Functional Organization of Spinocerebellar Paths

  • Olov Oscarsson
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 2)

Abstract

Recent anatomical and physiological investigations have supplied a basic knowledge of the organization of the cerebellar cortex and its efferent paths (Eccles, Ito and Szentágothai, 1967). Understanding of cerebellar function requires also knowledge of the afferent paths and the information carried by them. This chapter surveys the present knowledge about the spinocerebellar paths activated by somatic afferents. These paths are better known than those activated by visceral afferents (Dow and Moruzzi, 1958; Newman and Paul, 1969) and the afferent paths from higher brain centres (Jansen and Brodal, 1958; Evarts and Thach, 1969).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akker, van den, L.M.: An anatomical outline of the spinal cord of the pigeon. (Thesis.) Assen: van Gorcum & Comp. 1970.Google Scholar
  2. Andersson, S. A.: Suppression of cortical spontaneous barbiturate spindles via specific and unspecific projection spinal pathways. Acta physiol. scand. 69, 191–202 (1967).PubMedCrossRefGoogle Scholar
  3. Andersson, S.A., Norrsell, U., Wolpow, E.R.: Cortical synchronization and desynchroni-zation via spinal pathways. Acta physiol. scand. 61, 144–158 (1964).PubMedCrossRefGoogle Scholar
  4. Armstrong, D.M., Ecoles, J.C., Harvey, R. J., Matthews, P.B.C.: Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J. Physiol. (Lond.) 194, 125–145 (1968).Google Scholar
  5. Armstrong, D.M., Harvey, R.J.: Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J. Physiol. (Lond.) 187, 553–574 (1966).Google Scholar
  6. Armstrong, D.M., Harvey, R. J., Schild, R.F.: Distribution in the anterior lobe of the cerebellum of branches from climbing fibres to the paramedian lobule. Brain Res. 25, 203–206 (1971).PubMedCrossRefGoogle Scholar
  7. Asanuma, H., Stoney, S.D., Jr., Thompson, W.D.: Characteristics of cervical interneurones which mediate cortical motor outflow to distal forelimb muscles of cats. Brain Res. 27, 79–95 (1971).PubMedCrossRefGoogle Scholar
  8. Avanzino, G.L., Hösli, L., Wolstencroft, J.H.: Identification of cerebellar projecting neurones in nucleus reticularis gigantocellularis. Brain Res. 3, 201–203 (1966).PubMedCrossRefGoogle Scholar
  9. Baldissera, F., Bruggencate, G. ten: Rubrospinal effects on spinal border cells. Acta physiol. scand. Suppl. 330, 119 (1969).Google Scholar
  10. Baldissera, F., Weight, F.: Descending monosynaptic connexions to spinal border cells. Acta physiol. scand. 76, 28A-29A (1969).PubMedCrossRefGoogle Scholar
  11. Batini, C., Pumain, R.: Données électrophysiologiques sur l’origine des fibres grimpantes. Arch. ital. Biol. 109, 189–209 (1971).PubMedGoogle Scholar
  12. Bell, C.C., Grimm, R. J.: Discharge properties of Purkinje cells recorded on single and double microelectrodes. J. Neurophysiol. 32, 1044–1055 (1969).PubMedGoogle Scholar
  13. Bloedel, J.R., Burton, E.J.: Electrophysiological evidence for a mossy fiber input to the cerebellar cortex activated indirectly by collaterals of spinocerebellar pathways. J. Neurophysiol. 33, 308–321 (1970).PubMedGoogle Scholar
  14. Bloedel, J.R., Roberts, W.J.: Action of climbing fibers in cerebellar cortex of the cat. J. Neurophysiol. 34, 17–31 (1971).PubMedGoogle Scholar
  15. Bloom, F.E., Hoffer, B. J., Siggins, G.R.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res. 25, 501–521 (1971).PubMedCrossRefGoogle Scholar
  16. Brodal, A.: Experimentelle Untersuchungen über die olivo-cerebellare Lokalisation. Z. ges. Neurol. Psychiat. 169, 1–153 (1940).CrossRefGoogle Scholar
  17. Brodal, A.: Die Verbindungen des Nucleus cuneatus externus mit dem Kleinhirn beim Kaninchen und bei der Katze. Experimentelle Untersuchungen. Z. ges. Neurol. Psychiat. 171, 167–199 (1941).CrossRefGoogle Scholar
  18. Brodal, A.: Spinal afferents to the lateral reticular nucleus of the medulla oblongata in the cat. J. comp. Neurol. 91, 259–295 (1949).PubMedCrossRefGoogle Scholar
  19. Brodal, A.: The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. Edinburgh: Oliver & Boyd 1957. 87 pp.Google Scholar
  20. Brodal, A.: Anatomical studies of cerebellar fibre connections with special reference to problems of functional localization. In: The Cerebellum. Ed. by C.A. Fox and R.S. Snider. Progress in Brain Research 25, 135–173 (1967). Amsterdam-New York: Elsevier Publishing Company.CrossRefGoogle Scholar
  21. Brodal, A., Walberg, F., Blackstad, T.: Termination of spinal afferents to inferior olive in cat. J. Neurophysiol. 13, 431–454 (1950).PubMedGoogle Scholar
