Femtosecond spectroscopy and vibrational coherence of membrane-bound RCs of Rhodobacter sphaeroides genetically modified at Positions M210 and L181

  • Marten H. Vos
  • Michael R. Jones
  • C. Neil Hunter
  • Jacques Breton
  • Jean-Christophe Lambry
  • Jean-Louis Martin
Conference paper


The mechanism of primary charge separation in bacterial reaction centers is still subject to debate [1]. Amongst other questions, the functional role of coherent motions from non-thermalized vibrational states has to be evaluated. The potential energy surface of the excited donor state P* is strongly displaced with respect to the ground state for a number of low-frequency vibrational modes. This has been extensively documented by photochemical holeburning [2, 3, 4] and resonance Raman [5,6] studies. Using femtosecond spectroscopy to monitor oscillations in the stimulated emission band shape, we have previously shown that phase correlations for those modes are maintained on the timescale of electron transfer [7,8]. In the usual assumption that vibrational dephasing precedes or at most is concomitant with the processes of energy exchange, these observations imply that the entire vibrational manifold of P* is not thermalized on the timescale of ET.


Potential Energy Surface Transient Absorption Spectrum Ground State Absorption Primary Charge Separation Bacterial Reaction Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Photosynthetic Reaction Center, Deisenhofer, J. & Norris, J.R., eds. Academic Press, New York, 1993.Google Scholar
  2. 2.
    Johnson, S.G., Tang, D., Jankowiak, R., Hayes, J.M., Small, G.J. & Tiede, D.M. (1990) J. Phys. Chem. 94, 5849–5855.CrossRefGoogle Scholar
  3. 3.
    Lyle, P.A., Kolaczkowski, S.V. & Small, G.R. (1993) J. Phys. Chem. 97, 6924–6933.CrossRefGoogle Scholar
  4. 4.
    Middendorf, T.R., Mazzola, L.T., Gaul, D.F., Schenck, C.C. & Boxer, S.G. (1991) J. Phys. Chem. 95, 10142–10151.CrossRefGoogle Scholar
  5. 5.
    Shreve, A.P., Cherepy, N.J., Franzen, S., Boxer, S.G. & Mathies, R.A. (1991) Proc. Natl. Acad. Sei. USA 88,11207–11211.CrossRefGoogle Scholar
  6. 6.
    Palanappian, V., Aldema, M.A., Frank, H.A. & Bocian, D.F. (1992) Biochemistry 31, 11050–11058.CrossRefGoogle Scholar
  7. 7.
    Vos, M.H., Rappaport, F., Lambry, J.-C, Breton, J. & Martin, J.-L. (1993) Nature 363, 320–325.CrossRefGoogle Scholar
  8. 8.
    Vos, M.H., Jones, M.R., Hunter, C.N., Breton, J., Lambry, J.-C. & Martin, J.-L. (1994) Biochemistry 33, 6750–6757.PubMedCrossRefGoogle Scholar
  9. 9.
    Jia, Y., DiMagno, T.J., Chan, C.-K., Wang, Z., Du, M., Hanson, D.K., Schiffer, M., Norris, J.R., Fleming, G.R. & Popov, M.S. (1993), J. Phys. Chem. 97, 13180–13191.CrossRefGoogle Scholar
  10. 10.
    Nagarajan, V., Parson, W.W., Davis, D. & Schenck, C. (1993) Biochemistry 32, 12324–12336.PubMedCrossRefGoogle Scholar
  11. 11.
    Finkele, U., Lauterwasser, C, Zinth, W., Gray, K.A. & Oesterhelt, D. (1990) Biochemistry 29, 8517–8521.PubMedCrossRefGoogle Scholar
  12. 12.
    Nagarajan, V., Parson, W.W., Gaul, D. & Schenck, C. (1990) Proc. Natl. Acad. Sei. USA 87, 7888–7892.CrossRefGoogle Scholar
  13. 13.
    Chan, C.-K., Chen, L.X-Q., DiMagno T.J., Hanson D.K., Nance S.L., Schiffer M., Norris, J.R. & Fleming, G.R. (1991) Chem. Phys. Lett. 176, 366–372.CrossRefGoogle Scholar
  14. 14.
    Hamm, P., Gray, K.A., Oesterhelt, D., Feick, R., Scheer, H. & Zinth, W. (1993) Biochim. Biophys. Acta 1142, 99–105.CrossRefGoogle Scholar
  15. 15.
    Schochat, S., Arlt, T., Francke, C, Gast, P., van Noort, P.I., Otte, S.C.M., Schelvis, H.P.M., Schmidt, S., Vijgenboom, E., Vrieze, J., Zinth, W. & Hoff, A.J. (1994) Photosynth. Res. 40, 55–66.CrossRefGoogle Scholar
  16. 16.
    Jones, M.R., Heer-Dawson, M., Mattioli, T.A., Hunter, C.N. & Robert, B. (1994) FEBS Lett. 339,18–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Jones, M.R., Visschers, R.W., van Grondelle, R. & Hunter, C.N. (1992) Biochemistry 31, 4458–4465.PubMedCrossRefGoogle Scholar
  18. 18.
    Gray, K.A., Farchaus, J.W., Wachtveitl, J., Breton, J. & Oesterhelt, D.A. (1990) EMBO J. 9, 2061–2070.PubMedGoogle Scholar
  19. 19.
    Breton, J., Martin, J.-L., Lambry, J.-C, Robles, S.J. & Youvan, D.C. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.) pp. 293–302, Springer, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marten H. Vos
    • 1
  • Michael R. Jones
    • 2
  • C. Neil Hunter
    • 2
  • Jacques Breton
    • 3
  • Jean-Christophe Lambry
    • 1
  • Jean-Louis Martin
    • 1
  1. 1.Laboratoire d’Optique Appliquée, INSERM U275, CNRS URA1406Ecole Polytechnique-ENSTAPalaiseauFrance
  2. 2.Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and BiotechnologyUniversity of Sheffield, Western BankSheffieldUK
  3. 3.CEN de SaclaySBE/DBCMGif-sur-Yvette CedexFrance

Personalised recommendations