Advertisement

The Parietal Eye (Pineal and Parietal Organs) of Lower Vertebrates

  • Eberhard Dodt
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 3 / 3 B)

Abstract

In the course of evolution the median eyes, in addition to paired lateral eyes, have independently developed in several classes of animals including crustaceans, insects and vertebrates. Within the order of vertebrates some lower classes including fishes, amphibians and reptiles possess photosensitive structures within the epiphyseal complex deriving ontogenetically from the diencephalon. While the gross anatomy of the median eyes has been well examined for over 100 years, the fine structure and knowledge of the physiological properties of median photoreceptors has remained remarkably incomplete. Until recently their functional role was based mainly on indirect evidence and speculation, except for the classes of crustaceans and insects in which both the functional operation and the sensory significance of the median eyes (ocelli) are well known.

Keywords

Dark Adaptation Pineal Organ Test Flash Frontal Organ Rana Esculenta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns kappers, J.: The sensory innervation of the pineal organ in the lizard, Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch. 81, 581–618 (1967).CrossRefGoogle Scholar
  2. Autrum, H., Metschl, N.: Beziehungen zwischen Lichtreiz und Erregung im Ocellusnerven von Calliphora erythrocephala. Z. Naturforsch. 16 b, 384–388 (1961).Google Scholar
  3. Axelrod, J., Wurtman, R.J., Winget, Ch. M.: Melatonin synthesis in the hen pineal gland and its control by light. Nature (Lond.) 201, 1134 (1964).CrossRefGoogle Scholar
  4. Bagnara, J.T.: The pineal and the body lightening reaction of larval amphibians. Gen. comp. Endocr. 3, 86–100 (1963).CrossRefGoogle Scholar
  5. Bagnara, J.T.: Independent actions of pineal and hypophysis in the regulation of chromatophores of anuran larvae. Gen. comp. Endocr. 4, 299–303 (1964).CrossRefGoogle Scholar
  6. Bargmann, W.: Die Epiphysis cerebri. In: W. v. Möllendorf’s Handbuch der mikroskopischen Anatomie des Menschen, Bd. VI/4. Berlin: Springer 1943.Google Scholar
  7. Baumann, Ch.: Lichtabhängige langsame Potentiale aus dem Stirnorgan des Frosches. Pflügers Arch. ges. Physiol. 276, 56–65 (1962).CrossRefGoogle Scholar
  8. Baumann, Ch.: Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch. ges. Physiol. 280, 81–88 (1964).CrossRefGoogle Scholar
  9. Bogenschütz, H.: Extraokulare Steuerung des Farbwechsels bei Kaulquappen. Experientia (Basel) 21, 451 (1965).CrossRefGoogle Scholar
  10. Braem, F.: Epiphysis und Hypophysis von Rana. Z. wiss. Zool. 63, 433–439 (1898).Google Scholar
  11. Breuer, C.M., Rasquin, P.: Comparative studies in the light sensitivity of blind characins from a series of Mexican caves. Bull. Amer. Mus. Nat. Hist. 89, 325–351 (1947).Google Scholar
  12. Breuer, C.M., Rasquin, P.: A preliminary report on the role of the pineal organ in the control of pigment cells and light reactions in recent teleost fishes. Science 111, 10–12 (1950).CrossRefGoogle Scholar
  13. Brindley, G.S.: Physiology of the Retina and the Visual Pathway. London: Edward Arnold 1960.Google Scholar
  14. Charlton, H.M.: The pineal gland and color change in Xenopus laevis Daudin. Gen. comp. Endocr. 7, 384–397 (1966).CrossRefGoogle Scholar
  15. Chernetski, K.E.: Personal communication (1967).Google Scholar
  16. Clausen, H. J., Poris, E.G.: The effect of light upon sexual activity in the lizard, Anolis carolinensis, with especial reference to the pineal body. Anat. Rec. 69, 39–50 (1937).CrossRefGoogle Scholar
  17. Dodt, E.: Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experientia (Basel) 19, 642–643 (1963).CrossRefGoogle Scholar
  18. Dodt, E.: Aktivierung markhaltiger und markloser Fasern im Pinealnerven bei Belichtung des Stirnorgans. Progr. Brain Res. 5, 201–205 (1964).CrossRefGoogle Scholar
  19. Dodt, E.: Vergleichende Physiologie der lichtempfindlichen Wirbeltier-Epiphyse. Nova Acta Leopoldina N. F. 31, 219–235 (1966).Google Scholar
  20. Dodt, E., Heerd, E.: Mode of action of pineal nerve fibers in frogs. J. Neurophysiol. 25, 405–429 (1962).PubMedGoogle Scholar
  21. Dodt, E., Jacobson, M.: Photosensitivity of a localized region of the frog diencephalon. J. Neurophysiol. 26, 752–758 (1963).PubMedGoogle Scholar
  22. Dodt, E., Morita, Y.: Conduction of nerve impulses within the pineal system of frog. Pflügers Arch. ges. Physiol. 293, 184–192 (1967).CrossRefGoogle Scholar
  23. Dodt, E., Morita, Y.: Purkinje-Verschiebung, absolute Schwelle und adaptives Verhalten einzelner Elemente der intrakranialen Anuren-Epiphyse. Vision Res. 4, 413–421 (1964).PubMedCrossRefGoogle Scholar
  24. Dodt, E., Scherer, E.: The electroretinogram of the third eye. Advances in electrophysiology and -pathology of the visual system. VIth ISCERG Symposium, pp. 231–237. Leipzig: VEB G. Thieme 1968a.Google Scholar
  25. Dodt, E. , Scherer, E.: Photic responses from the parietal eye of the lizard Lacerta sicula campestris (de Betta). Vision Res. 8, 61–72 (1968b).CrossRefGoogle Scholar
  26. Eakin, R.M.: Photoreceptors in the amphibian frontal organ. Proc. nat. Acad. Sci. (Wash.) 47, 1084–1088 (1961a).CrossRefGoogle Scholar
  27. Eakin, R.M.: Cytochemical and cytological studies of the parietal eye of the lizard, Sceloporus occidentalis. Z. Zellforsch. 53, 449–470 (1961b).Google Scholar
  28. Eakin, R.M.: Development of the third eye in the lizard Sceloporus occidentalis. Rev. Suisse Zool. 71, 267–285 (1964).Google Scholar
  29. Eakin, R.M., Westfall, J. A.: Further observations of the fine structure of the parietal eye of lizards. J. biophys. biochem. Cytol. 8, 483–499 (1960).PubMedCrossRefGoogle Scholar
  30. Frisch, K. Von: Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch, ges. Physiol. 138, 319–387 (1911).CrossRefGoogle Scholar
  31. Fuchs, R.F.: Der Farbenwechsel und die chromatische Hautfunktion der Tiere. In: Winterstein, H.: Handbuch vergl. Physiol., Bd. III, 1/II, S. 1189–1652. Jena: G. Fischer 1914.Google Scholar
  32. Gaupp, E.: Zirbel, Parietalorgan und Paraphysis. Ergebn. Anat. Entwickl.-Gesch. 7, 208–285 (1897).Google Scholar
  33. Glaser, R.: Increase in locomotor activity following shielding of the parietal eye in night lizards. Science 128, 1577–1578 (1958).PubMedCrossRefGoogle Scholar
  34. Granit, R., Riddell, H. A.: The electrical responses of light- and dark-adapted frog’s eyes to rhythmic and continuous stimuli. J. Physiol. (Lond.) 81, 1–28 (1934).Google Scholar
  35. Hamasaki, D.I.: Properties of the parietal eye of green iguanas. Vision Res. 8, 591–599 (1968).PubMedCrossRefGoogle Scholar
  36. Hamasaki, D.I.: Spectral sensitivity of the parietal eye of green iguanas. Vision Res. 9, 515–523 (1969).PubMedCrossRefGoogle Scholar
  37. Hamasaki, D.I., Dodt, E.: Light sensitivity of the lizard’s Epiphysis cerebri. Pflügers Arch. ges. Physiol. 313, 19–29 (1969).CrossRefGoogle Scholar
  38. Hamasaki, D.I., Streck, P.: Properties of the epiphysis cerebri of the small-spotted dogfish shark, Scyliorhinus caniculus L. Vision Res. 11, 189–198 (1971).PubMedCrossRefGoogle Scholar
  39. Holmgren, N.: Zur Kenntnis der Parietalorgane von Rana temporaria. Ark. Zool. 11, No. 24 (1917).Google Scholar
  40. Hrachovina, V.: Schwellenleuchtdichte elektronisch gemittelter Elektroretinogramme dunkeladaptierter Augen. Albrecht v. Graefes Arch. klin. exp. Ophthal. 173, 192–198 (1967).CrossRefGoogle Scholar
  41. Hubbard, R.: Retinene isomerase. J. gen. Physiol. 39, 935–962 (1956).PubMedCrossRefGoogle Scholar
  42. Jones, F. R. H.: The behaviour of minnows in relation to light intensity. J. exp. Biol. 33, 271–281 (1956).Google Scholar
  43. Kähling, J.: Untersuchungen über den Lichtsinn und dessen Lokalisation bei dem Höhlenfisch Anoptichthys jordani Hubbs und Innes (Characidae). Biol. Zbl. 80, 439–451 (1961).Google Scholar