  22. Brodal, P., Marsala, J., Brodal, A.: The cerebral cortical projection to the lateral reticular nucleus in the cat, with special reference to the sensorimotor cortical areas. Brain Res. 6, 252–274 (1967).PubMedCrossRefGoogle Scholar
  23. Bruckmoser, P., Hepp-Reymond, M.C., Wiesendanger, M.: Cortical influence on single neurons of the lateral reticular nucleus of the cat. Exp. Neurol. 26, 239–252 (1970 a).PubMedCrossRefGoogle Scholar
  24. Bruckmoser, P., Hepp-Reymond, M.C., Wiesendanger, M.: Effects of peripheral, rubral, and fastigal stimulation on neurons of the lateral reticular nucleus of the cat. Exp. Neurol. 27, 388–398 (1970b).PubMedCrossRefGoogle Scholar
  25. Burke, R.E., Lundberg, A., Weight, F.: Spinal border cell origin of the ventral spinocerebellar tract. Exp. Brain Res. 12, 283–294 (1971).PubMedCrossRefGoogle Scholar
  26. Carli, G., Diete-Spiff, K., Pompeiano, O.: Cerebellar responses evoked by somatic afferent volleys during sleep and waking. Arch. ital. Biol. 105, 499–528 (1967).PubMedGoogle Scholar
  27. Carpenter, D., Engberg, I., Funkenstein, H., Lundberg, A.: Decerebrate control of reflexes to primary afferents. Acta physiol. scand. 59, 424–437 (1963).PubMedCrossRefGoogle Scholar
  28. Carpenter, D., Engberg, I., Lundberg, A.: Differential supraspinal control of inhibitory and excitatory actions from the FRA to ascending spinal pathways. Acta physiol. scand. 63, 103–110 (1965).PubMedCrossRefGoogle Scholar
  29. Carrea, R., Guevara, J.A., Epstein, R., Folino, J.C.: Periodic variations of cerebellar electrocortical activity in the cat. Acta neurol. lat.-amer. 10, 189–229 (1964).Google Scholar
  30. Chambers, W.W., Sprague, J.M.: Functional localization in the cerebellum. I. Organization in longitudinal corticonuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J. comp. Neurol. 103, 105–129 (1955a).PubMedCrossRefGoogle Scholar
  31. Chambers, W.W., Sprague, J.M.: Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Arch. Neurol. Psychiat. (Chic.) 74, 653–680 (1955b).Google Scholar
  32. Cooke, J.D., Larson, B., Oscarsson, O., Sjölund, B.: Origin and termination of cuneocere-bellar tract. Exp. Brain Res. 13, 339–358 (1971a).PubMedGoogle Scholar
  33. Cooke, J.D., Larson, B., Oscarsson, O., Sjölund, B.: Organization of afferent connections to cuneocerebellar tract. Exp. Brain Res. 13, 359–377 (1971b).PubMedGoogle Scholar
  34. Cooper, S., Sherrington, C.S.: Gower’s tract and spinal border cells. Brain 63, 123–134 (1940).CrossRefGoogle Scholar
  35. Crichlow, E.C., Kennedy, T.T.: Functional characteristics of neurons in the lateral reticular nucleus with reference to localized cerebellar potentials. Exp. Neurol. 18, 141–153 (1967).PubMedCrossRefGoogle Scholar
  36. Crill, W.E.: Unitary multiple-spiked responses in cat inferior olive nucleus. J. Neurophysiol. 33, 199–209 (1970).PubMedGoogle Scholar
  37. Crill, W.E., Kennedy, T.T.: Inferior olive of the cat: intracellular recording. Science 157, 716–718 (1967).PubMedCrossRefGoogle Scholar
  38. Curtis, D.R., Eccles, J.C., Lundberg, A.: Intracellular recording from cells in Clarke’s column. Acta physiol. scand. 43, 303–314 (1958).PubMedCrossRefGoogle Scholar
  39. Dow, R.S., Moruzzi, G.: The physiology and pathology of the cerebellum. Minneapolis: The University of Minnesota Press 1958.Google Scholar
  40. Ebbesson, S.O.E.: A connection between the dorsal column nuclei and the dorsal accessory olive. Brain Res. 8, 393–397 (1968).PubMedCrossRefGoogle Scholar
  41. Eccles, J.C.: The dynamic loop hypothesis of movement control. In: Information Processing in the Nervous System, pp. 245–269. Ed. by K.N. Leibovic. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  42. Eccles, J.C., Hubbard, J.I., Oscarsson, O.: Intracellular recording from cells of the ventral spinocerebellar tract. J. Physiol. (Lond.) 158, 486–516 (1961a).Google Scholar
  43. Eccles, J.C., Ito, M., Szentagothai, J.: The Cerebellum as a Neuronal Machine. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  44. Eccles, J.C., Llinás, R., Sasaki, K.: The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966).Google Scholar
  45. Eccles, J.C., Oscarsson, O., Willis, W.D.: Synaptic action of group I and II afferent fibres of muscle on the cells of the dorsal spinocerebellar tract. J. Physiol. (Lond.) 158, 517–543 (1961 b).Google Scholar
  46. Eccles, J.C., Provini, L., Strata, P., Táboříkocvá, H.: Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp. Brain Res. 6, 171–194 (1968a).PubMedCrossRefGoogle Scholar
  47. Ecoles, J.C., Provini, L., Strata, P., Táboříkocvá, H.: Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp. Brain Res. 6, 195–215 (1968b).CrossRefGoogle Scholar
  48. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Inhibition of discharges into the dorsal and ventral spinocerebellar tracts. J. Neurophysiol. 26, 635–645 (1963).Google Scholar
  49. Ecoles, R.M., Lundberg, A.: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol. 97, 199–221 (1959).Google Scholar
  50. Eide, E., Fedina, L., Jansen, J., Ltjndberg, A., Vyklický, L.: Properties of Clarke’s column neurones. Acta physiol. scand. 77, 125–144 (1969a).PubMedCrossRefGoogle Scholar
  51. Eide, E., Fedina, L., Jansen, J.K.S., Ltjndberg, A., Vyklický, L.: Unitary components in the activation of Clarke’s column neurones. Acta physiol. scand. 77, 145–158 (1969b).PubMedCrossRefGoogle Scholar
  52. Ekerot, C.F., Larson, B.: Differential termination of the exteroceptive and proprioceptive components of the cuneocerebellar tract. Brain Res. 36, 420–424 (1972).PubMedCrossRefGoogle Scholar
  53. Engberg, I.: Reflexes to foot muscles in the cat. Acta physiol. scand. 62, Suppl. 235 (1964).Google Scholar
  54. Escobar, A., Sampedro, E.D., Dow, R.S.: Quantitative data on the inferior olivary nucleus in man, cat and vampire bat. J. comp. Neurol. 132, 397–404 (1968).PubMedCrossRefGoogle Scholar
  55. Evarts, E.V., Thach, W.T.: Motor mechanisms of the CNS: Cerebro-cerebellar interrelations. A. Rev. Physiol. 31, 451–498 (1969).CrossRefGoogle Scholar
  56. Faber, D.S., Murphy, J.T.: Axonal branching in the climbing fiber pathway to the cerebellum. Brain Res. 15, 262–267 (1969).PubMedCrossRefGoogle Scholar
  57. Ferraro, A., Barrera, S.E.: The nuclei of the posterior funiculi in Macacus rhesus. An anatomical and experimental investigation. Arch. Neurol. Psychiat.(Chic.) 33, 262–275 (1935).Google Scholar
  58. Fox, C.A., Andrade, A., Schwyn, R.C.: Climbing fiber branching in the granular layer. In: Neurobiology of Cerebellar Evolution and Development, pp. 603–611. Ed. by R. Llinás. Chicago: American Medical Association 1969.Google Scholar
  59. Fox, M., Williams, T.D.: Responses evoked in the cerebellar cortex by stimulation of the caudate nucleus in the cat. J. Physiol. (Lond.) 198, 435–450 (1968).Google Scholar
  60. Franz, D.N., Iggo, A.: Dorsal root potentials and ventral root reflexes evoked by nonmyelinated fibers. Science 162, 1140–1142 (1968).PubMedCrossRefGoogle Scholar
  61. Giannazzo, E., Manzoni, T., Raffaele, R., Sapienza, S., Urbano, A.: Effects of chronic fastigal lesions on the sleep-wakefulness rhythm in the cat. Arch. ital. Biol. 107, 1–18 (1969).PubMedGoogle Scholar
  62. Grant, G.: Projection of the external cuneate nucleus onto the cerebellum in the cat: An experimental study using silver methods. Exp. Neurol. 5, 179–195 (1962a).PubMedCrossRefGoogle Scholar
  63. Grant, G.: Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta physiol. scand. 56, Suppl. 193 (1962b).Google Scholar
  64. Grant, G., Oscarsson, O.: Mass discharges evoked in the olivocerebellar tract on stimulation of muscle and skin nerves. Exp. Brain Res. 1, 329–337 (1966).PubMedGoogle Scholar
  65. Grant, G., Oscarsson, O., Rosén, L.: Functional organization of the spinoreticulocerebellar path with identification of its spinal component. Exp. Brain Res. 1, 306–319 (1966).PubMedGoogle Scholar
  66. Grillner, S.: Supraspinal and segmental control of static and dynamic γ-motoneurones in the cat. Acta physiol. scand. Suppl. 327, 1–34 (1969).PubMedGoogle Scholar
  67. Grillner, S., Hongo, T., Lund, S.: The origin of descending fibres monosynaptically activating spinoreticular neurones. Brain Res. 10, 259–262 (1968).PubMedCrossRefGoogle Scholar
  68. Grillner, S., Hongo, T., Lund, S.: The vestibulospinal tract. Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Exp. Brain Res. 10, 94–120 (1970).PubMedCrossRefGoogle Scholar
  69. Grillner, S., Lund, S.: The origin of a descending pathway with monosynaptic action on flexor motoneurones. Acta physiol. scand. 74, 274–284 (1968).PubMedCrossRefGoogle Scholar
  70. Grundfest, H., Campbell, B.: Origin, conduction and termination of impulses in the dorsal spinocerebellar tracts of cats. J. Neurophysiol. 5, 275–294 (1942).Google Scholar
  71. Hand, P., Liu, C.N.: Efferent projections of the nucleus gracilis. Anat. Rec. 154, 353–354 (1966).Google Scholar
  72. Hökeelt, T., Fuxe, K.: Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp. Brain Res. 9, 63–72 (1969).Google Scholar
  73. Hoefer, B.J., Siggins, G.R., Woodward, D.J., Bloom, F.E.: Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxy-dopamine. Brain Res. 30, 425–430 (1971).CrossRefGoogle Scholar
  74. Holmqvist, B.: Crossed spinal reflex actions evoked by volleys in somatic afferents. Acta physiol. scand. 52, Suppl. 181 (1961).Google Scholar
  75. Holmqvist, B., Lundberg, A.: Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta physiol. scand. 54, Suppl. 186 (1961).Google Scholar
  76. Holmqvist, B., Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. V. Further experiments on convergence of excitatory and inhibitory actions. Acta physiol. scand. 38, 76–90 (1956).PubMedGoogle Scholar
  77. Holmqvist, B., Lundberg, A., Oscarsson, O.: Supraspinal inhibitory control of transmission to three ascending spinal pathways influenced by the flexion reflex afferents. Arch. ital. Biol. 98, 60–80 (1960a).Google Scholar
  78. Holmqvist, B., Lundberg, A., Oscarsson, O.: A supraspinal control system monosynapti-cally connected with an ascending spinal pathway. Arch. ital. Biol. 98, 402–422 (1960b).Google Scholar
  79. Holmqvist, B., Oscarsson, O.: Location, course, and characteristics of uncrossed and crossed ascending spinal tracts in the cat. Acta physiol. scand. 58, 57–67 (1963).PubMedCrossRefGoogle Scholar
  80. Holmqvist, B., Oscarsson, O., Rosen, I.: Functional organization of the cuneocerebellar tract in the cat. Acta physiol. scand. 58, 216–235 (1963a).PubMedCrossRefGoogle Scholar
  81. Holmqvist, B., Oscarsson, O., Uddenberg, N.: Organization of ascending spinal tracts activated from forelimb afferents in the cat. Acta physiol. scand. 58, 68–76 (1963b).PubMedCrossRefGoogle Scholar
  82. Hongo, T., Jankowska, E., Ltjndberg, A.: The rubrospinal tract. I. Effects on alpha-moto-neurones innervating hindlimb muscles in cats. Exp. Brain Res. 7, 344–364 (1969a).PubMedGoogle Scholar
  83. Hongo, T., Jankowska, E., Lundberg, A.: The rubrospinal tract. II. Facilitation of inter-neuronal transmission in reflex paths to motoneurones. Exp. Brain Res. 7, 365–391 (1969b).PubMedGoogle Scholar
  84. Hongo, T., Okada, Y.: Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp. Brain Res. 3, 163–177 (1967).PubMedGoogle Scholar
  85. Hongo, T., Okada, Y., Sato, M.: Corticofugal influences on transmission to the dorsal spinocerebellar tract from hindlimb primary afferents. Exp. Brain Res. 3, 135–149 (1967).PubMedGoogle Scholar
  86. Hubbard, J.I., Oscarsson, O.: Localization of the cell bodies of the ventral spinocerebellar tract in lumbar segments of the cat. J. comp. Neurol. 118, 199–204 (1962).PubMedCrossRefGoogle Scholar
  87. Ito, M., Kawai, N., Udo, M., Mano, N.: Axon reflex activation of Deiters neurones from the cerebellar cortex through collaterals of the cerebellar afferents. Exp. Brain Res. 8, 249–268 (1969).PubMedCrossRefGoogle Scholar
  88. Ito, M., Yoshida, M., Obata, K., Kawai, N., Udo, M.: Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp. Brain Res. 10, 64–80 (1970).PubMedCrossRefGoogle Scholar
  89. Jankowska, E., Jukes, M.G.M., Lund, S.: The pattern of presynaptic inhibition of transmission to the dorsal spinocerebellar tract of the cat. J. Physiol. (Lond.) 178, 17–18P (1965).Google Scholar
  90. Jansen, J.: On cerebellar evolution and organization from the point of view of a morpholo-gist. In: Neurobiology of Cerebellar Evolution and Development, pp. 881–893. Ed. by R. Llinás. Chicago: American Medical Association 1969.Google Scholar
  91. Jansen, J., Brodal, A.: Handbuch der mikroskopischen Anatomie des Menschen, IV/8, Das Kleinhirn. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  92. Jansen, J.K.S., Nicolaysen, K., Rudjord, T.: Discharge pattern of neurons of the dorsal spinocerebellar tract activated by static extension of primary endings of muscle spindles. J. Neurophysiol. 29, 1061–1086 (1966).PubMedGoogle Scholar
  93. Jansen, J.K.S., Nicolaysen, K., Wallöe, L.: On the inhibition of transmission to the dorsal spinocerebellar tract by stretch of various ankle muscles of the cat. Acta physiol. scand. 70, 362–368 (1967).PubMedCrossRefGoogle Scholar
  94. Jansen, J.K.S., Nicolaysen, K., Wallöe, L.: The firing pattern of dorsal spinocerebellar tract neurones during inhibition. Acta physiol. scand. 77, 68–84 (1969).PubMedCrossRefGoogle Scholar
  95. Jansen, J.K.S., Rudjord, T.: Dorsal spinocerebellar tract: response pattern of nerve fibres to muscle stretch. Science 149, 1109–1111 (1965).PubMedCrossRefGoogle Scholar
  96. Jansen, J.K.S., Wallöe, L.: Transmission of signals from muscle stretch receptors to the dorsal spinocerebellar tract. In: The Cerebellum in Health and Disease, pp. 143–171. Ed. by W.S. Fields and W.D. Willis. St. Louis: Warren H. Green 1970.Google Scholar
  97. Jasper, H. H.: Unspecific thalamocortical relations. Chapter 53 in Handbook of Physiology. Section 1: Neurophysiology. 2. 1307–1321. Washington, D.C.: American Physiological Society 1960.Google Scholar
