Advertisement

Shape from Motion

  • Kenichi Kanatani
Chapter
Part of the Springer Series in Information Sciences book series (SSINF, volume 20)

Abstract

In Sect. 2.6, we analyzed the optical flow induced by orthographic projection of planar surface motion. We gave an analytical solution of the 3D recovery equations in terms of invariants constructed from image characteristics. These invariants correspond to irreducible representations of SO(2)—the group of rotations of the image coordinate system. We also discussed the geometrical meanings of these invariants. In the following, we give an analytical solution of the 3D recovery equations in terms of the invariants constructed in Sect. 2.6. We also study adjacency conditions of optical flow and their implications. Finally, we present a scheme of motion detection that does not require point-to-point correspondences between different image frames.

Keywords

Intersection Line Image Plane Optical Flow Planar Surface Flow Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. J. Gibson: The Perception of the Visual World (Houghton Mifflin, Boston, MA 1950)Google Scholar
  2. D. A. Gordon: Static and dynamic visual fields in human space perception. J. Opt. Soc. Am. 55, 1296–1303 (1965)ADSCrossRefGoogle Scholar
  3. J. J. Gibson: The Senses Considered as Perceptual Systems (Houghton Mifflin, Boston, MA 1966)Google Scholar
  4. J. C. Hay: Optical motions and space perception: An extension of Gibson’s analysis. Psychol. Rev. 73, 550–563 (1966)CrossRefGoogle Scholar
  5. J. J. Koenderink, A. J. van Doom: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Opt. Acta 22, 773–791 (1975)CrossRefGoogle Scholar
  6. J. J. Koenderink, A. J. van Doom: Visual perception of rigidity of solid shape. J. Math. Biol. 3, 79–85 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  7. D. N. Lee: A theory of visual control of braking based on information about time-to-collision. Perception 5, 437–459 (1976)CrossRefGoogle Scholar
  8. J. J. Koenderink, A. J. van Doom; Local structure of movement parallax of the plane. J. Opt. Soc. Am. 66, 717–723 (1976)ADSMathSciNetCrossRefGoogle Scholar
  9. J. J. Gibson: The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, MA 1979)Google Scholar
  10. S. Ullman: The Interpretation of Visual Motion (MIT Press, Cambridge, MA 1979)CrossRefGoogle Scholar
  11. D. Regan, K. Beverly, M. Cynader: The visual perception of the motion in depth. Sci. Am. 241 (1), 122–133 (1979)CrossRefGoogle Scholar
  12. W. F. Clocksin: Perception of surface slant and edge labels from optical flow: A computational approach. Perception 9, 253–269 (1980).CrossRefGoogle Scholar
  13. I. Hadani, G. Ishai, M. Gur: Visual stability and space perception in monocular vision: Mathematical model. J. Opt. Soc. Am. 70, 60–65 (1980)ADSCrossRefGoogle Scholar
  14. D. N. Lee: The optic flow field: The foundation of vision. Philos. Trans. R. Soc. Lond. B290, 169–179 (1980)ADSCrossRefGoogle Scholar
  15. H. C. Longuet-Higgins: The interpretation of a moving retinal image. Proc. R. Soc. Lond. B208, 385–397 (1980)ADSCrossRefGoogle Scholar
  16. K. Prazdny: Egomotion and relative depth map from optical flow. Biol. Cybern. 36, 87–102 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  17. J. J. Koenderink, A. J. van Doom: Exterospecific component of the motion parallax field. J. Opt. Soc. Am. 71, 953–957 (1981)ADSCrossRefGoogle Scholar
  18. D. D. Hoffman, B. E. Flinchbaugh: The interpretation of biological motion. Biol. Cybern 42, 195–204 (1982)zbMATHGoogle Scholar
  19. D. D. Hoffman: Inferring local surface orientation from motion fields. J. Opt. Soc. Am. 72, 888–892 (1982)ADSCrossRefGoogle Scholar
  20. J. H. Rieger: Information in optical flows induced by curved paths of observation. J. Opt. Soc. Am. 73, 339–344 (1983)ADSCrossRefGoogle Scholar
  21. H. C. Longuet-Higgins: The visual ambiguity of a moving plane. Proc. R. Soc. Lond. B223, 165–175 (1984)ADSCrossRefGoogle Scholar
  22. J. W. Roach, J. K. Aggarwal: Determining the movement of objects from a sequence of images. IEEE Trans. PAMI 2, 554–562 (1980)CrossRefGoogle Scholar
  23. H.-H. Nagel: Representation of moving rigid objects based on visual observations. Computer 14(8), 29–39 (1981)CrossRefGoogle Scholar
  24. T. S. Huang, R. Y. Tsai: “Image sequence analysis: Motion estimation”, in Image sequence Analysis, ed. by T. S. Huang, Springer Ser. Info. Sci., Vol. 5 (Springer, Berlin, Heidelberg 1981)CrossRefGoogle Scholar
  25. H. C. Longuet-Higgins: A computer algorithm for reconstructing a scene from two projections. Nature 293(10), 133–135 (1981)ADSCrossRefGoogle Scholar
  26. K. Prazdny: Determining the instantaneous direction of motion from optical flow generated by a curvilinear moving observer. Comput. Vision, Graphics Image Process. 17, 124–248 (1981)Google Scholar
  27. R. Bruss, B. K. P. Horn: Passive navigation. Comput. Vision, Graphics Image Process. 21, 3–20 (1983)CrossRefGoogle Scholar
  28. B.L. Yen, T. S. Huang: Determining 3-D motion and structure of a rigid body using the spherical projection. Comput. Vision, Graphics Image Process. 21, 21–32 (1983)ADSCrossRefGoogle Scholar
  29. J.-Q. Fang, T. S. Huang: Solving three-dimensional small-rotation motion equations: Uniqueness, algorithm, and numerical results. Comput. Vision, Graphics Image Process. 26, 183–206 (1984)zbMATHCrossRefGoogle Scholar
  30. R. Y. Tsai, T. S. Huang: Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. PAMI 6, 13–27 (1984)CrossRefGoogle Scholar
  31. K. Sugihara, N. Sugie: Recovery of rigid structure from orthographically projected optical flow. Comput. Vision, Graphics Image Process. 27, 309–320 (1984)CrossRefGoogle Scholar
  32. K. Kanatani: Tracing planar surface motion from a projection without knowing the correspondence. Comput. Vision, Graphics Image Process 29, 1–12 (1985a)zbMATHCrossRefGoogle Scholar
  33. K. Kanatani: Detecting the motion of a planar surface by line and surface integrals. Comput. Vision, Graphics Image Process. 29, 13–22 (1985b)zbMATHCrossRefGoogle Scholar
  34. A. M. Waxman, S. Ullman: Surface structure and three-dimensional motion from image flow kinematics. Int. J. Robotics Res. 4, 72–94 (1985)CrossRefGoogle Scholar
  35. A.M. Waxman, K. Wohn: Contour evolution, neighborhood deformation, and global image flow: planar surfaces in motion. Int. J. Robotics Res. 4, 95–108 (1985)CrossRefGoogle Scholar
  36. S. J. Maybank: The angular velocity associated with the optical flowfield arising from motion through a rigid environment. Proc. R. Soc. Lond. A401, 317–326 (1985)ADSMathSciNetCrossRefGoogle Scholar
  37. M. Subbarao, A. M. Waxman: Closed form solution to image flow equations for planar surface in motion. Comput. Vision, Graphics Image Process. 36, 208–228 (1986)CrossRefGoogle Scholar
  38. K. Kanatani: Structure and motion from optical flow under orthographic projection. Comput. Vision, Graphics Image Process. 35, 181–199 (1986)zbMATHCrossRefGoogle Scholar
  39. K. Kanatani: Structure and motion from optical flow under perspective projection. Comput. Vision, Graphics Image Process. 38, 122–146 (1987)zbMATHCrossRefGoogle Scholar
  40. B.K. P. Horn: Motion fields are hardly ambiguous. Int. J. Comput. Vision 1, 259–274 (1987)CrossRefGoogle Scholar
  41. K. Kanatani, K. Yamada: Model-based determination of object position and orientation without matching. J. Infor. Process. 12(1), 1–8 (1988)Google Scholar
  42. J. J. Koenderink, A. J. Van Doom: The singularities of the visual mapping. Biol. Cybern. 24, 51–59 (1979).CrossRefGoogle Scholar
  43. J. J. Koenderink, A. J. Van Doom: Internal representation of solid shape with respect to vision. Biol. Cybern. 32, 211–216 (1979)zbMATHCrossRefGoogle Scholar
  44. K. Sugihara: Automatic construction of junction dictionaries and their exploitation for analysis for range data. Proc. 6th Intl. Joint Conf. Artificial Intelligence, August 1979, Tokyo, Japan, pp. 859–864Google Scholar
  45. I. Chakravarty, H. Freeman: Characteristic views as a basis for three-dimensional object representation. Proc. SPIE Conf. Robot Vision, 336, May 1982, Arlington, VA, pp. 37–45.Google Scholar
  46. C. Thorpe, S. Shafer: Correspondence in line drawings of multiple views. Proc. 8th Intl. Joint Conf. Artificial Intelligence, August 1983, Karlsruhe, FRG, pp. 959–965Google Scholar
  47. G. Fekete, L. S. Davis: Property spheres: A new representation for 3-D object recognition, Proc. IEEE Workshop on Computer Vision: Representation and Control, April-May 1984, Annapolis, MD, pp. 192–201Google Scholar
  48. R. Scott: Graphics and prediction from models. Proc. DARPA Image Understanding Workshop, October 1984, New Orleans, LA, pp. 98–106Google Scholar
  49. P. J. Besl, R. C. Jain: Three-dimensional object recognition. Comput. Surveys 17, 75–145 (1985)CrossRefGoogle Scholar
  50. K. Ikeuchi: Generating an interpretation tree from a CAD model for 3D-object recognition in bin-picking tasks, Int. J. Comput. Vision 1, 145–165 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Kenichi Kanatani
    • 1
  1. 1.Department of Computer ScienceGunma University KiryuJapan

Personalised recommendations