  44. Kleine, A.: Über die Parietalorgane bei einheimischen und ausländischen Anuren. Z. Naturw. (Jena) 64, 339–376 (1929).Google Scholar
  45. Kosswig, C.: Zur Phylogenese sogenannter Anpassungsmcrkmale bei Höhlentieren. Int. Rev. ges. Hydrobiol. 45, 493–512 (1960).Google Scholar
  46. Langlois, J.P.: La régulation thermique chez les poikilothermes. J. Physiol. Path. gén. 4, 249–256 (1902).Google Scholar
  47. Laurens, H.: The reactions of the melanophores of ambystoma larvae — the supposed influence of the pineal organ. J. exp. Zool. 20, 237–261 (1916).CrossRefGoogle Scholar
  48. Lek, B. van der, de Heer, J., Burgers, A.C. J., van Oordt, G.J.: The direct reaction of the tailfin melanophores of xenopus tadpoles to light. Acta physiol. pharmacol. neerl. 7, 409–419 (1958).Google Scholar
  49. Lek, B. Van Der: Photosensitive Melanophores. Thesis, Utrecht 1967.Google Scholar
  50. Lerner, A.B., Case, J. D., Takahashi, Y., Lee, T.H., Mori, W.: Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Amer. ehem. Soc. 80, 2587 (1958).CrossRefGoogle Scholar
  51. Lindauer, M., Schricker, B.: Über die Funktion der Ocellen bei den Dämmerungsflügen der Honigbiene. Biol. Zbl. 82, 721–725 (1963).Google Scholar
  52. Mautner, W.: Studien an der Epiphysis cerebri und am Subcommissuralorgan der Frösche. Z. Zellforsch. 67, 234–270 (1965).PubMedCrossRefGoogle Scholar
  53. Mc Cord, C.P., Allen, F.P.: Evidences associating pineal gland function with alterations in pigmentation. J. exp. Zool. 23, 207–224 (1917).CrossRefGoogle Scholar
  54. Miller, W.H., Wolbarsht, M.L.: Neural activity in the parietal eye of a lizard. Science 135, 316–317 (1962).PubMedCrossRefGoogle Scholar
  55. Morita, Y.: Extra- und intracelluläre Ableitungen einzelner Elemente des lichtempfindlichen Zwischenhirns anurer Amphibien. Pflügers Arch. ges. Physiol. 286, 97–108 (1965).CrossRefGoogle Scholar
  56. Morita, Y.: Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch. ges. Physiol. 289, 155–167 (1966).CrossRefGoogle Scholar
  57. Morita, Y.: Wellenlängen-Diskriminatoren im intrakranialen Pinealorgan von Rana catesbyana. Experientia (Basel) 25, 1277 (1969).CrossRefGoogle Scholar
  58. Morita, Y., Dodt, E.: Nervous activity of the frog’s Epiphysis cerebri in relation to illumination. Experientia (Basel) 21, 221–222 (1965).CrossRefGoogle Scholar
  59. Motte, I. de la: Untersuchungen zur vergleichenden Physiologie der Lichtempfindlichkeit geblendeter Fische. Z. vergl. Physiol. 49, 58–90 (1964).CrossRefGoogle Scholar
  60. Nowikoff, M.: Untersuchungen über den Bau, die Entwicklung und die Bedeutung des Parietalauges von Sauriern. Z. wiss. Zool. 96, 119–207 (1910).Google Scholar
  61. Oksche, A.: Survey of the development and comparative morphology of the pineal organ. Progr. Brain Res. 10, 3–29 (1965).CrossRefGoogle Scholar
  62. Oksche, A., Harnack, M. von: Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren. (Zur Frage der Lichtrezeptoren.) Z. Zellforsch. 59, 239–288 (1963).PubMedCrossRefGoogle Scholar
  63. Oksche, A., Vaupel-von Harnack, M.: Elektronenmikroskopische Untersuchungen an der Epiphysis cerebri von Rana esculenta. Z. Zellforsch. 59, 582–614 (1963).PubMedCrossRefGoogle Scholar
  64. Oksche, A., Vaupel-von Harnack, M.: Elektronenmikroskopische Untersuchungen an den Nervenbahnen des Pinealkomplexes von Rana esculenta L. Z. Zellforsch. 68, 389–426 (1965).PubMedCrossRefGoogle Scholar
  65. Oksche, A., Vaupel-von Harnack, M.: Elektronenmikroskopische Untersuchungen zur Frage der Sinneszellen im Pinealorgan der Vögel. Z. Zellforsch. 69, 41–60 (1966).PubMedCrossRefGoogle Scholar
  66. Oksche, A., Kirschstein, H.: Die Ultrastruktur der Sinneszellen im Pinealorgan von Phoxinus laevis L. Z. Zellforsch. 78, 151–166 (1967).PubMedCrossRefGoogle Scholar
