Advertisement

A Pinatubo Climate Modeling Investigation

  • J. Hansen
  • M. Sato
  • R. Ruedy
  • A. Lacis
  • K. Asamoah
  • S. Borenstein
  • E. Brown
  • B. Cairns
  • G. Caliri
  • M. Campbell
  • B. Curran
  • S. de Castro
  • L. Druyan
  • M. Fox
  • C. Johnson
  • J. Lerner
  • M. P. McCormick
  • R. Miller
  • P. Minnis
  • A. Morrison
  • L. Pandolfo
  • I. Ramberrann
  • F. Zaucker
  • M. Robinson
  • P. Russell
  • K. Shah
  • P. Stone
  • I. Tegen
  • L. Thomason
  • J. Wilder
  • H. Wilson
Part of the NATO ASI Series book series (volume 42)

Abstract

Global cooling of the Earth’s surface has been observed following the largest volcanic eruptions of the past century, although the average cooling is perhaps less than expected from simple energy balance considerations. The Mount Pinatubo eruption, with both the climate forcing and response observed better than previous volcanoes, allows a more quantitative analysis of the sensitivity of climate to a transient forcing. We describe the strategy and preliminary results of a comprehensive investigation of the Pinatubo case.

Keywords

Optical Depth Aerosol Optical Depth Climate Sensitivity Tropospheric Temperature Aerosol Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramopoulos F (1991) A new fourth-order enstrophy and energy conserving scheme, Mon Wea Rev 119: 128–133CrossRefGoogle Scholar
  2. AGU (1992) Volcanism and Climate Change, American Geophysical Union Special Report ISBN 87590-818–7, Washington, 27 ppGoogle Scholar
  3. Barkstrom B, Harrison E, Smith G, Green, R Kibler J, Cess R (1989) Earth Radiation Budget Experiment (ERBE) Archival and April 1985 Results, Bull Amer Meteorol Soc 70: 1254–1262CrossRefGoogle Scholar
  4. Del Genio AD, Yao MS (1993) Efficient cumulus parameterization for long-term climate studies: the GISS scheme, Amer Meteorol Soc Mono 46: 181–184Google Scholar
  5. Del Genio AD, Yao MS, Kovari W, Lo KKW (1995) A prognostic cloud water parameterization for global climate models, J Climate (submitted)Google Scholar
  6. Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichon and Pinatubo, Geophys Res Lett 19: 2313–2316CrossRefGoogle Scholar
  7. Forsyth PY (1988) In the wake of Etna, 44 BC, Classical Antiquity 7: 49–57Google Scholar
  8. Franklin B (1784) Meteorological imaginations and conjectures Paper read December 22, 1784 to Literary and Philosphical Society of Manchester, reprinted by Sigurdsson (1982)Google Scholar
  9. Gates WL (1992) AMIP: the atmospheric model intercomparison project, Bull Amer Meteorol Soc 73: 1962–1970CrossRefGoogle Scholar
  10. Gelman ME (1991) Stratospheric monitoring with TOVS data, Palaeogeo Palaeoclim Palaeoecol 90: 75–78Google Scholar
  11. Gilliland RL, Schneider SH (1984) Volcanic, CO2 and solar forcing of Northern and Southern Hemisphere surface air temperatures, Nature 310: 38–41CrossRefGoogle Scholar
  12. Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ (1992) Arctic and Antarctic Sea Ice, 1978–1987, NASA SP-511, Washington DC, 290 ppGoogle Scholar
  13. Graf HF, Kirchner I, Robock A, Schult I (1993) Pinatubo eruption winter climate effects: model versus observations, Clim Dyn 9: 81–93Google Scholar
  14. Graf HF, Perlwitz J, Kirchner I (1994) Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions, Beitr Phys Atmosph 67: 3–13Google Scholar
  15. Handler P (1986) Possible association between the climatic effects of stratospheric ae 0 ‘37nd sea surface temperatures in the eastern tropical Pacific Ocean, J Climatology 6: 31–41CrossRefGoogle Scholar
  16. Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J Geophys Res 93: 9341–9364CrossRefGoogle Scholar
  17. Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms, Geophys Mono 29: 130–163CrossRefGoogle Scholar
  18. Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption, Geophys Res Lett 19: 215–218CrossRefGoogle Scholar
  19. Hansen J, Lacis A, Ruedy R, Sato M, Wilson H (1993) How sensitive is the world’s climate? Res Explor 9: 142–158Google Scholar
  20. Hansen JE, Lebedeff S (1987) Global trends of measured surface air temperature, J Geophys Res 92: 13345–13372CrossRefGoogle Scholar
  21. Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: models I and II, Mon Wea Rev 111: 609–662CrossRefGoogle Scholar
  22. Hansen JE, Travis LD (1974) Light scattering in planetary atmospheres, Space Sci Rev 16: 527–610CrossRefGoogle Scholar
  23. Hansen JE, Wang WC, Lacis AA (1978) Mount Agung eruption provides test of a global climatic perturbation, Science 199: 1065–1068CrossRefGoogle Scholar
  24. Hansen J, Wilson H, Sato M, Ruedy R, Shah K, Hansen E (1995) Satellite and surface temperature data at odds? Climatic Change (in press)Google Scholar
  25. Harrington CR (1992) The Year Without a Summer Canadian Museum of Nature, Ottawa, 576 PPGoogle Scholar
  26. Hartke GJ, Rind D (1995) An improved boundary layer model for the GISS GCM (in preparation)Google Scholar
  27. Hofmann DF, Rosen JM (1983) Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon, Science 222: 325–327CrossRefGoogle Scholar
  28. Hunt BG (1977) A simulation of the possible consequences of a volcanic eruption on the general circulation of the atmosphere, Mon Wea Rev 105: 247–260CrossRefGoogle Scholar
  29. Intergovernmental Panel on Climate Change (1992) Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment Houghton JT, Callander BA, Varney SK (eds), Cambridge Univ Press, 200 ppGoogle Scholar
  30. Jensen EG, Toon OB (1992) The potential effects of volcanic aerosols on cirrus cloud microphysics, Geophys Res Lett 19: 1759–1762CrossRefGoogle Scholar
  31. Jiang X, Fung I (1994) Ocean response to surface heat anomalies, J Climate, 7: 783–791CrossRefGoogle Scholar
  32. Kodera K (1993) Influence of the stratospheric circulation change on the troposphere in the Northern Hemisphere winter, in The Role of the Stratosphere in Global Change, ML Chanin ed, Springer-Verlag, Berlin, pp 227–243Google Scholar
  33. Kodera K, Yamazaki K (1994) A possible influence of recent polar stratospheric coolings on the troposphere in the northern hemisphere winter, Geophys Res Lett 21: 809–812CrossRefGoogle Scholar
  34. Lambert A, Grainger RG, Remedios JJ, Rodgers CD, Corney M, Taylor FW (1993) Measurements of the evolution of the Mt Pinatubo aerosol cloud by ISAMS, Geophys Res Lett 20: 1287–1290CrossRefGoogle Scholar
  35. Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in global surface air temperature, Theor Appl Climatol 41: 11–21CrossRefGoogle Scholar
  36. Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in gauge-corrected, global precipitation, Inter J Climatol 10: 111–127CrossRefGoogle Scholar
  37. MacCracken MC, Luther FM (1984) Preliminary estimate of the radiative and climatic effects of the El Chichon eruption, Geofisica Internacional 23: 385–401Google Scholar
  38. Marengo J, Druyan L (1994) Validation of model improvements for the GISS GCM, Clim Dyn 10: 163–179CrossRefGoogle Scholar
  39. Mass C, Schneider SH (1978) Statistical evidence on the influence of sunspots and volcanic dust on long-term temperature trends, J Atmos Sci 34, 1995–2004CrossRefGoogle Scholar
  40. Matthews E (1983) Global vegetation and land-use: new high-resolution data bases for climate studies, J Clim Appl Meteorol 22: 474–487CrossRefGoogle Scholar
  41. Matthews E, (1984) Prescription of land-surface boundary conditions in GISS GCM II: a simple method based on fine-resolution data bases, NASA Technical Memorandum 86096Google Scholar
  42. McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt Pinatubo eruption, Nature 373: 399–404CrossRefGoogle Scholar
  43. Miller RL, Jiang X (1995) Surface heat fluxes and coupled variability in the tropics of a coupled general circulation model, J Climate (in press)Google Scholar
  44. Minnis P, Harrison EF Stowe LL, Gibson GG, Denn FM, Doelling DR, Smith WL (1993) Radiative climate forcing by the Mount Pinatubo eruption, Science 259: 1411–1415CrossRefGoogle Scholar
  45. Mitchell JM (1961) Recent secular changes of global temperature, Ann N Y Acad Sci 95, 235–250CrossRefGoogle Scholar
  46. NOAA (1995) Sixth Annual Climate Assessment 1994 NOAA Climate Analysis Center, Camp Springs Md (in press)Google Scholar
  47. Oort AH (1983) Global Atmospheric Circulation Statistics, 1958–1973, NOAA Prof Paper 14, Rockville Md, 180 ppGoogle Scholar
  48. Prather MJ (1986) Numerical advection by conservation of second order moments, J Geophys Res 91: 6671–6680CrossRefGoogle Scholar
  49. Reynolds RW (1988) A real-time global sea-surface temperature analysis, J Climate 1: 75–86CrossRefGoogle Scholar
  50. Reynolds RW, Marsico DC (1993) An improved real-time global sea surface temperature analysis, J Climate 6: 114–119CrossRefGoogle Scholar
  51. Rind D, Balachandran NK, Suozzo R (1992) Climate change and the middle atmosphere part II: the impact of volcanic aerosols, J Climate 5: 189–208CrossRefGoogle Scholar
  52. Rind D, Suozzo R, Balachandran NK, Lacis A, Russell G (1988) The GISS global climate/middle atmosphere model Part I: model structure and climatology, J Atmos Sci 45: 371–386CrossRefGoogle Scholar
  53. Robock A (1983) The dust cloud of the century, Nature 301: 373–374CrossRefGoogle Scholar
  54. Robock A (1984) Climate model simulations of the effects of the El Chichon eruption, Geof Int 23: 403–414Google Scholar
  55. Robock A (1991) The volcanic contribution to climate change of the past 100 years, in Greenhouse-Gas-Induced Climatic Change: A Critical Evaluation of Simulations and Observations, ed ME Schlesinger, Elsevier, Amsterdam, pp 429–443Google Scholar
  56. Robock A, Mao J (1992) Winter warming from large volcanic eruptions, Geophys Res Lett 12: 2405–2408CrossRefGoogle Scholar
  57. Rosenzweig C, Abramopoulos F (1995) Land surface model development for the GISS GCM, J Climate (submitted)Google Scholar
  58. Rossow WB, Zhang YC (1995) Calculation of the top-of-the-atmosphere radiative fluxes from physical quantities derived from ISCCP data sets Part II: validation and results, J Geophys Res 100: 1167–1197CrossRefGoogle Scholar
  59. Russell GL, Miller JR, Rind D (1995) A coupled atmosphere-ocean model for transient climate change studies, Atmos Ocean (submitted)Google Scholar
  60. Russell PB, Livingston JM, Dutton EG, Pueschel RF, Reagan JA, DeFoor TE, Box MA, Allen D, Pilewskie P, Herman BM, Kinne SA, Hofmann DJ (1993) Pinatubo and pre-Pinatubo optical depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data, J Geophys Res 98: 22,969–22,985Google Scholar
  61. Russell PB, Livingston JM, Pueschel RF, Pollack JB, Brooks SL, Hamill PJ, Hughes JJ, Thomason LW, Stowe LL, Deshler T, Dutton EG, Bergstrom RW (1995) Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J Geophys Res (submitted)Google Scholar
  62. Sassen K, Starr DO, Mace GG, Poellot MR, Melfi SH, Eberhard WL, Spinhirne JD, Elorante EW, Hagen DE, Hallett J (1995) The 5–6 December 1991 FIRE II jet stream cirrus case study: possible influences of volcanic aerosols, J Atmos Sci 52: 97–132CrossRefGoogle Scholar
  63. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990, J Geophys Res 98: 22,987–22,994CrossRefGoogle Scholar
  64. Schneider SH, Mass C (1975) Volcanic dust, sunspots, and temperature trends, Science 190: 741–746Google Scholar
  65. Self S, Rampino MR (1988) The relationship between volcanic eruptions and climate change: still a conundrum? Eos 69: 74–86CrossRefGoogle Scholar
  66. Shah KP, Rind D (1995) Use of microwave brightness temperatures with a general circulation model, J Geophys Res (in press)Google Scholar
  67. Sigurdsson H (1982) Volcanic pollution and climate: the 1783 Laki eruption, EOS Trans Amer Geophys Union 63: 601–603Google Scholar
  68. Spencer RW, Christy JR (1993) Precision lower stratospheric temperature monitoring with the MSU: technique, validation, and results 1979–1991, J Clim 6: 1194–1204CrossRefGoogle Scholar
  69. Spencer RW, Christy JR, Grody NC (1991) Precision tropospheric temperature monitoring 1979–90, Palaeogeog Palaeoclim Palaeoecol 90: 113–120Google Scholar
  70. Stommel H, Stommel E (1979) The year without a summer, Sci Amer 240 176–186CrossRefGoogle Scholar
  71. Stommel H, Stommel E (1983) Volcano Weather, the Story of 1816, The Year Without a Summer, Seven Seas Press, Newport, RI, 177 ppGoogle Scholar
  72. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath, Science 224: 1191–1198CrossRefGoogle Scholar
  73. Stothers RB, Rampino MR (1983) Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, Geophy Res 88 6357–6371CrossRefGoogle Scholar
  74. Wang PH, Minnis P, Yue GK (1995) Extinction coefficient (1 um) properties of high-altitude clouds from solar occultation measurements (1985–1990): evidence of volcanic aerosol effect, J Geophys Res 100: 3181–3199CrossRefGoogle Scholar
  75. Wilson C (1992) Workshop on World Climate in 1816: a summary and discussion of results in The Year Without a Summer? World Climate in 1816, ed CR Harrington, Canadian Museum of Nature, Ottawa, pp 523–555Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. Hansen
    • 1
  • M. Sato
    • 1
  • R. Ruedy
    • 1
  • A. Lacis
    • 1
  • K. Asamoah
    • 2
  • S. Borenstein
    • 3
  • E. Brown
    • 4
  • B. Cairns
    • 1
  • G. Caliri
    • 1
  • M. Campbell
    • 5
  • B. Curran
    • 4
  • S. de Castro
    • 3
  • L. Druyan
    • 1
  • M. Fox
    • 4
  • C. Johnson
    • 2
  • J. Lerner
    • 1
  • M. P. McCormick
    • 6
  • R. Miller
    • 1
  • P. Minnis
    • 6
  • A. Morrison
    • 3
  • L. Pandolfo
    • 1
  • I. Ramberrann
    • 2
  • F. Zaucker
    • 1
  • M. Robinson
    • 2
  • P. Russell
    • 7
  • K. Shah
    • 1
  • P. Stone
    • 8
  • I. Tegen
    • 1
  • L. Thomason
    • 6
  • J. Wilder
    • 4
  • H. Wilson
    • 1
  1. 1.Goddard Institute for Space StudiesNASANew YorkUSA
  2. 2.Andrew Jackson High SchoolCambria HeightsUSA
  3. 3.York CollegeJamaicaUSA
  4. 4.Bronx High School of ScienceBronxUSA
  5. 5.City College of New YorkUSA
  6. 6.NASA Langley Research CenterHamptonUSA
  7. 7.NASA Ames Research CenterMoffett FieldUSA
  8. 8.Center for MeteorologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations