, K., Ghuysen, J.-M., Perkins, H.R.: Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry 11, 1290–1298 (1972)PubMedGoogle Scholar
  122. Linnett, P.E., Roberts, R.J., Strominger, J.L.: Biosynthesis and cross-linking of the γ-glutamylglycine containing peptidoglycan of vegetative cells of Sporosarcina ureae. J. Biol. Chem. 249, 2497–2506 (1974)PubMedGoogle Scholar
  123. Linnett, P.E., Strominger, J.L.: Amidation and cross-linking of the enzymatically synthesized peptidoglycan of Bacillus stearothermophilus. J. Biol. Chem. 249, 2489–2496 (1974)PubMedGoogle Scholar
  124. Lipmann, F.: On the mechanism of some ATP-linked reactions and certain aspects of protein synthesis. In: Mechanism of Enzyme Action (eds. W.D. Mc Elroy, B. Glass), p. 599. Baltimore: Hopkins 1954Google Scholar
  125. Lipmann, F.: The relation between direction and mechanism of polymerisation. Essays Biochem. 4, 1–23 (1968)PubMedGoogle Scholar
  126. Lipmann, F.: Attempts to map a process evolution of peptide biosynthesis. Science 173, 875–884 (1973)Google Scholar
  127. Lipmann, F.: Nonribosomal polypeptide synthesis on polyenzyme templates. Acc. Chem. Res. 6, 361–367 (1973)Google Scholar
  128. Lipmann, F.: Search for remnants of early evolution in present-day metabolism. Biosystems 6, 234–238 (1975)PubMedGoogle Scholar
  129. Lipmann Gevers, W., Kleinkauf, H., W., Roskoski, Jr., R.: Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Advan. Enz. 35, 1–34 (1971)Google Scholar
  130. Loder, P.B., Abraham, E.P.: Biosynthesis of peptides containing α-aminoadipic acid and cysteine in extracts of a Cephalosporium sp. Biochem. J. 123, 477–482 (1971)Google Scholar
  131. Lukens, L.N., Buchanan, J.M.: Biosynthesis of purines. XXIII. The enzymatic synthesis of N-(5-amino-1-ribosyl-4-imidazolylcarbonyl-L-aspartic acid 5′-phosphate. J. Biol. Chem. 234, 1791–1798 (1959a)PubMedGoogle Scholar
  132. Lukens, L.N., Buchanan, J.M.: Biosynthesis of purines. XXIV. The enzymatic synthesis of 5-amino-1-ribosyl-4-imidazole carboxylic acid 5′-phosphate from 5-amino-1-ribosylimidazole 5′-phosphate and carbon dioxide. J. Biol. Chem. 214, 1799–1805 (1959b)Google Scholar
  133. Lynen, F.: Functional sulphydryl groups in enzymic catalysis. In: Chemical Reactivity and Biological Role of functional Groups in Enzymes (ed. R.M.S. Smellie), p. 18. New York-London: Academic Press 1970Google Scholar
  134. Maas, W.K.: Enzymic synthesis of pantothenate from β-alanine and pan-toate. Congr. Intern. Biochim. Resumes commun. 3e congr. Brussels, p. 32, 1955Google Scholar
  135. Maas, W.K.: Biosynthesis of pantothenic acid. Proc. Intern. Congr. Vienna 1958, 11, 161–168 (1959)Google Scholar
  136. McDonald, J.K., Zeitman, B.B., Reilly, T.S., Ellis, S.: New observations on the substrate specificity of cathepsin C (dipeptidyl amino-peptidase I). J. Biol. Chem. 244, 2639–2709 (1969)Google Scholar
  137. Martin, D.R., Williams, J.P.: Chemical nature and sequence of alamethicin. Biochem. J. 153, 181–190 (1976)PubMedGoogle Scholar
  138. Matteo, C.C., Glade, M., Tanaka, A., Piret, J.M., Demain, A.L.: Microbiological studies on the formation of gramicidin S synthetases. Biotechnol. Bioeng. 17, 129–142 (1975)Google Scholar
  139. Meister, A.: Glutathione synthesis. In: The Enzymes (ed. P.D. Boyer), 3rd, Vol. X, pp. 699–754. New York-London: Academic Press 1974Google Scholar
  140. Meister, A., Tate, S.S.: Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization. Ann. Rev. Biochem. 45, 559–604 (1976)PubMedGoogle Scholar