  67. Oksche, A., Kirschstein, H.: Unterschiedlicher elektronenmikroskopischer Feinbau der Sinneszellen im Parietalauge und im Pinealorgan (Epiphysis cerebri) der Lacertilia. Z. Zellfoschr. 87, 159–192 (1968).CrossRefGoogle Scholar
  68. Palenschat, D.: Beitrag zur lokomotorischen Aktivität der Blindschleiche (Anguis fragilis L.) unter besonderer Berücksichtigung des Parietalorgans. Thesis, Göttingen (1964).Google Scholar
  69. Parker, G. H.: The influence of light and heat on the movement of the melanophore pigment, especially in lizards. J. exp. Zool. 3, 401–414 (1906).CrossRefGoogle Scholar
  70. Peregrin, J.: Personal communication (1969).Google Scholar
  71. Pflugfelder, O.: Physiologie der Epiphyse. Zool. Anz. Suppl. 20, 53–75 (1957).Google Scholar
  72. Reiter, R.J.: The pineal gland: A report of some recent physiological studies. Edgewood Arsenal Technical Report 4110, Maryland 1967.Google Scholar
  73. Rüdeberg, C.: Structure of the pineal organ of the Sardine, Sardina pilchardus sardine (RISSO), and some further remarks on the pineal organ of Mugil spp. Z. Zellforsch. 84, 219–237 (1968).PubMedCrossRefGoogle Scholar
  74. Rüdeberg, C.: Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z. Zellforsch. 96, 548–581 (1969).PubMedCrossRefGoogle Scholar
  75. Schäfer, O.: Spektrale Empfindlichkeit und absolute Schwelle des Farbwechsels geblendeter Elritzen (Phoxinus phoxinus L.). Biol. Zbl. 83, 47–66 (1964).Google Scholar
  76. Stebbins, R.C., Eakin, R.M.: The role of the “third eye” in reptilian behaviour. Amer. Museum Novitates Nr. 1870, 1–40 (1958).Google Scholar
  77. Stebbins, R.C., Wilhoft, D.C.: Influence of the parietal eye on activity in lizards. In: Bowman, R.I. (Ed.): The Galapagos. Proc. of the Symp. of the Galapagos Internat. Scientific project, pp. 258–268. Berkeley: University of California Press 1966.Google Scholar
  78. Steyn, W.: Observations on the ultrastructure of the pineal eye. J. roy. micr. Soc. 79, 47–58 (1960a).Google Scholar
  79. Steyn, W.: Electron microscopic observations on the epiphysial sensory cells in lizards and the pineal sensory cell problem. Z. Zellforsch. 51, 735–747 (1960b).CrossRefGoogle Scholar
  80. Steyn, W.: Some epithalamic organs, the subcommissural organ, and their possible relation to vertebrate emergence on dry land. S. Afr. J. Sci. 57, 283–286 (1961).Google Scholar
  81. Studnička, F.K.: Die Parietalorgane. In: Oppel, A.: Lehrbuch der vergl. mikrosk. Anat. d. Wirbeltiere, Part 5. Jena: G. Fischer 1905.Google Scholar
  82. Svaetichin, G.: Spectral response curves from single cones. Acta physiol. scand. 39, Suppl. 134, 17–46 (1956).Google Scholar
  83. Thines, G.: Beobachtungen über die Phototaxis und die Thermotaxis des blinden Höhlenfisches Caecobarbus geertsi Blgr (Cyprinidae). Experientia (Basel) 14, 381–382 (1958).CrossRefGoogle Scholar
  84. Tilkey, F., Warren, L. F.: The morphology and evolutional significance of the pineal body. Amer. Anat. Mem. No. 9. The Wistar Inst. Philadelphia 1919.Google Scholar
  85. Tomita, T.: Electrical activity in the vertebrate retina. J. opt. Soc. Amer. 53, 49–57 (1963).CrossRefGoogle Scholar
  86. Ueck, M.: Ultrastruktur des pinealen Sinnesapparates bei einigen Pipidae und Discoglossidae. Z. Zellforsch. 92, 452–476 (1968).PubMedCrossRefGoogle Scholar
  87. Wald, G., Kraindst, J. M.: The median eye of Limulus: An ultraviolet receptor. Proc. nat. Acad. Sci. (Wash.) 50, 1011–1017 (1963).CrossRefGoogle Scholar
  88. Wurtman, R. J., Axelrod, J.: The formation, metabolism and physiologic effects of melatonin in mammals. Progr. Brain Res. 10, 520–529 (1965).CrossRefGoogle Scholar
  89. Wurtman, R. J., Axelrod, J., Kelly, D.E.: The Pineal. New York: Academic Press 1968.Google Scholar
  90. Young, J.Z.: The photoreceptors of lampreys. II. The functions of the pineal complex. J. exp. Biol. 12, 254–270 (1935).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Eberhard Dodt
    • 1
  1. 1.Bad NauheimGermany

Personalised recommendations