History of the Mediterranean Ecosystem in California

  • Daniel I. Axelrod
Part of the Ecological Studies book series (ECOLSTUD, volume 7)


Similar physical environments, acting on organisms of dissimilar origins in different parts of the world, have produced structurally and functionally similar ecosystems. The fossil record provides a reliable basis for understanding how this occurred because all modern ecosystems are the result of the interaction between evolving lineages and changing environments during long spans of geologic time. Since many woody plants similar to those still living have left a fossil record, it is possible to reconstruct the ecosystems they represent, and to discern the development of the modern descendant vegetation which has survived in modified form.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, D. P.: Ice ages and the thermal equilibrium of the earth. Interm. Research Rept. 15. Dept. Geochronology, Univ. Ariz. 1969.Google Scholar
  2. Almera, D. J.: Flora pliocénica de los alrededores de Barcelona. Mem. Real. Acad. Ciencias Artes Barcelona 3, 321–335 (1907).Google Scholar
  3. Arambourg, C., Arenes, J., Depape, G.: Contribution à l’étude des floras fossiles Quarternaires de l’Afrique du Nord. Arch. Mus. Nat. Hist. nat. 7, ser. T 2, 1–85 (1953).Google Scholar
  4. Aubreville, A.: Etude comparée de la famille des Legumineuses dans la flore de la forêt équatoriale africaine et dans la flore de la forêt amazonienne. Comp. Rend. Soc. Biogeogr. 36, 43–57 (1959).Google Scholar
  5. Aubreville, A.: Essais sur la distribution et l’histoire des angiospermes tropicales dans le monde. Adansonia, ser. 2, 9, 198–247 (1969).Google Scholar
  6. Axelrod, D. I.: A Pliocene flora from the Mount Eden beds, southern California. Carnegie Inst. Wash. Pub. 476, 125–183 (1937).Google Scholar
  7. Axelrod, D. I.: A Miocene flora from the western border of the Mohave Desert. Carnegie Inst. Wash. Pub. 516, 1–128 (1939).Google Scholar
  8. Axelrod, D. I.: The Pliocene Esmeralda flora of west-central Nevada. Wash. Acad. Sci. Jour. 30, 163–174 (1940a).Google Scholar
  9. Axelrod, D. I.: The Mint Canyon flora of southern California: a preliminary statement. Amer. Jour. Sci. 238, 577–585 (1940 b).CrossRefGoogle Scholar
  10. Axelrod, D. I.: The Black Hawk flora (California). Carnegie Inst. Wash. Pub. 553, 91–102 (1944a).Google Scholar
  11. Axelrod, D. I.: The Mulholland flora (California). Carnegie Inst. Wash. Pub. 553, 103–146 (1944b).Google Scholar
  12. Axelrod, D. I.: The Oakdale flora (California). Carnegie Inst. Wash. Pub. 553, 147–166 (1944c).Google Scholar
  13. Axelrod, D. I.: The Sonoma flora (California). Carnegie Inst. Wash. Pub. 553, 167–206 (1944d).Google Scholar
  14. Axelrod, D. I.: The Pliocene sequence in central California. Carnegie Inst. Wash. Pub. 553, 207–224 (1944e).Google Scholar
  15. Axelrod, D. I.: The Alvord Creek flora (Oregon). Carnegie Inst. Wash. Pub. 553, 225–262 (1944f).Google Scholar
  16. Axelrod, D. I.: The Alturas flora (California). Carnegie Inst. Wash. Pub. 553, 263–284 (1944g).Google Scholar
  17. Axelrod, D. I.: A Sonoma florule from Napa, California. Carnegie Inst. Wash. Pub. 590, 23–71 (1950a).Google Scholar
  18. Axelrod, D. I.: Further studies of the Mount Eden flora, southern California. Carnegie Inst. Wash. Pub. 590, 73–117 (1950b).Google Scholar
  19. Axelrod, D. I.: The Anaverde flora of southern California. Carnegie Inst. Wash. Pub. 590, 119–158 (1950c).Google Scholar
  20. Axelrod, D. I.: The Pint Gorge flora of southern California. Carnegie Inst. Wash. Pub. 590, 159–214 (1950d).Google Scholar
  21. Axelrod, D. I.: Evolution of desert vegetation in western North America. Carnegie Inst. Wash. Pub. 590, 215–306 (1950e).Google Scholar
  22. Axelrod, D. I.: A theory of angiosperm evolution. Evolution 6, 29–60 (1952).CrossRefGoogle Scholar
  23. Axelrod, D. I.: Mio-Pliocene floras from west-central Nevada. Univ. Calif. Publ. Geol. Sci. 33, 1–316 (1956).Google Scholar
  24. Axelrod, D. I.: Late Tertiary floras and the Sierra Nevadan uplift. Geol. Soc. Amer. Bull. 68, 19–46 (1957).CrossRefGoogle Scholar
  25. Axelrod, D. I.: The Pliocene Verdi flora of western Nevada. Univ. Calif. Publ. Geol. Sci. 34, 61–160 (1958a).Google Scholar
  26. Axelrod, D. I.: Evolution of the Madro-Tertiary Geoflora. Bot. Review 24, 433–509 (1958b).CrossRefGoogle Scholar
  27. Axelrod, D. I.: Poleward migration of early angiosperm flora. Science 130, 203–207 (1959).PubMedCrossRefGoogle Scholar
  28. Axelrod. D. I.: The evolution of flowering plants. 227–305. In: Evolution after Darwin, vol. I: Tax, S. Ed.). Chicago: Univ. Chicago Press 1960.Google Scholar
  29. Axelrod, D. I.: A Pliocene Sequoiadendron forest from western Nevada. Univ. Calif. Publ. Geol. Sci. 39, 195–268 (1962).Google Scholar
  30. Axelrod, D. I.: The early Pleistocene Soboba flora of southern California. Univ. Calif. Publ. Geol. Sci. 60, 1–109 (1966).Google Scholar
  31. Axelrod, D. I.: Geologic history of the California insular flora. 267–316. In: Proc. Symposium on the Biology of the California Islands ( R. N. Philbrick, Ed.). Santa Barbara: Santa Barbara Bot. Garden 1967a.Google Scholar
  32. Axelrod, D. I.: Drought, diastrophism, and quantum evolution. Evolution 21, 201–209 (1967b).CrossRefGoogle Scholar
  33. Axelrod. D. I.: Evolution of the Californian closed-cone pine forest. 93–149. In: Proc. Symposium on the Biology of the California Islands ( R. N. Philbrick, Ed.). Santa Barbara: Santa Barbara Bot. Garden 1967c.Google Scholar
  34. Axelrod, D. I.: Mesozoic paleogeography and early angiosperm history. Bot. Review 36, 277–319 (1970).CrossRefGoogle Scholar
  35. Axelrod, D. I., Ting, W. S.: Late Pliocene floras east of the Sierra Nevada. Univ. Calif. Pub. Geol. Sci. 39, 1–118 (1960).Google Scholar
  36. Barthoux, J. C., Fritel, P. H.: Flore crétacée du grès Nubie. Mem. Inst. Egypte Cairo, 7, 65–119 (1925).Google Scholar
  37. Becker, H. F.: Fossil plants of the Tertiary Beaverhead basins in southern Montana. Paleontographica Abt. B, 127, 1–142 (1969).Google Scholar
  38. Beloussov, V. V.: Continental rifts. In: The earth’s crust and upper mantle. Amer. Geophys. Union, Geophys. Monogr. 13, 539–544 (1969).Google Scholar
  39. Berry, E. W.: The upper Cretaceous flora of the world. In: Maryland Geol. Surv., Upper Cretaceous 183–314 (1916).Google Scholar
  40. Berry, E. W.: A petrified walnut from the Miocene of Nevada. Wash. Acad. Sci. Jour. 18, 158–160 (1928).Google Scholar
  41. Boughey, A. S.: The origin of the African flora. Oxford: Oxford Press 1957.Google Scholar
  42. Boughey, A. S.: Comparisons between the montane forest floras of North America, Africa and Asia. (Proc. 5th Meetg., Assoc. pour l’étude taxonomique de la flora d’Afrique tropicale). Webbia 19, 507–517 (1965).Google Scholar
  43. Boulay, N.: La flore pliocène de la Vallée du Rhône. Ann. Sci. Natur. Bot. ser. 10, 73–366 (1922).Google Scholar
  44. Brandegee, T. S.: A collection of plants from Baja California. Proc. Calif. Acad. Sci. II, 2, 117–216 (1889).Google Scholar
  45. Camp, W. J.: Distribution patterns in modern plants and the problems of ancient dispersal. Ecol. Monogr. 17, 159–183 (1947).CrossRefGoogle Scholar
  46. Camp, W. J.: Phytophyletic patterns on lands bordering the south Atlantic basin. Amer. Mus. Nat. Hist. Bull. 99, 205–216 (1952).Google Scholar
  47. Chandler, M. E. J.: Some upper Cretaceous and Eocene fruits from Egypt. Bull. British Mus. (Nat. Hist.), Geology 2, 149–187 (1954).Google Scholar
  48. Chaney, R. W.: The Deschutes flora of eastern Oregon. Carnegie Inst. Wash. Publ. 476, 185–216 (1938).Google Scholar