  98. Johnson, J.I., Jr., Welker, W.I., Pubols, B.H. Jr.: Somatotopic organization of raccoon dorsal column nuclei. J. comp. Neurol. 132, 1–44 (1968).PubMedCrossRefGoogle Scholar
  99. Kitai, S.T., Kennedy, D.T., Morin, F., Gardner, E.: The lateral reticular nucleus of the medulla oblongata of the cat. Exp. Neurol. 17, 65–73 (1967).PubMedCrossRefGoogle Scholar
  100. Kitai, S.T., Oshima, T., Provini, L., Tsukahara, N.: Cerebro-cerebellar connections mediated by fast and slow conducting pyramidal tract fibres of the cat. Brain Res. 15, 267–271 (1969).PubMedCrossRefGoogle Scholar
  101. Kitai, S.T., Táboříková, H., Tsukahara, N., Eccles, J.C.: The distribution to the cerebellar anterior lobe of the climbing and mossy fiber inputs from the plantar and palmar cutaneous afferents. Exp. Brain Res. 7, 1–10 (1969).PubMedCrossRefGoogle Scholar
  102. Körlin, D., Larson, B.: Differences in cerebellar potentials evoked by the group I and cutaneous components of the cuneocerebellar tract. Fifth International Meeting of Neurobiolo-gists. Excitatory Synaptic Mechanisms, pp. 237–241. Ed. by P. Andersen and J.Jansen 1970.Google Scholar
  103. Korneliussen, H.K.: Cerebellar organization in the light of cerebellar nuclear morphology and cerebellar corticogenesis. In: Neurobiology of Cerebellar Evolution and Development, pp. 515–523. Ed. by R. Llinás. Chicago: American Medical Association 1969.Google Scholar
  104. Kostyuk, P.G.: On the functions of dorsal spino-cerebellar tract in cat. In: Neurobiology of Cerebellar Evolution and Development, pp. 539–548. Ed. by R. Llinas. Chicago: American Medical Association 1969.Google Scholar
  105. Kuno, M., Miyahara, J.T.: Factors responsible for multiple discharge of neurons in Clarke’s column. J. Neurophysiol. 31, 624–638 (1968).PubMedGoogle Scholar
  106. Kuypers, H.G. J.M., Tuerk, J.D.: The distribution of the cortical fibres within the nuclei cuneatus and gracilis in the cat. J. Anat. (Lond.) 98, 143–162 (1964).Google Scholar
  107. Lamarche, G., Morin, F.: Latencies and pathways for cutaneous projections to posterior cerebellar lobe. J. Neurophysiol. 20, 275–285 (1957).PubMedGoogle Scholar
  108. Laporte, Y., Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. I. Recording of mass discharge in dissected Flechsig’s fasciculus. Acta physiol. scand. 36, 175–187 (1956a).PubMedCrossRefGoogle Scholar
  109. Laporte, Y., Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinol cerebellar tract in the cat. II. Single fibre recording in Flechsig’s fasciculus on electrica-stimulation of various peripheral nerves. Acta physiol. scand. 36, 188–203 (1956b).PubMedCrossRefGoogle Scholar
  110. Larson, B., Miller, S., Oscarsson, O.: Termination and functional organization of the dorsolateral spino-olivocerebellar path. J. Physiol. (Lond.) 203, 611–640 (1969a).Google Scholar
  111. Larson, B., Miller, S., Oscarsson, O.: A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs. J. Physiol. (Lond.) 203, 641–649 (1969b).Google Scholar
  112. Latham, A., Paul, D.H.: Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres. J. Physiol. (Lond.) 213, 135–156 (1971).Google Scholar
  113. Lawrence, D.G., Kuypers, H.G. J.M.: The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91, 15–36 (1968).PubMedCrossRefGoogle Scholar
  114. Lindström, S., Takata, M.: Monosynaptic excitation of dorsal spinocerebellar tract neurones by low threshold joint afferents. Abstracts of Volunteer Papers, XXV Int. Physiol. Congr. Munich 1971. p. 347.Google Scholar
  115. Lindström, S., Takata, M.: Manuscript under preparation (1971b).Google Scholar
  116. Llinás, K., Precht, W., Kitai, S.T.: Climbing fibre activation of Purkinje cell following primary vestibular afferent stimulation in the frog. Brain Res. 6, 371–375 (1967).PubMedCrossRefGoogle Scholar
  117. Lloyd, D.P.C., McIntyre, A.K.: Dorsal column conduction of group I muscle afferent impulses and their relay through Clarke’s column. J. Neurophysiol. 13, 39–54 (1950).PubMedGoogle Scholar
  118. Loewy, A.D.: A study of neuronal types in Clarke’s column in the adult cat. J. comp. Neurol. 139, 53–79 (1970).PubMedCrossRefGoogle Scholar
  119. Lorente de Nó, R.: Cerebral cortex: Architecture, intracortical connections, motor projections. In: Physiology of the Nervous System, pp. 288–315. (3rd ed.) by J.F. Fulton. New York: Oxford Univ. Press 1949.Google Scholar
  120. Lundberg, A.: Integrative significance of patterns of connections made by muscle afferents in the spinal cord. Symposia and Special Lectures, XXI. Int. physiol. Congr. Buenos Aires 1959. pp.100–105.Google Scholar
  121. Lundberg, A.: Ascending spinal hindlimb pathways in the cat. In: Physiology of Spinal Neurons. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research 12, 135–163 (1964). Amsterdam-New York: Elsevier Publishing Company.Google Scholar
  122. Lundberg, A.: Integration in the reflex pathway. In: Nobel Symposium. I. Muscular Afferents and Motor Control, pp. 275–305. Ed. by R. Granit. Stockholm: Almqvist & Wiksell 1966.Google Scholar
  123. Lundberg, A.: Function of the ventral spinocerebellar tract. A new hypothesis. Exp. Brain Res. 12, 317–330 (1971).PubMedGoogle Scholar
  124. Lundberg, A., Norrsell, U., Voorhoeve, P.: Effects from the sensorimotor cortex on ascending spinal pathways. Acta physiol. scand. 59, 462–473 (1963).PubMedCrossRefGoogle Scholar
  125. Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spino-cerebellar tract in the cat. IV. Synaptic connections of afferents from Golgi tendon organs and muscle spindles. Acta physiol. scand. 38, 53–75 (1956).PubMedCrossRefGoogle Scholar
  126. Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spino-cerebellar tract in the cat. VII. Identification of units by antidromic activation from the cerebellar cortex with recognition of five functional subdivisions. Acta physiol. scand. 50, 356–374 (1960).PubMedCrossRefGoogle Scholar
  127. Lundberg, A., Oscarsson, O.: Functional organization of the ventral spino-cerebellar tract in the cat. IV. Identification of units by antidromic activation from the cerebellar cortex. Acta physiol. scand. 54, 252–269 (1962a).PubMedCrossRefGoogle Scholar
  128. Lundberg, A., Oscarsson, O.: Two ascending spinal pathways in the ventral part of the cord. Acta physiol. scand. 54, 270–286 (1962b).PubMedCrossRefGoogle Scholar
  129. Lundberg, A., Weight, F.: Functional organization of connexions to the ventral spinocerebellar tract. Exp. Brain Res. 12, 295–316 (1971).PubMedGoogle Scholar
  130. Lundberg, A., Winsbury, G.: Functional organization of the dorsal spino-cerebellar tract. VI. Further experiments on excitation from tendon organ and muscle spindle afferents. Acta physiol. scand. 49, 165–170 (1960).PubMedCrossRefGoogle Scholar
  131. Magni, F., Oscarsson, O.: Cerebral control of transmission to the ventral spinocerebellar tract. Arch. ital. Biol. 99, 369–396 (1961).Google Scholar
  132. Magni, F., Oscarsson, O.: Comparison of ascending spinal tracts activated by group I muscle afferents in the phalanger, rabbit, and cat. Acta physiol. scand. 54, 37–52 (1962a).CrossRefGoogle Scholar
  133. Magni, F., Oscarsson, O.: Principal organization of coarse-fibred ascending spinal tracts in phalanger, rabbit, and cat. Acta physiol. scand. 54, 53–64 (1962b).PubMedCrossRefGoogle Scholar
  134. Mann, M. D.: Axons of dorsal spinocerebellar tract which respond to activity in cutaneous receptors. J. Neurophysiol. 34, 1035–1050 (1971).PubMedGoogle Scholar
  135. Marr, D.: A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).Google Scholar
  136. Massion, J., Urbano, A.: Projections sur le noyau rouge par les colonnes dorsales. Arch. ital. Biol. 106, 297–309 (1968).PubMedGoogle Scholar
  137. Matsushita, M.: Zur Zytoarchitektonik des Hühnerrückenmarkes nach Silberimprägnation. Acta anat. (Basel) 70, 238–259 (1968).CrossRefGoogle Scholar
  138. Matsushita, M.: Some aspects of the interneuronal connections in cat’s spinal gray matter. J. comp. Neurol. 136, 57–79 (1969).PubMedCrossRefGoogle Scholar
  139. Matsushita, M.: The axonal pathways of spinal neurons in the cat. J. comp. Neurol. 138, 391–417 (1970).PubMedCrossRefGoogle Scholar
  140. Matsushita, M., Ikeda, M.: Olivary projections to the cerebellar nuclei in the cat. Exp. Brain Res. 10, 488–500 (1970a).PubMedGoogle Scholar
  141. Matsushita, M., Ikeda, M.: Spinal projections to the cerebellar nuclei in the cat. Exp. Brain Res. 10, 501–511 (1970b).PubMedGoogle Scholar
  142. Miller, S., Nezlina, N., Oscarsson, O.: Projection and convergence patterns in climbing fibre paths to the cerebellar anterior lobe activated from the cerebral cortex and the spinal cord. Brain Res. 14, 230–233 (1969).PubMedCrossRefGoogle Scholar
  143. Miller, S., Oscarsson, O.: Termination and functional organization of spino-olivocerebellar paths. In: The Cerebellum in Health and Disease, pp. 172–200. Ed. by W.S. Fields and W.D. Willis. St. Louis: Warren H. Green 1970.Google Scholar
  144. Moatamed, F.: Cell frequencies in the human inferior olivary nuclear complex. J. comp. Neurol. 128, 109–116 (1966).PubMedCrossRefGoogle Scholar
  145. Morin, F., Catalano, J. V., Lamarche, G.: Wave form of cerebellar evoked potentials. Amer. J. Physiol. 188, 263–273 (1957).Google Scholar
  146. Morin, F., Kennedy, D.T., Gardner, E.: Spinal afferents to the lateral reticular nucleus. I. An histological study. J. comp. Neurol. 126, 511–522 (1966).PubMedGoogle Scholar
