Energy Transfer and Trapping in Spectrally Disordered Photosynthetic Membranes

  • A. Freiberg
  • T. Pullerits
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 6)


The very efficient transformation of solar energy into electrochemical free energy, which is subsequently utilized in dark biochemical reactions, takes place in a complex aggregate of pigment molecules and proteins called a photosynthetic unit (PSU). The main subunits of PSU are a reaction centre (RC), where the conversion of the energy of singlet excited states of RC pigiments into the potential energy of separated charges occurs, and a number of surrounding light-harvesting antenna pigment-protein complexes (LHC) which serve to absorb radiant energy and to transport excitations with possibly minimum losses to the RC. Usually, the major part of PSU is located within the lipid bilayer membrane, which in many cases determines that the energy transport takes place mainly in two dimensions instead of three dimensions. Green photosynthetic bacteria and cya-nobacteria have additional peripheral antenna systems, called respectively chlorosomes and phycobi1isomes, that are localized on the surface of the membrane.


Reaction Centre Transition Dipole Moment Excitation Transfer Reaction Centre Complex Fluorescence Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baltscheffsky (ed.): Current Research in Photosyntesis (Kluwer Academic Publishers, The Netherlands 1990)Google Scholar
  2. 2.
    H. Zuber: The Light Reactions (Elsevier Science Publishers, The Netherlands 1987) pp. 197–259Google Scholar
  3. 3.
    K. Sauer, L. A. Austin: Biochemistry 17, 2011 (1978)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Scherz, W. W. Parson: Biochim. Biophys. Acta 766, 606 (1984)Google Scholar
  5. 5.
    L. M. N. Duysens: Thesis (State University, Utrecht, The Netherlands 1952)Google Scholar
  6. 6.
    F. F. Litvin, V. A. Sineshchekov: Bioenergetics of Photosynthesis (Academic Press 1975) pp. 619–661Google Scholar
  7. 7.
    T. G. Monger, W. W. Parson: Biochim. Biophys. Acta 460, 393 (1977)PubMedCrossRefGoogle Scholar
  8. 8.
    A. Freiberg, V. I. Godik, T. Pullerits, K. Timpmann: Biochim. Biophys. Acta: 973, 93 (1989)CrossRefGoogle Scholar
  9. 9.
    G. Drews: Microbiol. Reviews 49, 59 (1985)Google Scholar
  10. 10.
    L. L. Shipman: Photochem. Photobiol. 31, 157 (1980)CrossRefGoogle Scholar
  11. 11.
    R. M. Pearlstein: Photochem. Photobiol. 35, 835 (1982)CrossRefGoogle Scholar
  12. 12.
    L. Skala, V. Kapsa: Chem. Phys. 137, 77 (1989)CrossRefGoogle Scholar
  13. 13.
    A. Freiberg, V. I. Godik, K. Timpmann: Progress in Photosynthesis Research. Vol. 1 (Martinus Nijhoff Publishers, The Netherlands 1987) pp. 45–48Google Scholar
  14. 14.
    H. -J. Kramer, J. D. Pennoyer, R. van Grondelle, W. H. J. Westerhuis, R. A. Niederman, J. Amesz: Biochim. Biophys. Acta 767, 735 (1984)Google Scholar
  15. 15.
    K. Mauring, I. Renge, R. Avarmaa: FEBS Lett. 223, 165 (1987)CrossRefGoogle Scholar
  16. 16.
    K. Huang, A. Rhys: Proc. Roy. Soc. Ser. A 204, 406 (1950)CrossRefGoogle Scholar
  17. 17.
    J. C. Chang: J. Chem. Phys. 67, 3901 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. Freiberg
    • 1
  • T. Pullerits
    • 1
  1. 1.Estonian Academy of SciencesInstitute of PhysicsTartuRussia

Personalised recommendations