  49. Chaney, R. W.: A new pine from the Cretaceous of Minnesota and its paleoecological significance. Ecology 35, 145–151 (1954).CrossRefGoogle Scholar
  50. Chaney, R. W., Axelrod, D. I.: Miocene floras from the Columbia Plateau. Carnegie Inst. Wash. Pub. 617, 1–237 (1959).Google Scholar
  51. Chaney, R. W., Mason, H. L.: A Pleistocene flora from the asphalt deposits at Carpinteria, California. Carnegie Inst. Wash. Pub. 415, 45–79 (1933).Google Scholar
  52. Clausen, J.: Stages in the evolution of plants species. New York: Cornell Univ. Press 1951.Google Scholar
  53. Clausen, J., Keck, D. D., Heisey, W. H.: Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Inst. Wash. Pub. 520, 1940.Google Scholar
  54. Clausen, J., Keck, D. D., Heisey, W. H.: Experimental studies on the nature of species. III. Environmental response of climatic races of Achillea. Carnegie Inst. Wash. Pub. 581, 1948.Google Scholar
  55. Clausen, J., Heisey, W. D.: Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Inst. Wash. Pub. 615, 1958.Google Scholar
  56. Condit, C.: The San Pablo flora of west-central California. Carnegie Inst. Wash. Pub. 476, 217–268 (1938).Google Scholar
  57. Condrr, C.: The Remington Hill flora (California). Carnegie Inst. Wash. Pub. 553, 21–55 (1944a).Google Scholar
  58. Condit, C.: The Table Mountain flora (California). Carnegie Inst. Wash. Pub. 553, 57–90 (1944b).Google Scholar
  59. Cooper, W. S.: The broad-sclerophyll vegetation of California: an ecological study of the chaparral and its related communities. Carnegie Inst. Wash. Pub. 319, 1922.Google Scholar
  60. Depape, G.: Les floras fossiles du Crétacé supérieur en France. 84th Congr. des Sociétées savantes, 61–94 (1959).Google Scholar
  61. Depape, G.: Colloque sur le Crétacé inférieur. Mem. Bureau recherches géologiques et minières, 34, 349–371 (1963).Google Scholar
  62. Dietz, R. S., Holden, J. C.: Reconstruction of Pangea: Breakup and dispersion of continents, Permian to Present. Jour. Geophys. Res. 75, 4939–4956 (1970).CrossRefGoogle Scholar
  63. Dorf, E.: A late Tertiary flora from southwestern Idaho. Carnegie Inst. Wash. Pub. 476, 73–124 (1936).Google Scholar
  64. Durham, J. W.: The marine Cenozoic of southern California. In: Geology of southern California, Calif. Div. Mines Bull. 180, Chap. III, 23–31 (1954).Google Scholar
  65. Ehlig, P. L., Ehlert, K. W.: Offset of Miocene Mint Canyon Formation from volcanic source along San Andreas fault, southern California. Geol. Soc. Amer., Abstracts with Programs 4, 154 (1972).Google Scholar
  66. Engler, A.: Über floristische Verwandtschaft zwischen dem tropischen Afrika und Amerika, sowie über die Annahme eines versunkenen brasilianisch-äthiopischen Kontinents. Sitzungsber. K. Preuss, Akad. Wissen. 6, 180–231 (1905).Google Scholar
  67. Engler, A.: Über Herkunft, Alter und Verbreitung extremer xerothermer Pflanzen. Sitzungsber. K. Preuss. Akad. Wissen. 20, 564–621 (1914).Google Scholar
  68. Ettingshausen, C. Von: Die Eocene floras des Monte Promina. Denkschr. Kais. Akad. Wiss. Wein, Math.-Naturwiss. Classe 8, 19–41 (1854).Google Scholar
  69. Furon, R.: Géologie de l’Afrique. 3rd ed. Paris: Payot 1968.Google Scholar
  70. Grant, A., Grant, V.: Genetic and taxonomic studies in Gilia. VIII. The Cobwebby Gilias. El Aliso, 3, 203–287 (1956).Google Scholar
  71. Grant, V., Grant, A.: Genetic and taxonomic studies in Gilia. VII. The woodland Gilias. El Aliso, 3, 59–91 (1954).Google Scholar
  72. Hall, C. A.: Displaced Miocene molluscan provinces along the San Andreas fault, California. Univ. Calif. Publ. Geol. Sci. 34, 291–308 (1960).Google Scholar
  73. Hollicx, A.: The flora of the Amboy clays. U. S. Geol. Surv. Monogr. 26, 1895.Google Scholar
  74. Hutchinson, J.: A botanist in South Africa. London: P. R. Gawthorn Ltd. 1946.Google Scholar