  147. Morin, F., Lamarche, G., Ostrowski, A.Z.: Responses of the inferior olive to peripheral stimuli and the spinal pathways involved. Amer. J. Physiol. 189, 401–406 (1957).PubMedGoogle Scholar
  148. Morin, F., Schwartz, H.G., O’Leary, J.L.: Experimental study of the spinothalamic and related tracts. Acta psychiat. (Kbh.) 26, 371–396 (1951).CrossRefGoogle Scholar
  149. Murphy, J.T., Sabah, N.H.: Cerebellar Purkinje cell responses to afferent inputs. I. Climbing fiber activation. Brain Res. 25, 449–467 (1971).PubMedCrossRefGoogle Scholar
  150. Nacimiento, A.C., Lux, H.D., Creutzfeldt, O.D.: Postsynaptische Potentiale von Nervenzellen des motorischen Cortex nach elektrischer Reizung spezifischer und unspezifischer Thalamuskerne. Pflügers Arch. ges. Physiol. 281, 152–169 (1964).CrossRefGoogle Scholar
  151. Newman, P.P., Paul, D.H.: The projection of splanchnic afferents on the cerebellum of the cat. J. Physiol. (Lond.) 202, 223–237 (1969).Google Scholar
  152. Olson, L., Fuxe, K.: On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation. Brain Res. 28, 165–171 (1971).PubMedCrossRefGoogle Scholar
  153. Oscarsson, O.: Functional organization of the ventral spino-cerebellar tract in the cat. I. Electrophysiological identification of the tract. Acta physiol. scand. 38, 145–165 (1956).PubMedCrossRefGoogle Scholar
  154. Oscarsson, O.: Primary afferent collaterals and spinal relays of the dorsal and ventral spino-cerebellar tracts. Acta physiol. scand. 40, 222–231 (1957a).PubMedCrossRefGoogle Scholar
  155. Oscarsson, O.: Functional organization of the ventral spino-cerebellar tract in the cat. II. Connections with muscle, joint, and skin nerve afferents and effects on adequate stimulation of various receptors. Acta physiol. scand. 42, Suppl. 146 (1957b).Google Scholar
  156. Oscarsson, O.: Functional organization of the ventral spino-cerebellar tract in the cat. III. Supraspinal control of VSCT units of I-type. Acta physiol. scand. 49, 171–183 (1960).PubMedCrossRefGoogle Scholar
  157. Oscarsson, O.: Differential course and organization of uncrossed and crossed long ascending spinal tracts. In: Physiology of Spinal Neurones. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research 12, 164–176 (1964). Amsterdam-New York: Elsevier Publishing Company.Google Scholar
  158. Oscarsson, O.: Integrative organization of the rostral spinocerebellar tract in the cat. Acta physiol. scand. 64, 154–166 (1965a).CrossRefGoogle Scholar
  159. Oscarsson, O.: Functional organization of the spino- and cuneocerebellar tract. Physiol. Rev. 45, 495–522 (1965b).PubMedGoogle Scholar
  160. Oscarsson, O.: Functional significance of information channels from the spinal cord to the cerebellum. In: Neurophysiological Basis of Normal and Abnormal Motor Activities. 3rd Symposium of the Parkinson’s Disease Information and Research Center, pp. 93–117. Ed. by M.D. Yahr and D.P. Purpura. Hewlett, N.Y.: Raven Press 1967.Google Scholar
  161. Oscarsson, O.: Termination and functional organization of the ventral spino-olivocerebellar path. J. Physiol. (Lond.) 196, 453–478 (1968).Google Scholar
  162. Oscarsson, O.: Termination and functional organization of the dorsal spino-olivocerebellar path. J. Physiol. (Lond.) 200, 129–149 (1969a).Google Scholar
  163. Oscarsson, O.: The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Neurobiology of Cerebellar Evolution and Development, pp. 525–537. Ed. by R. Llinas. Chicago: American Medical Association 1969b.Google Scholar
  164. Oscarsson, O.: Note in ‘Central Control of Movement’. Ed. by E.V. Evarts, E. Bizzi, R.E. Burke, M. DeLong and W.T. Thach. Neurosci. Res. Progr. Bull. 9, No 1, 97–103 (1971).Google Scholar
  165. Oscarsson, O., Rosen, I.: Short-latency projections to the cat’s cerebral cortex from skin and muscle afferents in the contralateral forelimb. J. Physiol. (Lond.) 182, 164–184 (1966a).Google Scholar
  166. Oscarsson, O., Rosen, I.: Response characteristics of reticulo-cerebellar neurones activated from spinal afferents. Exp. Brain Res. 1, 320–328 (1966b).PubMedCrossRefGoogle Scholar
  167. Oscarsson, O., Rosén, L., Uddenberg, N.: Organization of ascending tracts in the spinal cord of the duck. Acta physiol. scand. 59, 143–153 (1963).PubMedCrossRefGoogle Scholar
  168. Oscarsson, O., Rosen, L., Uddenberg, N.: A comparative study of ascending spinal tracts activated from hindlimb afferents in monkey and dog. Arch. ital. Biol. 102, 337–155 (1964).Google Scholar
  169. Oscarsson, O., Uddenberg, N.: Identification of a spinocerebellar tract activated from forelimb afferents in the cat. Acta physiol. scand. 62, 125–136 (1964).PubMedCrossRefGoogle Scholar
