Advertisement

Gas—Liquid Interactions

  • Wolfgang Behnke
  • Manfred Elend
  • Christian George
  • Heinz-Ulrich Kröger
  • Volker Scheer
  • Cornelius Zetzsch
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 2)

Summary

The uptake of NO2 and N2O5 by deliquescent NaCl aerosol is investigated in an aerosol smog chamber. While the slow uptake of NO2 leads to HONO in the gas phase (instead of NOC1), the fast uptake of N2O5 leads to C1NO2 at high yields of almost unity with a high uptake coefficient of (3.2 ± 0.3) x 10−2. The yield of C1NO2 in the gas phase and its subsequent uptake are studied in wetted-wall flow tube experiments on various solutions containing chloride, nitrate and sulphate. From these experiments, a reaction mechanism is proposed where dissociation of N2O5 (in the aqueous phase) into NO2 + and nitrate is involved.

The formation of C1NO2 from sea-spray aerosol may modify the photo-oxidising capacity of the troposphere by two effects: the lifetime of NOX is prolonged, and photolytically formed atomic Cl may initiate smog formation soon after sunrise.

Keywords

Droplet Generation Liquid Interaction Phase Partitioning Uptake Coefficient Liquid Phase Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. T. Jobson, H. Niki, Y. Yokouchi, J. Bottenheim, F. Hopper, R. Leaitch: Measurements of C2-C6 hydrocarbons during the Polar Sunrise 92 experiment: Evidence for Cl-atom and Br-atom chemistry, J. Geophys. Res. 99 D (1994) 25355–25368.CrossRefGoogle Scholar
  2. 2.
    H. B. Singh, G. L. Gregory, B. Anderson, E. Browell, G. W. Sachse, D. D. Davis, J. Crawford, J. D. Bradshaw, R. Talbot, D. R. Blake, D. Thornton, R. Newell, J. Merrill: Low ozone in the marine boundary layer of the tropical Pacific Ocean, J. Geophys. Res. Atmos.(1995) in press.Google Scholar
  3. 3.
    A. A. P. Pszenny, W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zetwo, M. Springer-Young, J. N. Galloway: Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air, Geophys. Res. Lett. 20 (1993) 699–702.CrossRefGoogle Scholar
  4. 4.
    W. Behnke, F. Nolting, C. Zetzsch: Rate constants for the reactions of chlorine atoms with hydrocarbons determined by an aerosol smog chamber technique, Abstr. XVIth Informal Conf. on Photochem. paper T-21, Cambridge, Mass. 1984.Google Scholar
  5. 5.
    C. Zetzsch, G. Pfahler, W. Behnke: Heterogeneous formation of chlorine atoms from nacl aerosol in a photosmog system, J. Aerosol Sci. 19 (1988) 1203–1206.CrossRefGoogle Scholar
  6. 6.
    C. Zetzsch, W. Behnke: Heterogeneous reaction of chlorine compounds, in: H. Niki, K. H. Becker (eds), NATO ASI Series, 17, Global Environmental Change, Springer-Verlag Heidelberg 1993, pp. 291–305.Google Scholar
  7. 7.
    W. H. Schroeder, P. Urone, Formation of nitrosyl chloride from salt particles in air, Environ. Sci. Technol. 8 (1974) 756–758.CrossRefGoogle Scholar
  8. 8.
    B. J. Finlayson-Pitts, Reaction of NO2 with NaCl and atmospheric implication of NOC1 formation, Nature, 306 (1983) 676–677.CrossRefGoogle Scholar
  9. 9.
    B. J. Finlayson-Pitts, M. J. Ezell, J. N. Pitts, Jr., Formation of Chemically Active Chlorine Compounds by Reactions of Atmospheric NaCl Particles with Gaseous N2O5 and CIONO2, Nature, 337 (1989) 241–24.CrossRefGoogle Scholar
  10. 10.
    U. Platt, D. Perner, J. Schröder, C. Kessler, A. Toennissen, The diurnal variation of NO3, J. Geophys. Res. 86C (1981) 11965–11970.CrossRefGoogle Scholar
  11. 11.
    A. G. Russell, G. J. McRae, G. R. Cass, The dynamics of nitric acid production and the fate of nitrogen oxides, Atmos. Environ. 19 (1985) 893.CrossRefGoogle Scholar
  12. 12.
    I. N. Tang, H. R. Munkelwitz, J. G. Davis: Aerosol growth studies II. Preparation and growth measurements of monodisperse salt aerosols, J. Aerosol Sci. 8 (1977) 149–159.CrossRefGoogle Scholar
  13. 13.
    W. Behnke, H.-U. Kröger, V. Scheer, C. Zetzsch: Production of C1NO2 from the Reaction of N2O5 with NaCl-and Sea-Spray Aerosol, in: J. Peelers (ed), Chemical Mechanisms Describing Tropospheric Processes, Air Pollution Research Report 45, CEC, Brussels 1992, pp. 249–252.Google Scholar
  14. 14.
    W. Behnke, C. Zetzsch: The simultaneous determination of two active species in smog chambers: evaluation of rate constants for Cl atoms in the presence of OH, in: K. H. Becker (ed), Proc. 3rd French German Workshop on Tropospheric Chemistry by Laboratory Studies, Rep. No. 15 of FB 8, Physikalische Chemie, Universität Gesamthochschule, Wuppertal 1987, pp. 59–60.Google Scholar
  15. 15.
    W. Behnke, H.-U. Kröger, V. Scheer, C. Zetzsch, Formation of atomic Cl from sea spray via photolysis of nitryl chloride: Determination of the sticking coefficient of N2O5 on NaCl aerosol, J. Aerosol Sci. 22 (1991) S609–S612.CrossRefGoogle Scholar
  16. 16.
    C. Zetzsch, W. Behnke, Heterogeneous photochemical sources of atomic Cl in the troposphere, Ber. Bunsenges. Phys. Chem. 96 (1992) 488–493.CrossRefGoogle Scholar
  17. 17.
    Behnke, W., H.-U. Kröger, V. Scheer, C. Zetzsch: Formation of C1NO2 and HONO in the presence of NO2, O3 and Wet NaCl-aerosol, J. Aerosol Sci. 23 (1992) S933–S936.CrossRefGoogle Scholar
  18. 18.
    W. Behnke, H.-U. Kröger, V. Scheer, C. Zetzsch, in: P. M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (eds), Proc. EUROTRAC Symp.’ 92, SPB Acad. Publ. bv, The Hague 1993, pp. 565–570.Google Scholar
  19. 19.
    P. Deuflhard, U. Nowak, Efficient Numerical simulation and identification of large chemical reaction systems, Ber. Bunsenges. Phys. Chem. 90 (1986) 940–946.Google Scholar
  20. 20.
    CERN MINUIT Program Library entry D506, Geneva (1989).Google Scholar
  21. 21.
    Ch. George, W. Behnke, V. Scheer, C. Zetzsch, L. Magi, J. L. Ponche, Ph. Mirabel: Fate of C1NO2 over aqueous solutions containing iodide, Geophys. Res Lett, in press.Google Scholar
  22. 22.
    W. H. Manogue, L. Pigford: The kinetics of the absorption of phosgene into water and aqueous solution, A.I.Ch.E. Journal 6 (1960) 494–500.Google Scholar
  23. 23.
    D. W. Johnson, D. W. Margerum, Non-metal redox kinetics: A re-examination of the mechanism of the reaction between hypochlorite and nitrite ions, Inorg. Chem. 30 (1991) 4845–4851.CrossRefGoogle Scholar
  24. 24.
    Ch. George, J. L. Ponche, Ph. Mirabel, W. Behnke, V. Scheer, C. Zetzsch: Study of the uptake of N2O5 by water and NaCl solution, J. Phys. Chem. 98 (1994) 8780–8784.CrossRefGoogle Scholar
  25. 25.
    W. Behnke, V. Scheer, C. Zetzsch: Production of a photochemical precursor of atomic Cl from aerosols and Cl in the presence of O3, in: Proc. Int. Conf. on Naturally-Produced Organo-halogens, Delft 1993, in press.Google Scholar
  26. 26.
    W. Behnke, V. Scheer, C. Zetzsch: Production of BrNO2, Br2 and C1NO2 from the reaction between sea spray aerosol and N2O5, J. Aerosol Sci. 25 (1994) S277–S278.CrossRefGoogle Scholar

References

  1. 1.
    R. Maser, H. Franke, M. Preiss, W. Jaeschke: Methods provided and applied in a research aircraft for the study of cloud physics and chemistry, Beitr. Phys. Atmos.(1994) 321–334.Google Scholar
  2. 2.
    H. Maahs: Sulfur dioxide/water equilibria between 0 and 50 °C. An examination of data at low concentrations, in: D. Schryer (ed), Heterogeneous Atmospheric Chemistry, American Geophysical Union, Washington 1982, pp. 187–195.CrossRefGoogle Scholar
  3. 3.
    P. Brimblecombe, S.L. Clegg: The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem. 7 (1988) 1–18.CrossRefGoogle Scholar
  4. 4.
    T. E. Graedel, C. J. Weschler, M. L. Mandich: Influence of transition metal complexes on atmospheric droplet acidity, Nature 317(1985) 240–242.CrossRefGoogle Scholar
  5. 5.
    R. van Eldik, J. Kraft, Inorg. Chem. 28 (1989) 2297–2305.CrossRefGoogle Scholar
  6. 6.
    P. Brimblecombe, D. J. Spedding: The catalytic oxidation of micromolecular aqueous sulphur dioxide I, Atmos. Environ. 8 (1974) 937–945.CrossRefGoogle Scholar
  7. 7.
    S. Fuzzi: Study of iron(III) catalysed (sic) sulphur dioxide oxidation in aqueous solution over a wide range of pH, Atmos. Environ. 12 (1978) 1439–1442..CrossRefGoogle Scholar
  8. 8.
    L. R. Martin: Kinetic studies of sulfite oxidation in aqueous solution, in: J. G. Calvert (ed), SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Butterworth, Boston 1984, pp. 63ff.Google Scholar
  9. 9.
    I. Grgic, V. Hudnik, M. Bizjak, J. Levec: Aqueous S(IV) oxidation I. Catalytic effects of some metal ions, Atmos. Environ. 25A (1991) 1591–1597.Google Scholar
  10. 10.
    S. E. Schwartz: Gas-aqueous reactions of sulfur and nitrogen oxides in liquid-water clouds, in: J. G. Calvert (ed), SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Butterworth, Boston 1984, pp. 173ff.Google Scholar
  11. 11.
    S. E. Schwartz, J. E. Freiberg: Atmos. Environ. 15 (1981) 1129–1144.CrossRefGoogle Scholar

References

  1. 1.
    J. L. Ponche, Ch. George, Ph. Mirabel, J. Atmos. Chem. 16 (1993) 1.CrossRefGoogle Scholar
  2. 2.
    A. Bongartz, Ch. George, J. Kames, Ph. Mirabel, J. L. Ponche, U. Schurath, J. Atmos. Chem. 18(1994) 149.CrossRefGoogle Scholar
  3. 3.
    Ch. George, W. Behnke, V. Scheer, C. Zetzsch, L. Magi, J. L. Ponche, Ph. Mirabel, Geophys. Res. Lett, in press.Google Scholar
  4. 4.
    J. T. Jayne, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys. Chem. 94(1990) 6041.CrossRefGoogle Scholar
  5. 5.
    C. E. Kolb, D. R. Worsnop, M. S. Zahniser, P. Davidovits, D. R. Hanson, A. R. Ravishankara, L. F. Keyser, M. T. Leu, L. R. Williams, M. J. Molina, M. A. Tolbert: Laboratory studies of atmospheric heterogeneous chemistry, in: J.R. Baker (ed), Current Problems in Atmospheric Chemistry, in press.Google Scholar
  6. 6.
    Ch. George, J. L. Ponche, Ph. Mirabel, W. Behnke, V. Scheer, C. Zetzsch, J. Phys. Chem. 98(1994) 8780.CrossRefGoogle Scholar
  7. 7.
    J. T. Jayne, S. X. Duan, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys.Chem. 95 (1991) 6329.CrossRefGoogle Scholar
  8. 8.
    Ch. George, J. Lagrange, Ph. Lagrange, Ph. Mirabel, C. Pallares, J. L. Ponche, J. Geophys. Res. 99(1994) 1255.CrossRefGoogle Scholar
  9. 9.
    Ch. George, J. Y. Saison, J. L. Ponche, Ph. Mirabel, J. Phys. Chem. 98 (1994) 10857.CrossRefGoogle Scholar
  10. 10.
    D. Becker, A. Wanner, Heterogeneous processes of nitrogen oxide and nitrous acid on aqueous surfaces, presented at the XXth General Assembly of the European Geophysical Society, Hamburg 1995.Google Scholar
  11. 11.
    J. H. Hu, Q. Shi, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys. Chem.(1995) in press.Google Scholar