  75. Hutchinson, J.: The families of flowering plants. 2 vols. 2nd edit. Oxford: Oxford University Press 1959.Google Scholar
  76. Laurent, L.: Flore des calcaires de Celas. Ann. Musée Hist. natur. Marseille, ser. II, 1, 1–154 (1899).Google Scholar
  77. Mcminn, H. E.: Ceanothus. Santa Barbara: Santa Barbara Botanic Garden 1942.Google Scholar
  78. Miller, A. H.: Ecologic factors that accelerate formation of races and species of terrestrial vertebrates. Evolution 10, 262–277 (1956).CrossRefGoogle Scholar
  79. Miranda, F.: Posible significación del porcentaje de géneros bicontinentales en América tropical. Ann. Inst. Biol. Mex., 30, 117–150 (1959).Google Scholar
  80. Monod, T.: The late Tertiary and Pleistocene in the Sahara. 115–229. In: African ecology and human evolution. (F. C. Howell and F. Bourliere, Eds.). Viking Fund Publ. in Anthropology 36. New York: Wrenner Gren Foundation 1963.Google Scholar
  81. Nelson, E. W.: Lower California and its natural resources. Mem. Nat. Acad. Sci. 16, 1920.Google Scholar
  82. Nobs, M. A.: Experimental studies on species relationships in Ceanothus. Carnegie Inst. Wash. Pub. 623, 1963.Google Scholar
  83. Page, V. M.: Lyonothamnoxylon from the lower Pliocene of western Nevada. Madrono 17, 258–266 (1964).Google Scholar
  84. Pellegrin, F.: Les affinités de la flore des sommets volcaniques du Tibesti (Afrique centrale). Comp. Rend. Acad. Sci. 182, 337–338 (1926).Google Scholar
  85. Quezel, P.: La végétation du Sahara. Stuttgart: Gustav Fischer Verlag 1965.Google Scholar
  86. Quezel, P., Martinez, C.: Etude palynologique de deux diatomites du Borkou (Territoire du Tchad, A.E.F.). Bull. Soc. Hist. Nat. Afr. Nord. 49, 230–244 (1958).Google Scholar
  87. Saporta, G. De, Marion, A. F.: Recherches sur les végétaux fossiles de Meximeux. Mus. Nat. Hist. Natur. Lyon, 1, 131–335 (1876).Google Scholar
  88. Seward, A. C.: Leaves of dicotyledons from the Nubian sandstone of Egypt. Geol. Surv. Egypt. 1935.Google Scholar
  89. Smith, H. V.: Notes on fossil plants from Hog Creek in southwestern Idaho. Papers Mich. Acad. Sci., Arts & Letters, 23, 223–231 (1938).Google Scholar
  90. Smith, H. V.: A Miocene flora from Thorn Creek, Idaho. Amer. Midl. Naturl. 25, 473–522 (1941).CrossRefGoogle Scholar
  91. Stebbins, G. L.: Aridity as a stimulus to evolution. Amer. Natur. 86, 33–44 (1952).CrossRefGoogle Scholar
  92. Stebbins, G. L., Maior, J.: Endemism and speciation in the California flora. Ecol. Monogr. 35, 1–35 (1965).CrossRefGoogle Scholar
  93. Tarling, D. H.: Gondwanaland, paleomagnetism and continental drift. Nature 229, 17–21 (1971).PubMedCrossRefGoogle Scholar
  94. Teixeira, C.: Notes sur quelques gisements de végétaux fossiles du Crétacé des environs de Leiria. Revista Faculdade Ciencias Lisboa, 2 a ser. C, 2, 133–154 (1952).Google Scholar
  95. Unger, F.: Die fossile flora von Radoboj. Denkschr. Akad. Wiss. Wein. 39, 125–170 (1869).Google Scholar
  96. Van Campo, M., Aymonin, G., Guinet, P., Rognon, P.: Contribution à l’étude du peuplement végétal Quaternaire des montagnes Sahariennes: l’Atakor. Pollen et Spores, 6, 169–194 (1964).Google Scholar
  97. van Campo, M., Guinet, P., Cohen, J.: Fossil pollen from late Tertiary and middle Pleistocene deposits of the Kurkur Oasis. 515–520. In: Butzer, K. W., and Hansen, C. H., Desert and River in Nubia: Geomorphology and prehistoric environments at the Aswan Reservoir. Appendix I. Madison: Univ. Wisconsin Press 1968.Google Scholar
  98. Webber, I. E.: Woods from the Ricardo Pliocene of Last Chance Gulch, California. Carnegie Inst. Wash. Pub. 412, 113–134 (1933).Google Scholar
  99. Wolfe, J. A.: Miocene floras from Fingerrock Wash, southwestern Nevada. U. S. Geol. Survey. Prof. Paper 454 N. 1–36 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Daniel I. Axelrod

There are no affiliations available

Personalised recommendations