  170. Oscarsson, O., Uddenberg, N.: Properties of afferent connections to the rostral spinocerebellar tract in the cat. Acta physiol. scand. 64, 143–153 (1965).PubMedCrossRefGoogle Scholar
  171. Oscarsson, O., Uddenberg, N.: Somatotopic termination of spino-olivocerebellar path. Brain Res. 3, 204–207 (1966).PubMedCrossRefGoogle Scholar
  172. Provini, L., Redman, S., Strata, P.: Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp. Brain Res. 6, 216–233 (1968).PubMedCrossRefGoogle Scholar
  173. Rademaker, G.G.J.: Das Stehen. Monographien a. d. ges. geb. Neurologie u. Psychiatrie 59, 1–476 (1931). Berlin: Springer.Google Scholar
  174. Rethelyi, M.: The Golgi architecture of Clarke’s column. Acta morph. hung. 16, 311–330 (1968).PubMedGoogle Scholar
  175. Rosen, I.: Localization in caudal brain stem and cervical spinal cord of neurones activated from forelimb group I afferents in the cat. Brain Res. 16, 55–71 (1969a).PubMedCrossRefGoogle Scholar
  176. Rosen, I.: Afferent connexions to group I activated cells in the main cuneate nucleus of the cat. J. Physiol. (Lond.) 205, 209–236 (1969b).Google Scholar
  177. Rosen, I., Sjölund, B.: Organization of group I activated cells in main and external cuneate nuclei: I. Identification of muscle receptors. Exp. Brain Res. (in press) (1972a).Google Scholar
  178. Rosén, I., Sjölund, B.: Organization of group I activated cells in main and external cuneate nuclei: II. Convergence patterns demonstrated by natural stimulation. Exp. Brain Res. (in press) (1972b).Google Scholar
  179. Sasaki, K., Kawaguchi, S., Shimono, T., Yoneda, Y.: Responses evoked in the cerebellar cortex by the pontine stimulation. Jap. J. Physiol. 19, 95–109 (1969).CrossRefGoogle Scholar
  180. Sasaki, K., Strata, P.: Responses evoked in the cerebellar cortex by stimulating mossy fibre pathways to the cerebellum. Exp. Brain Res. 3, 95–110 (1967).PubMedCrossRefGoogle Scholar
  181. Shik, M. L.: The controlled locomotion of the mesencephalic cat. Abstracts of Lectures and Symposia, XXV Int. Physiol. Congr. Munich 1971. Vol. 8. pp. 104–105.Google Scholar
  182. Sottsa-Pinto, A., Brodal, A.: Demonstration of a somatotopical pattern in the cortico-oli-vary projection in the cat. An experimental anatomical study. Exp. Brain Res. 8, 364–386 (1969).Google Scholar
  183. Sprague, J.M.: Spinal “border cells” and their role in postural mechanism (Schiff-Sherring-ton phenomenon). J. Neurophysiol. 16, 464–474 (1953).PubMedGoogle Scholar
  184. Szentagothai, J.: Anatomical aspects of junctional transformation. In: Information Processing in the Nervous System. Ed. by R. W. Gerard. Excerpta Medica 119–136. Amsterdam 1962.Google Scholar
  185. Szentagothai, J., Albert, A.: The synaptology of Clarke’s column. Acta morph. hung. 5, 43–51 (1955).PubMedGoogle Scholar
  186. Szentagothai, J., Rajkovits, K.: Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwickl.-Gesch. 121, 130–141 (1959).CrossRefGoogle Scholar
  187. Thach, W.T.: Somatosensory receptive fields of single units in cat cerebellar cortex. J. Neurophysiol. 30, 675–696 (1967).PubMedGoogle Scholar
  188. Thach, W.T.: Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J. Neurophysiol. 31, 785–797 (1968).PubMedGoogle Scholar
  189. Thach, W.T.: Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J. Neurophysiol. 33, 537–547 (1970).PubMedGoogle Scholar
  190. Voogd, J.: The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development, pp. 493–514. Ed. by R. Llinás. Chicago: American Medical Association 1969.Google Scholar
  191. Voogd, J., Broere, G., van Rossum, J.: The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiat. Neurol. Neurochir. (Amst.) 72, 137–151 (1969).Google Scholar
  192. Vyklický, L., Rudomin, P., Zajac III, P.E., Burke, R.E.: Primary afferent depolarization evoked by a painful stimulus. Science 165, 184–186 (1969).PubMedCrossRefGoogle Scholar
  193. Walberg, F.: Descending connections to the inferior olive. An experimental study in the cat. J. comp. Neurol. 104, 77–173 (1956).PubMedCrossRefGoogle Scholar
  194. Walberg, F.: Corticofugal fibres to the nuclei of the dorsal columns. An experimental study in the cat. Brain 80, 273–287 (1957).PubMedCrossRefGoogle Scholar
  195. Wallöe, L.: Transfer of signals through a second order sensory neuron. (Thesis.) Inst, of Physiol., Oslo University 1968.Google Scholar
  196. Wallöe, L., Jansen, J.K.S., Nygaard, K.: A computer simulated model of a second order sensory neurone. Kybernetik 6, 130–140 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Olov Oscarsson
    • 1
  1. 1.LundSweden

Personalised recommendations