  141. Metrione, R.M., Neves, A.G., Fruton, J.S.: Purification and properties of dipeptidyl transferase (Cathepsin C). Biochemistry 5, 1597–1604 (1966)Google Scholar
  142. Mirelman, D., Bracha, R., Sharon, N.: Role of penicillin-sensitive transpeptidation reaction in attachment of newly synthesized pep-tidoglycan to cell walls of Micrococcus luteus. Proc. Nat. Acad. Sci. USA 69, 3355–3359 (1972)PubMedGoogle Scholar
  143. Mirelman, D., Sharon, N.: Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin. Biochem. Biophys. Res. Comm. 46, 1909–1917 (1972)PubMedGoogle Scholar
  144. Mizuno, Y., Yaegashi, M., Ito, E.: Purification and properties of uridine-diphosphate N-acetylmuramate: L-alanine ligase. J. Biochem. 74, 525–538 (1973)PubMedGoogle Scholar
  145. Mohr, H.: Biosynthese von Alamethicin. Dissertation TU Berlin 1977Google Scholar
  146. Nathenson, S.G., Strominger, J.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides; IV. Purification and properties of D-glutamic acid adding enzyme. J. Biol. Chem. 239, 1773–1776 (1964)PubMedGoogle Scholar
  147. Neuss, N.: The use of 13C labeling in the study of antibiotic synthesis. Meth. Enz., Vol. XLIII, pp. 404–425. New York-London: Academic Press 1975Google Scholar
  148. Neuss, N., Nash, C.H., Baldwin, J.E., Lemke, P.A., Grutzner, J.B.: Incorporation of (2RS,3S)-[4–13C]valine into cephalosporin C. J. Am. Chem. Soc. 95, 3797–3798, 6511 (1973)Google Scholar
  149. Nguyen-Distèche, M., Ghuysen, J.-M., Pollock, J.J., Reynolds, P., Perkins, H.R., Coyette, J., Salton, M.R.J.: Enzymes involved in wall peptide crosslinking in Escherichia coli K12, strain 44. Europ. J. Biochem. 41, 447–455 (1974)PubMedGoogle Scholar
  150. Nguyen Huu, M.C., von Dungen, A., Kleinkauf, H.: Irreversible inhibition of the light enzyme of gramicidin S synthetase by halogeno-methylketones of phenylalanine. FEBS Lett. 62, 75–79 (1976)Google Scholar
  151. Nieto, M., Perkins, H.R., Leyh-Bouille, M., Frère, J.-M., Ghuysen, J.-M.: Peptide inhibitors of Streptomyces DD-carboxypeptidases. Biochem. J. 131, 163–171 (1973)PubMedGoogle Scholar
  152. Niyomporn, B., Dahl, J.L., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. IX. purification and properties of glycyl-transfer ribonucleic acid synthetase from Staphylococcus aureus. J. Biol. Chem. 243, 773–778 (1968)PubMedGoogle Scholar
  153. Ong, D.E., Emery, T.F.: Ferrichrome biosynthesis: Enzyme catalyzed formation of the hydroxamic acid group. Arch. Biochim. Biophys. 148, 77–83 (1972)Google Scholar
  154. Ooka, T., Takeda, I.: Peptide antibiotic suzukacillin. III. Relation between a-aminoisobutyrate and L-valine for the suzukacillin formation. Agr. Biol. Chem. 38, 19–27 (1974)Google Scholar
  155. Orlowski, M., Meister, A.: Partial reactions catalyzed by γ-glutamyl-cysteine synthetase and evidence for an activated glutamate intermediate. J. Biol. Chem. 246, 7095–7105 (1971)PubMedGoogle Scholar
  156. Papas, T.S., Mehler, A.H.: Analysis of the amino acid binding in the proline transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 245, 1588–1595 (1970)PubMedGoogle Scholar
  157. Pass, L., Zimmer, T.-L., Laland, S.G.: The use of affinity chromatography in determining the sites of protein-protein interaction relative to the binding of substrates in gramicidin S synthetase. Europ. J. Biochem. 40, 43–48 (1973)PubMedGoogle Scholar
  158. Pass, L., Zimmer, T.-L., Laland, S.G.: On the use of affinity chromatography in demonstrating the transfer of thioester-bound D-phenyl-alanine from the light enzyme of gramicidin S synthetase to an acceptor site for this amino acid on the heavy enzyme. Europ. J. Biochem. 47, 607–611 (1974)PubMedGoogle Scholar
  159. Perkins, H.R., Nieto, M., Frère, J.-M., Leyh-Bouille, M., Ghuysen, J.-M.: Streptomyces DD-carboxypeptidases as transpeptidases. The specificity for amino compounds acting as carboxyl acceptors. Biochem. J. 131, 707–718 (1973)PubMedGoogle Scholar
  160. Petit, J.-F., Strominger, J.L., Söil, D.: Biosynthesis of the peptido-glycan of bacterial cell walls. VII. The incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J. Biol. Chem. 243, 757–767 (1968)PubMedGoogle Scholar
  161. Plapp, R., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens. J. Biol. Chem. 245, 3667–3674 (1970a)PubMedGoogle Scholar
  162. Plapp, R., Strominger, J.L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XVIII. Purification and properties of L-alanyl transfer ribonucleic acid-uridine diphosphate-N-Acetylmuramyl-penta-peptide transferase from Lactobacillus viridescens. J. Biol. Chem. 245, 3675–3682 (1970b)PubMedGoogle Scholar
  163. Pollock, J.J., Nguyen-Disteche, M., Ghuysen, J.-M., Coyette, J., Linder, R., Salton, M.R.J., Kim, K.S., Perkins, H.R., Reynolds, P.: Fractionation of the DD-carboxypeptidase-transpeptidase activities solubilized from membranes of Escherichia coli K12, strain 44. Europ. J. Biochem. 41, 439–446 (1974)PubMedGoogle Scholar
  164. Pruess, D.L., Johnson, L.J.: Penicillin acyltransferase in Penicillin chrysogenum. J. Bacteriol. 94, 1502–1508 (1967)PubMedGoogle Scholar
  165. Qureshi, A.A., Lornitzo, F.A., Porter, J.W.: The isolation of acyl carrier protein from the pigeon liver fatty acid synthetase complex II. Biochem. Biophys. Res. Comm. 60, 158–165 (1974)Google Scholar
  166. Rainey, P., Holler, E., Kula, M.-R.: Labeling of L-isoleucyl tRNA ligase from Escherichia coli with L-isoleucyl-bromomethylketone. Europ. J. Biochem. 63, 419–426 (1976)PubMedGoogle Scholar
  167. Repmann, H.: Personal communication, 1977Google Scholar
  168. Rindfleisch, H., Kleinkauf, H.: Biosynthesis of alamethicin. FEBS Lett. 62, 276–280 (1976)PubMedGoogle Scholar
  169. Ristow, H., Schazschneider, B., Bauer, K., Kleinkauf, H.: Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation? Biochim. Biophys. Acta 390, 246–252 (1975)PubMedGoogle Scholar
  170. Roberts, R.J.: Staphylococcal transfer ribonucleic acids. I. Sequence analysis of isoaccepting glycine transfer ribonucleic acids IA and IB from Staphylococcus epidermidis Texas 26. J. Biol. Chem. 249, 4787–4796 (1974)PubMedGoogle Scholar
  171. Roberts, W.S.L., Petit, J.F., Strominger, J.L.: Biosynthesis of peptidoglycan of bacterial cell walls. VIII. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes. J. Biol. Chem. 243, 768–772 (1968)PubMedGoogle Scholar
  172. Roberts, W.S.L., Strominger, J.L., Söll, D.: Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus. J. Biol. Chem. 243, 749–756 (1968)PubMedGoogle Scholar
  173. Roncari, D.A.K.: Mammalian acyl carrier protein. Dissociation of the acyl carrier protein subunit from dog liver fatty acid synthetase complex. J. Biol. Chem. 249, 7035–7037 (1974)PubMedGoogle Scholar
  174. Roskoski, Jr., R., Gevers, W., Kleinkauf, H., Lipmann, F.: Tyrocidine biosynthesis by three complementary enzyme fractions from Bacillus brevis (ATCC 8185). Biochemisty 9, 4839–4845 (1970a)Google Scholar
  175. Roskoski, Jr., R., Kleinkauf, H., Gevers, W., Lipmann, F.: Isolation of enzyme-bound peptide intermediates in tyrocidine biosynthesis. Biochemistry 9, 4846–4851 (1970b)PubMedGoogle Scholar
  176. Roskoski, Jr., R., Ryan, G., Kleinkauf, H., Gevers, W., Lipmann, F.: Polypeptide biosynthesis from thioesters of amino acids. Arch. Biochim. Biophys. 143, 485–492 (1971)Google Scholar
  177. Santi, D.V., Danenberg, P.V., Satterly, P.: Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Reaction parameters and order of substrate addition. Biochemistry 10, 4804–4812 (1971a)PubMedGoogle Scholar
  178. Santi, D.V., Danenberg, P.V., Satterly, P.: Analysis of phenylalanine binding site. Biochemistry 10, 4813–4820 (1971b)PubMedGoogle Scholar
  179. Santi, D.V., Danenberg, P.V., Satterly, P.: Analysis of adenosine triphosphate binding site. Biochemistry 10, 4821–4824 (1971c)PubMedGoogle Scholar
  180. Saxholm, H., Zimmer, T.-L., Laland, S.G.: The mechanism of the inhibition of gramicidin S synthesis by D-leucine. Europ. J. Biochem. 30, 138–144 (1972)PubMedGoogle Scholar
  181. Schleifer, K.H., Kandier, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972)PubMedGoogle Scholar
  182. Schweizer, E., Kniep, B., Castorph, H., Holzner, U.: Pantetheine-free mutants of the yeast fatty acid synthetase complex. Europ. J. Biochem. 19, 352–362 (1973)Google Scholar
  183. Sealock, R.W., Laskowski, Jr., M.: Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor. Biochemistry 8, 3703–3710 (1969)PubMedGoogle Scholar
  184. Sengupta, S., Bose, S.K.: Properties and localization of mycobacillin synthesizing enzyme system in Bacillus’ subtilis B3. Biochim. Biophys. Acta 217, 120–122 (1971)Google Scholar
  185. Sengupta, S., Bose, S.K.: Peptides from a mycobacillin synthesizing cell-free system. Biochem. J. 128, 47–52 (1972)PubMedGoogle Scholar
  186. Sengupta, S., Bose, S.K.: Stereoconfiguration of amino acids in peptides from a mycobacillin sythesizing cell-free system. Biochem. J. 131, 623–624 (1973)PubMedGoogle Scholar
  187. Sengupta, S., Bose, S.K.: Proline-dependent ATP-phosphorous-32-labeled inorganic phosphate exchange in Bacillus subtilis B3 producing mycobacillin. Indian J. Biochem. Biophys. 11, 335–336 (1974)PubMedGoogle Scholar
  188. Shimura, K., Iwaki, M., Kanda, M., Hori, K., Kaji, E., Hasegawa, S., Salto, Y.: On the enzyme system obtained from some mutants of Bacillus brevis deficient in gramicidin S formation. Biochim. Biophys. Acta 338, 577–587 (1974)Google Scholar
  189. Silver, J., Laursen, R.A.: Inactivation of aminoacyl-tRNA synthetases by amino acid chloromethyl ketones. Biochim. Biophys. Acta. 340, 77–89 (1974)PubMedGoogle Scholar
  190. Simon, R.D.: The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim. Biophys. Acta 422, 407–418 (1976)PubMedGoogle Scholar
  191. Skaper, S.D., Das, S., Marshall, F.D.: Some properties of a homocarno-sine-carnosine synthetase isolated from rat brain. J. Neurochemistry 21, 1429 (1973)Google Scholar
  192. Staudenbauer, W., Strominger, J.L.: D-aspartic acid activating enzyme (Streptococcus faecalis). Meth. Enz. Vol. XVII, part A, pp. 718–721. New York-London: Academic Press 1970Google Scholar
  193. Staudenbauer, W., Strominger, J.L.: Activation of D-aspartic acid for incorporation into peptidoglycan. J. Biol. Chem. 247, 5095–5102 (1972)PubMedGoogle Scholar
  194. Staudenbauer, W., Willoughby, E., Strominger, J.L.: Further studies of the D-aspartic acid-activating enzyme of Streptococcus faecalis and its attachment to the membrane. J. Biol. Chem. 247, 5289–5296 (1972)PubMedGoogle Scholar
  195. Stenesh, J.J., Winnick, T.: Carnosine-anserine synthetase of muscle. 4. Partial purification of the enzyme and further studies of β-alanyl peptide synthesis. Biochem. J. 77, 575–581 (1960)PubMedGoogle Scholar
  196. Stoll, E., Frøyshov, Ø., Holm, H., Zimmer, T.-L., Laland, S.G.: On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 11, 348–352 (1970)PubMedGoogle Scholar
  197. Stoops, J.K., Arslanian, M.J., Oh, Y.H., Aune, K.C., Vanaman, T.C., Wakil, S.J.: Presence of two polypeptide chains comprising fatty acid synthetase. Proc. Nat. Acad. Sci. USA 72, 1940–1944 (1975)PubMedGoogle Scholar
  198. Stramondo, J.G., Wang, D.I.C.: Total enzymatic synthesis of the polypeptide antibiotic gramicidin S. 5th Intern. Fermentation Symp., abstract 12.13. Berlin 1976Google Scholar
  199. Takahashi, H., Sato, E., Kurahashi, K.: Racemisation of phenylalanine by adenosine-triphosphate dependent phenylalanine racemase of Bacillus brevis. J. Biochem. 69, 973–976 (1971)PubMedGoogle Scholar
  200. Tamura, T., Imae, Y., Strominger, J.L.: Purification to homogeneity and properties of two D-alanine carboxypeptidases I from Escherichia coli. J. Biol. Chem. 251, 414–423 (1976)PubMedGoogle Scholar
  201. Tate, S.S., Meister, A.: Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives, and analogs of glutathione. J. Biol. Chem. 249, 7593–7601 (1974)PubMedGoogle Scholar
  202. Thompson, G.A., Meister, A.: Hydrolysis and transfer reactions catalyzed by y-glutamyl transpeptidase. Evidence for separate substrate sites and for high affinity of L-cystine. Biochem. Biophys. Res. Comm. 71, 32–36 (1976)PubMedGoogle Scholar
  203. Thorndike, J., Park, J.T.: A method for demonstrating the stepwise addition of glycine from transfer RNA into the murein precursor of Staphylococcus aureus. Biochem. Biophys. Res. Comm. 35, 642–647 (1969)PubMedGoogle Scholar
  204. Troy, F.A.: Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane mediated biosynthetic reaction. J. Biol. Chem. 248, 305–315 (1973a)PubMedGoogle Scholar
  205. Troy, F.A.: Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. J. Biol. Chem. 248, 316–324 (1973b)PubMedGoogle Scholar
  206. Van Damme, E.J., Demain, A.L.: Nutrition and physiology of gramicidin S production by Bacillus brevis. 5th Intern. Fermentation Symp., abstract 12–12. Berlin 1976Google Scholar
  207. Vater, J.: Studies with substrate analogs of the heavy enzyme of gramicidin S synthetase (GSS I). 10th Intern. Congr. Biochem., abstract 16–7–252. Hamburg 1976Google Scholar
  208. Vater, J., Kleinkauf, H.: Substrate specificity of the amino acyl adenylate activation sites of gramicidin S-synthetase (GSS). Acta microbiol. Acad. Sci. Hung. 22, 419–425 (1975)PubMedGoogle Scholar
  209. Vater, J., Kleinkauf, H.: Gramicidin S synthetase. A further characterization of phenylalanine racemase, the light enzyme of gramicidin S synthetase. Biochim. Biophys. Acta 429, 1062–1072 (1976)PubMedGoogle Scholar
  210. Volpe, J.J., Vagelos, P.R.: Saturated fatty acid biosynthesis and its regulation. Ann. Rev. Biochem. 42, 21–60 (1973)PubMedGoogle Scholar
  211. Von Dungen, A., Vater, J., Kleinkauf, H.: Biosynthesis of gramicidin S with the aid of dipeptides by gramicidin S synthetase. Europ. J. Biochem. 66, 623–626 (1976)Google Scholar
  212. Voronina, O.I., Khokhlov, A.S.: Pathways of biosynthesis of the peptide moiety of streptothricin antibiotics. Post. Hig. I Med. Dosw. 26, 541–548 (1972)Google Scholar
  213. Vypiyach, A.N., Egorov, N.S., Zharikova, G.G.: Effect of β-phenyl-β-alanine on the biosynthesis of gramicidin S by Bacillus brevis. Anti-biotiki 5, 392–395 (1970)Google Scholar
  214. Wang, D.I.C., Stramondo, J.G., Fleischaker, R.: Exploitation of Multi-enzyme systems for synthesis. In: Biotechnological Applications of Proteins and Enzymes (eds. N. Sharon, Z. Bohak). New York-London: Academic Press 1977Google Scholar
  215. Waylishen, R.E., Graham, M.R.: A nmr study of the metal binding sites in bacitracin. Can. J. Biochem. 53, 1250–1254 (1975)Google Scholar
  216. Weber, A.L., Lacey, J.C., Jr.: Aminoacyl transfer: Peptide synthesis and other properties of an amino acid imidazolide. Biochim. Biophys. Acta 349, 226–243 (1974)PubMedGoogle Scholar
  217. Wendel, A.: Biosynthesis of glutathione in red blood cells. In: Glutathione (eds. L. Flohe, H.C. Benöhr, H. Sies, H.D. Waller, A. Wendel), pp. 69–76. Stuttgart: Thieme 1974Google Scholar
  218. Wieland, T., Koch, H.: D- and L-isoserine as the substrates of pantothenic acid synthetase and as initial components for the formation of diastereomeric hydroxypantothenic acids. Biochem. Z. 344, 413–417 (1966)Google Scholar
  219. Winnick, R.E., Winnick, T.: Carnosine-anserine synthetase of muscle. I. Preparation and properties of a soluble enzyme from chick muscle. Biochim. Biophys. Acta 31, 47–55 (1959)PubMedGoogle Scholar
  220. Winnick, T., Winnick, R.E., Bergmann, E.D.: Some metabolic and enzymic experiments with α-fluoro-β-alanine. Biochim. Biophys. Acta 69, 48–58 (1963)PubMedGoogle Scholar
  221. Wyke, A.W., Perkins, H.R.: Specificity of enzymes adding amino acids in the synthesis of the peptidoglycan precursors of Corynebacterium poinsettiae and Corynebacterium insidiosum. J. Gen. Microbiol. 88, 159–168 (1975)PubMedGoogle Scholar
  222. Yamada, M., Kurahashi, K.: Further purification and properties of adenosine triphosphate-dependent phenylalanine racemase of Bacillus brevis. J. Biochem. 66, 529–540 (1969)PubMedGoogle Scholar
  223. Yocum, R.R., Blumberg, P.M., Strominger, J.L.: Purification and Characterization of the thermophilic D-alanine carboxypeptidase from membranes of Bacillus stearothermophilus. J. Biol. Chem. 249, 4863–4871 (1974)PubMedGoogle Scholar
  224. Young, D.W., Morecombe, D.J., Sen, P.K.: The stereochemistry of β-lactam formation in penicillin biosynthesis. Europ. J. Biochem. 75, 133–147 (1977)PubMedGoogle Scholar
  225. Zeiger, A.R., Frère, J.-M., Ghuysen, J.-M., Perkins, H.R.: A donor-acceptor substrate of the exocellular DD-carboxypeptidase-transpep-tidase from Streptomyces R61. FEBS Lett. 52, 221–225 (1976)Google Scholar
  226. Zelazo, P., Orlowski, M.: γ-Glutamyl transpeptidase of sheep-kidney cortex. Isolation, catalytic properties and dissociation into two polypeptide chains. Europ. J. Biochem. 61, 147–155 (1976)PubMedGoogle Scholar
  227. Zharikova, G.G., Katruha, G.S., Silaev, A.B., Radzhapov, R.A.: Formation of polypeptide antibiotics by variants of Bacillus brevis var. G.B. In: Biology of Bacillus brevis var. G.-B., pp. 45–61. Moscow 1968Google Scholar
  228. Zharikova, G.G., Zarubina, A.P., Kherat, D.M., Myaskovskaya, S.P., Maksimov, V.N.: Formation of polypeptide antibiotics by spontaneous and induced mutants of Bacillus brevis var. G.-B. Antibiot. Ikh Pro-dutsenty, pp. 163–186. Moscow: Nauka 1975Google Scholar
  229. Zimmer, T.-L., Laland, S.G.: Gramicidin S-synthetase. Meth. Enz., Vol. XLIII, pp. 567–579. New York-London: Academic Press 1975Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1978

Authors and Affiliations

  • H. Kleinkauf
  • H. Koischwitz

There are no affiliations available

Personalised recommendations