Advertisement

Physiological and Biochemical Findings in the Central Nervous System of Adrenalectomized Rats and Mice

  • Alexander Baethmann
  • Anthonie Van Harreveld

Summary

Adrenalectomy produces in rats and mice a water and Na+ accumulation in the CNS which is similar to changes found in metabolic forms of brain edema. In adrenalectomized animals the cerebral water content is in close correlation with the tissue/plasma Na+- and K+-concentration gradient and, furthermore, appears to be a function of the external sodium supply. Impedance measurements and results obtained from electron-microscopy suggest that the fluid is not intracellularly localized but probably distributes within the extracellular space. Tissue concentration levels of energy-rich phosphate compounds or of lactate and pyruvate revealed no changes after adrenalectomy. Changes of metabolic activity as demonstrated by a decreased activity of NADP-dependent ICDH, GLDH and GOT may, however, participate in the mechanisms which produce the cerebral Na+ and water influx.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baethmann, A., Reulen, H.-J., Brendel, W.: Die Wirkung des Antimetaboliten 6-Aminonikotinamid (6-ANA) auf Wasser-und Elektrolytgehalt des Rattenhirns und ihre Hemmung durch Nikotinsäure. Z. ges. exp. Med. 146, 226–240 (1968).CrossRefGoogle Scholar
  2. 2.
    Baethmann, A., Koczorek, Kh. R., Reulen, H. J., Wesemann, W., Hofmann, H. F., Angstwurm, A., Brendel, W.: Die Beeinflussung des traumatischen Hirnödems durch Aldosteron, Aldosteronantagonisten und Dexamethason im Tierexperiment. In: Bücherl, E. S., et al. (Ed.): Postoperative Storungen des Elektrolyt-und Wasserhaushaltes, pp. 163–175. Stuttgart-New York: F. K. Schattauer 1968.Google Scholar
  3. 3.
    Baethmann, A., Wesemann, W., Brendel, W.: Enzymaktivitäten in der Großhirnrinde von adrenalektomierten Ratten und ihre Beeinflussung durch Aldosteron und Dexamethason. Pflugers Arch. ges. Physiol. 300, R 37 (1968).Google Scholar
  4. 4.
    Baethmann, A., Steude, U., Horsch, S., Brendel, W.: The Thiosulphate (35S) Space in the CNS of Rats After Ventriculo-Cisternal Perfusion. Pflugers Arch. Europ. J. Physiol. 316, 51–63 (1970).CrossRefGoogle Scholar
  5. 5.
    Brilmayer, H., Marguth, F.: Störungen im Zwischenhirn-Hypophysensystem bei Hirntumoren. Dtsch. Z. Nervenheilk. 176, 441–448 (1957).Google Scholar
  6. 6.
    Davenport, V. D.: Relation between Brain and Plasma Electrolytes and Electroshock Seizure Thresholds in Adrenalectomized Rats. Amer. J. Physiol. 156, 322–327 (1945).Google Scholar
  7. 7.
    Ebel, H., Wolff, J. R., Dorn, F., Günther, Th.: Wirkung von Hormonen auf Elektrolytgehalt, ATPase und endoplasmatisches Retikulum im Rattenhirn. Z. klin. Chem. 9, 249–256 (1971).Google Scholar
  8. 8.
    Fimognari, G. M., Porter, G. A., Edelmann, I. S.: The Role of the Tricarboxylic Acid Cycle in the Action of Aldosterone on Sodium Transport. Biochim. biophys. Acta (Amst.) 135, 89–99 (1967).CrossRefGoogle Scholar
  9. 9.
    Kinne, R., Kirsten, R.: Der Einfluß von Aldosteron auf die Aktivitat mitochondrialer und cytoplasmatischer Enzyme in der Rattenniere. Pflugers Arch. ges. Physiol. 300, 244–254 (1968).CrossRefGoogle Scholar
  10. 10.
    Litteria, M., Schapiro, S.: Brain Water: Regional Changes During the Estrous Cycle in the Rat. Proc. Soc. exp. Biol. 136, 73–74 (1971).PubMedGoogle Scholar
  11. 11.
    Losert, W., Sitt, R., Senft, G., v. Bergmann, K., Schultz, G.: Untersuchungen zum Wirkungsmechanismus des Aldosterons. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 257, 309–311 (1967).Google Scholar
  12. 12.
    Pollay, M., Kaplan, R. J.: Effect of Cerebrospinal Fluid Sink on Sucrose-Diffusion Gradients in Brain. Exp. Neurol. 30, 54–65 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    Rail, D. P.: Transport Through Ependymal Linings. Progr. Brain Res. 29, 159–167 (1968).CrossRefGoogle Scholar
  14. 14.
    Reulen, H.-J., Hofmann, H. F., Baethmann, A.: Die Beeinflussung des experimentellen traumatischen Hirnodems bei der Ratte mit einer Nikotinsauretheophyllin-Verbindung. Z. ges. exp. Med. 138, 246–256 (1964).PubMedCrossRefGoogle Scholar
  15. 15.
    Reulen, H.-J. Baethmann, A.: Das Dinitrophenol-Odem. Ein Modell zur Pathophysiologic des Hirnodems. Klin. Wsch. 45, 149–154 (1967).CrossRefGoogle Scholar
  16. 16.
    Stern, T. N., Cole, V. V., Bass, A. C, Overmann, R. R.: Dynamic Aspects of Sodium Metabolism in Experimental Adrenal Insufficiency Using Radioactive Sodium. Amer. J. Physiol. 164, 437–449 (1951).PubMedGoogle Scholar
  17. 17.
    Timiras, P. S., Woodbury, D. M., Goodman, L. S.: Effect of Adrenalectomy, Hydrocortisone Acetate and Desoxycorticosterone Acetate on Brain Excitability and Electrolyte Distribution in Mice. J. Pharmacol, exp. Therap. 112, 80–93 (1954).Google Scholar
  18. 18.
    Van Harreveld, A., Murphy, T., Nobel, K. W.: Specific Impedance of Rabbit’s Cortical Tissue. Amer. J. Physiol. 205, 203–207 (1963).Google Scholar
  19. 19.
    Van Harreveld, A., Crowell, J., Malhotra, S. K.: A Study of Extracellular Space in Central Nervous Tissue by Freeze-Substitution. J. Cell Biol. 25, 117–137 (1965).CrossRefGoogle Scholar
  20. 20.
    Van Harreveld, A., “Brain Tissue Electrolytes”. Molecular Biology and Medicine Series. Washington (D.C.): Butterworth 1966.Google Scholar
  21. 21.
    Wesemann, W., Pia, H. W.: Aldadiene-Kalium in der Neurochirurgie. In: Bucherl, E. S., et al. (Ed.): Postoperative Storungen des Elektrolyt-und Wasserhaushaltes, pp. 259 to 270. Stuttgart-New York: F. K. Schattauer 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Alexander Baethmann
    • 1
    • 2
  • Anthonie Van Harreveld
    • 1
    • 2
  1. 1.Institute for Surgical Research, Dept. SurgeryUniversity MunichGermany
  2. 2.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations