Advertisement

The Resolution of Lens and Compound Eyes

  • K. Kirschfeld
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Two distinctly different types of eyes have been highly developed in evolution: lens eyes (= camera eyes) in vertebrates, some molluscs and arachnids and compound eyes in arthropods. Based on his comparative studies of the optical properties of compound and lens eyes, Exner (1891) concluded that both types of eyes are optimally adapted for different functions: lens eyes with their high angular resolution seem to more useful for pattern recognition, whereas the compound eyes, with their poor resolution, are thought to be specialized for movement perception. This view is still generally accepted (see the textbooks of Scheer, 1969, Kaestner, 1972). Furthermore, the small facet diameters of the ommatidia in compound eyes seem to cause a poor absolute sensitivity (Exner, 1891; Barlow, 1952; Kirschfeld, 1966; Prosser and Brown, 1969; Snyder et al., 1973). Some insects are said, however, to have higher temporal resolution than humans (Autrum, 1948).

Keywords

Body Height Angular Resolution Pupil Diameter Angular Distance Optical Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, J.: Über Energie- und Zeitgrenzen der Sinnesempfindungen. Naturwissenschaften 12, 361 (1948)CrossRefGoogle Scholar
  2. Barlow, H.B.: The size of ommatidia in apposition eyes. J. Exp. Biol. 29, 667 (1952)Google Scholar
  3. Barlow, H.B.: Visual resolution and the diffraction limit. Science 149, 553 (1965)PubMedCrossRefGoogle Scholar
  4. Blinkov, S.M., Glezer, I.J.: The human brain in figures and tables, a quantitative handbook. New York: Plenum 1968Google Scholar
  5. Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zeilforsch. 118, 369–409 (1971)CrossRefGoogle Scholar
  6. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retinalamina projection. Exp. Brain Res. 3, 271–298 (1967)PubMedCrossRefGoogle Scholar
  7. Buddenbrock, W. von: Vergleichende Physiologie I. Basel: Birkhäuser 1952Google Scholar
  8. Campbell, F.W., Gubisch, R.W.: Optical quality of the human eye. J. Physiol. 186, 558–578 (1966)PubMedGoogle Scholar
  9. Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 1–66 (1975)CrossRefGoogle Scholar
  10. Eckert, H.: Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 1–23 (1973)PubMedCrossRefGoogle Scholar
  11. Exner, S.: Die Physiologie der facettierten Augen von Krebsen und Insecten. Leipzig-Wien: Franz Deuticke 1891Google Scholar
  12. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971)PubMedCrossRefGoogle Scholar
  13. Garms, H.: Pflanzen und Tiere Europas. Braunschweig: Westermann 1969Google Scholar
  14. Götz, K.G.: Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965)PubMedCrossRefGoogle Scholar
  15. Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration. Versuche an dem Rüsselkäfer Chlorophanus viridis. Z. Vergl. Physiol. 33, 301–326 (1951)Google Scholar
  16. Kaestner, A.: Lehrbuch der Speziellen Zoologie, Band I Wirbellose, 3. Teil Insecta: A. Allgemeiner Teil. Stuttgart: Gustav-Fischer 1972Google Scholar
  17. Kelly, D.H.: Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Am. 51, 422 (1961)PubMedCrossRefGoogle Scholar
  18. Kirschfeld, K.: Discrete and graded receptor potentials in the compound eye of the fly (Musca). The functional organization of the compound eye. Bernhard, C.G. (ed.). Oxford, Pergamon 1966Google Scholar
  19. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967)PubMedCrossRefGoogle Scholar
  20. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968)PubMedCrossRefGoogle Scholar
  21. Kirschfeld, K.: Optomotorische Reaktionen der Biene auf bewegte “Polarisations-Muster”. Z. Naturf. 28C, 329–338 (1973)Google Scholar
  22. Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturf. 29C, 592–596 (1974)Google Scholar
  23. Kuiper, J.W., Leutscher-Hazelhoff, J.T.: Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. Cold Spring Harb. Symp. Quant. Biol. 30, 319–428 (1965)Google Scholar
  24. Land, M.F.: Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J. Exp. Biol. 51, 443–470 (1969)PubMedGoogle Scholar
  25. Mallock, A.: Insect sight and the defining power of composite eyes. Proc. R. Soc. London 55B, 85 (1894)CrossRefGoogle Scholar
  26. Mallock, A.: Divided composite eyes. Nature 110, 770–771 (1922)CrossRefGoogle Scholar
  27. Pask, C., Snyder, A.W.: Angular sensitivity of lens-photoreceptor systems. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  28. Penzlin, R.: Kurzes Lehrbuch der Tierphysiologie. Jena: Fischer 1970Google Scholar
  29. Portillo, J. del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. Vergl. Physiol. 23, 100–145 (1936)Google Scholar
  30. Prosser, C.L., Brown, F.A.: Comparative Animal Physiology. Philadelphia-London: Saunders 1961 (reprinted 1969). 2nd ed.Google Scholar
  31. Rein, H., Schneider, M.: Physiologie des Menschen. Berlin-Heidelberg-New York: Springer 1956Google Scholar
  32. Rodieck, R.W.: The Vertebrate Retina: Principles of Structure and Function. San Francisco: W.H. Freeman 1973Google Scholar
  33. Scheer, B.T.: Tierphysiologie. Stuttgart: Gustav-Fischer 1969Google Scholar
  34. Shannon, Cl.E., Weaver, W.: The Mathematical Theory of Communication. Urbana: Univ. Illinois 1949Google Scholar
  35. Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. Comp. Physiol. 87, 99–135 (1973)CrossRefGoogle Scholar
  36. Snyder, A.W.: Photoreceptor optics — theoretical principles. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  37. Steinbuch, K.: Automat und Mensch. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  38. Vries, H. de: Physical aspects of sense organs. In: Progress in Biophysics and Biophysical Chem. Butler, J.A.V. (ed.). Oxford: Pergamon 1956, Vol. VIGoogle Scholar
  39. Walls, G.L.: The Vertebrate Eye. New York-London: Hafner 1967Google Scholar
  40. Weber, H., Weidner, H.: Grundriß der Insektenkunde. Stuttgart: Gustav-Fischer 1974Google Scholar
  41. Westheimer, G.: Optical properties of vertebrate eyes. In: Handbook of Sensory Physiology. Fuortes, M.G.F. (ed.). Berlin: Springer 1972a, Vol. VII/2, pp. 449–482Google Scholar
  42. Westheimer, G.: Visual acuity and spatial modulation thresholds. In: Handbook of Sensory Physiology. Jameson, D., Hurvich, L.M. (eds.). Berlin-Heidelberg-New York: Springer 1972b, Vol. VII/4Google Scholar
  43. Zettler, F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand, gemessen am einzelnen Lichtrezeptor von Calliphora Erythrocephala. Z. Vergl. Physiol. 64, 432–449 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • K. Kirschfeld

There are no affiliations available

Personalised recommendations