References

  1. 1.
    F. J. Dentener, P. J. Crutzen, J. Lelieveld, in Physico-Chemical Behaviour of Atmospheric Pollutants, published by the European Commission (1994) 14–17.Google Scholar
  2. 2.
    W. Kirchner, F. Welter, A. Bongartz, J. Kames, S. Schweighoefer, U. Schurath, J. Atmos. Chem. 10 (1990) 427–449.CrossRefGoogle Scholar
  3. 3.
    J. H. Hu, J. A. Shorter, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys. Chem. 97(1993)11037–11042.CrossRefGoogle Scholar
  4. 4.
    J. L. Ponche, Ch. George, Ph. Mirabel, J. Atmos. Chem. 16 (1993) 1–21.CrossRefGoogle Scholar
  5. 5.
    C. Wunderlich, A. Schlemm, K. Hesse, D. Hupperich, U. Schurath, Uptake of ozone by aqueous surfaces, in: K. H. Becker (ed), Tropospheric Oxidation Mechanisms, Air Pollution Research Report 54, EC, Luxembourg 1995, pp. 45–50, (ISBN 92-827-0080-1).Google Scholar
  6. 6.
    A. Bongartz, S. Schweighoefer, C. Roose, U. Schurath, J. Atmos. Chem. 20 (1995) 35–58.CrossRefGoogle Scholar
  7. 7.
    A. Schlemm, Computersimulation und Messung der Kontraktionvon laminaren Flössigkeitsstrahlen, Diploma Thesis, University of Bonn, 1994.Google Scholar
  8. 8.
    J. L. Duda, J. S. Vrentas, Chem. Eng. Sci. 22 (1967) 855–869.CrossRefGoogle Scholar
  9. 9.
    A. Nink, Untersuchung der Temperaturabhängigkeit des Strahlprofils eines laminaren Flössigkeitsstrahls, Diploma Thesis, University of Bonn, 1995.Google Scholar
  10. 10.
    W. Kirchner, Massen-Akkommodationskoeffizienten atmosphärischer Spurengase för die Grenzfläche Luft/Wasser, Dissertation, University of Bonn, 1989.Google Scholar
  11. 11.
    A. Bongartz, J. Kames, U. Schurath, Ch. George, Ph. Mirabel, J. L. Ponche, J. Atmos. Chem. 18(1994) 149–169.CrossRefGoogle Scholar
  12. 12.
    A. Bongartz, J. Kames, F. Welter, U. Schurath, J. Phys. Chem. 95 (1991) 1076–1082.CrossRefGoogle Scholar
  13. 13.
    A. Bongartz, Massen-Akkommodationskoeffizienten schwacher atmosphärischer Säuren und Basen, Dissertation, University of Bonn, 1993.Google Scholar
  14. 14.
    J. Kames, U. Schurath, J. Atmos. Chem. 15 (1992) 79–95.CrossRefGoogle Scholar
  15. 15.
    J. Kames, U. Schurath, J. Atmos. Chem. 20 (1995) 151–164.CrossRefGoogle Scholar
  16. 16.
    S. E. Schwartz, in: Physico-Chemical Behaviour of Atmospheric Pollutants, EC, Luxembourg 1994, pp. 891–900.Google Scholar
  17. 17.
    W. Winiwarter, H. Fierlinger, H. Puxbaum, M. C. Facchini, B. G. Arends, S. Fuzzi, D. Schell, U. Kaminski, S. Pahl, T. Schneider, A. Berner, I. Solly, C. Kruisz, J. Atmos. Chem. 21 (1995) 173–188.Google Scholar
  18. 18.
    M. Preiss, R. Maser, H. Franke, W. Jaeschke, J. Graf, Beitr. Phys. Atmos. 67 (1994) 341–351.Google Scholar
  19. 19.
    D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. A. Gardner, L. R. Watson, J. M. Van Doren, J. T. Jayne, Paul Davidovits, J. Phys. Chem. 93 (1989) 1159–1172.CrossRefGoogle Scholar
  20. 20.
    J. M. Van Doren, L. R. Watson, Paul Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys. Chem. 94 (1990) 3265–2369.CrossRefGoogle Scholar
  21. 21.
    J. T. Jayne, S. X. Duan, P. Davidovits, D. R. Worsnop, M. S. Zahniser, C. E. Kolb, J. Phys. Chem. 95 (1991) 6329–6336.CrossRefGoogle Scholar
  22. 22.
    Ch. George, J. L. Ponche, Ph. Mirabel, W. Behnke, V. Scheer, C. Zetzsch, J. Phys. Chem. 98(1994) 8780–8784.CrossRefGoogle Scholar
  23. 23.
    I. N. Tang, J. H. Lee, in: R. W. Johnson, G. E. Gordon (eds), The Chemistry of Acid Rain, ACS Symposium Series 1987, pp 109–117.Google Scholar
  24. 24.
    J. H. Lee, I. N. Tang, Atmos. Environ. 22 (1988) 1147–1151.CrossRefGoogle Scholar
  25. 25.
    M. Mozurkevich, J. G. Calvert, J. Geophys. Res. 93 (1988) 15889–15896.CrossRefGoogle Scholar
  26. 26.
    R. G. Utter, J. B. Burkholder, C. J. Howard, A. R. Ravishankara, J. Phys. Chem. 96 (1992) 4973–4979.CrossRefGoogle Scholar
  27. 27.
    M. Mozurkevich, P. H. McMurry, A. Gupta, J. G. Calvert, J. Geophys. Res. 92 (1987) 4163–4170.CrossRefGoogle Scholar
  28. 28.
    D. R. Hanson, J. B. Burkholder, C. J. Howard, A. R. Ravishankara, J. Phys. Chem. 96 (1992) 4979–4985.-2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Wolfgang Behnke
    • 1
  • Manfred Elend
    • 1
  • Christian George
    • 1
  • Heinz-Ulrich Kröger
    • 1
  • Volker Scheer
    • 1
  • Cornelius Zetzsch
    • 1
  1. 1.Fraunhofer-Institut för Toxikologie und AerosolforschungHannoverGermany

Personalised recommendations