Neural Principles in Vision pp 354-370 | Cite as
The Resolution of Lens and Compound Eyes
Abstract
Two distinctly different types of eyes have been highly developed in evolution: lens eyes (= camera eyes) in vertebrates, some molluscs and arachnids and compound eyes in arthropods. Based on his comparative studies of the optical properties of compound and lens eyes, Exner (1891) concluded that both types of eyes are optimally adapted for different functions: lens eyes with their high angular resolution seem to more useful for pattern recognition, whereas the compound eyes, with their poor resolution, are thought to be specialized for movement perception. This view is still generally accepted (see the textbooks of Scheer, 1969, Kaestner, 1972). Furthermore, the small facet diameters of the ommatidia in compound eyes seem to cause a poor absolute sensitivity (Exner, 1891; Barlow, 1952; Kirschfeld, 1966; Prosser and Brown, 1969; Snyder et al., 1973). Some insects are said, however, to have higher temporal resolution than humans (Autrum, 1948).
Keywords
Body Height Angular Resolution Pupil Diameter Angular Distance Optical ResolutionPreview
Unable to display preview. Download preview PDF.
References
- Autrum, J.: Über Energie- und Zeitgrenzen der Sinnesempfindungen. Naturwissenschaften 12, 361 (1948)CrossRefGoogle Scholar
- Barlow, H.B.: The size of ommatidia in apposition eyes. J. Exp. Biol. 29, 667 (1952)Google Scholar
- Barlow, H.B.: Visual resolution and the diffraction limit. Science 149, 553 (1965)PubMedCrossRefGoogle Scholar
- Blinkov, S.M., Glezer, I.J.: The human brain in figures and tables, a quantitative handbook. New York: Plenum 1968Google Scholar
- Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zeilforsch. 118, 369–409 (1971)CrossRefGoogle Scholar
- Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retinalamina projection. Exp. Brain Res. 3, 271–298 (1967)PubMedCrossRefGoogle Scholar
- Buddenbrock, W. von: Vergleichende Physiologie I. Basel: Birkhäuser 1952Google Scholar
- Campbell, F.W., Gubisch, R.W.: Optical quality of the human eye. J. Physiol. 186, 558–578 (1966)PubMedGoogle Scholar
- Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 1–66 (1975)CrossRefGoogle Scholar
- Eckert, H.: Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 1–23 (1973)PubMedCrossRefGoogle Scholar
- Exner, S.: Die Physiologie der facettierten Augen von Krebsen und Insecten. Leipzig-Wien: Franz Deuticke 1891Google Scholar
- Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971)PubMedCrossRefGoogle Scholar
- Garms, H.: Pflanzen und Tiere Europas. Braunschweig: Westermann 1969Google Scholar
- Götz, K.G.: Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965)PubMedCrossRefGoogle Scholar
- Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration. Versuche an dem Rüsselkäfer Chlorophanus viridis. Z. Vergl. Physiol. 33, 301–326 (1951)Google Scholar
- Kaestner, A.: Lehrbuch der Speziellen Zoologie, Band I Wirbellose, 3. Teil Insecta: A. Allgemeiner Teil. Stuttgart: Gustav-Fischer 1972Google Scholar
- Kelly, D.H.: Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Am. 51, 422 (1961)PubMedCrossRefGoogle Scholar
- Kirschfeld, K.: Discrete and graded receptor potentials in the compound eye of the fly (Musca). The functional organization of the compound eye. Bernhard, C.G. (ed.). Oxford, Pergamon 1966Google Scholar
- Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967)PubMedCrossRefGoogle Scholar
- Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968)PubMedCrossRefGoogle Scholar
- Kirschfeld, K.: Optomotorische Reaktionen der Biene auf bewegte “Polarisations-Muster”. Z. Naturf. 28C, 329–338 (1973)Google Scholar
- Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturf. 29C, 592–596 (1974)Google Scholar
- Kuiper, J.W., Leutscher-Hazelhoff, J.T.: Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. Cold Spring Harb. Symp. Quant. Biol. 30, 319–428 (1965)Google Scholar
- Land, M.F.: Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J. Exp. Biol. 51, 443–470 (1969)PubMedGoogle Scholar
- Mallock, A.: Insect sight and the defining power of composite eyes. Proc. R. Soc. London 55B, 85 (1894)CrossRefGoogle Scholar
- Mallock, A.: Divided composite eyes. Nature 110, 770–771 (1922)CrossRefGoogle Scholar
- Pask, C., Snyder, A.W.: Angular sensitivity of lens-photoreceptor systems. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975Google Scholar
- Penzlin, R.: Kurzes Lehrbuch der Tierphysiologie. Jena: Fischer 1970Google Scholar
- Portillo, J. del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. Vergl. Physiol. 23, 100–145 (1936)Google Scholar
- Prosser, C.L., Brown, F.A.: Comparative Animal Physiology. Philadelphia-London: Saunders 1961 (reprinted 1969). 2nd ed.Google Scholar
- Rein, H., Schneider, M.: Physiologie des Menschen. Berlin-Heidelberg-New York: Springer 1956Google Scholar
- Rodieck, R.W.: The Vertebrate Retina: Principles of Structure and Function. San Francisco: W.H. Freeman 1973Google Scholar
- Scheer, B.T.: Tierphysiologie. Stuttgart: Gustav-Fischer 1969Google Scholar
- Shannon, Cl.E., Weaver, W.: The Mathematical Theory of Communication. Urbana: Univ. Illinois 1949Google Scholar
- Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. Comp. Physiol. 87, 99–135 (1973)CrossRefGoogle Scholar
- Snyder, A.W.: Photoreceptor optics — theoretical principles. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975Google Scholar
- Steinbuch, K.: Automat und Mensch. Berlin-Heidelberg-New York: Springer 1965Google Scholar
- Vries, H. de: Physical aspects of sense organs. In: Progress in Biophysics and Biophysical Chem. Butler, J.A.V. (ed.). Oxford: Pergamon 1956, Vol. VIGoogle Scholar
- Walls, G.L.: The Vertebrate Eye. New York-London: Hafner 1967Google Scholar
- Weber, H., Weidner, H.: Grundriß der Insektenkunde. Stuttgart: Gustav-Fischer 1974Google Scholar
- Westheimer, G.: Optical properties of vertebrate eyes. In: Handbook of Sensory Physiology. Fuortes, M.G.F. (ed.). Berlin: Springer 1972a, Vol. VII/2, pp. 449–482Google Scholar
- Westheimer, G.: Visual acuity and spatial modulation thresholds. In: Handbook of Sensory Physiology. Jameson, D., Hurvich, L.M. (eds.). Berlin-Heidelberg-New York: Springer 1972b, Vol. VII/4Google Scholar
- Zettler, F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand, gemessen am einzelnen Lichtrezeptor von Calliphora Erythrocephala. Z. Vergl. Physiol. 64, 432–449 (1969).CrossRefGoogle Scholar