Skip to main content

A Guide to Automated Weather Station Networks in North America

  • Chapter
Book cover Advances in Bioclimatology_4

Part of the book series: Advances in Bioclimatology ((ADVS BIOCLIMAT.,volume 4))

Abstract

Automated weather station (AWS) networks are increasingly being used to gather weather data for agricultural and other bioclimatic applications. Many manually read conventional weather station (CWS) networks are being replaced with AWS networks. The use of AWS networks increased rapidly during the 1980s because of improvements in battery-powered dataloggers and computer communications. Although CWS networks continue to provide the basic climate information, AWS networks have the ability to gather and disseminate greater quantities of data at more frequent intervals than CWS networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AASC (American Association of State Climatologists) (1985) Standards for instrumentation at automated stations. US Dep Commerce, National Climatic Data Center, Asheville, North Carolina. The State Climatologist 9 (4), pp 12–14

    Google Scholar 

  • Aceves-Navarro LA, Hubbard KG, Schmidt J (1988) Group calibration of silicon cellpyranometers for use in an automated network. J Atmos Oceanic Technol 5:875–879

    Article  Google Scholar 

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimates of évapotranspiration. Agron J 81:650–662

    Article  Google Scholar 

  • Arkin GF, Dugas WA (1981) Making weather and climate dependent crop management decisions. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc, Boston, pp 223–237

    Google Scholar 

  • Baldridge M, Byrn J, McElroy JH (1983) International meteorological satellite system: issues andopinions. Nov 1983, US Dep Comm, Washington, DC, pp 9–33

    Google Scholar 

  • Bausch WC (1990) Sensor height effect on calculated reference évapotranspiration. Trans ASAE 33 (3):791–798

    Google Scholar 

  • Bartholic J, Fear F (1988) Agricultural weather information systems evaluation project. Final RepMich St Univ and USDA Ext Ser

    Google Scholar 

  • Baynton HW (1976) Errors in wind run estimates from rotational anemometers. Bull AmMeteorol Soc 57:1127–1130

    Article  Google Scholar 

  • Brock FV (ed) (1984) Instructor’s handbook on meteorological instrumentation. NCAR/TN-237 + IA. Natl Center Atmos Res, Boulder

    Google Scholar 

  • Brown PW (1987) Using a computer bulletin board as an agricultural weather information system. In: Preprint Vol 18th Conf Agric For Meteor, 8th Conf Biometeor Aerobiol, 14–18 Sept 1987, AMS, Boston, pp 67–69

    Google Scholar 

  • Brown PW (1989) Accessing the Arizona meteorological network by computer. Ext Rep 8733,Univ of Arizona, Tucson

    Google Scholar 

  • Brown PW, Owen-Joyce SJ, Daughtry CST, Kustas WP (1990) Effect of underlying surface on ground-based environmental data collected in an arid region. Poster: ASA Annu Meet 21-26 Oct 1990, San Antonio

    Google Scholar 

  • Curry RB, Klinck JC, Holman JR, Elwell DL, Sciarini MJ (1988) Current Ohio experience with anautomated weather station network. App Eng Agric 4 (2): 150–155

    Google Scholar 

  • Doorenbos J (1976) Agro-meteorological field stations. Irrig Drain Pap 27, FAO Rome.

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO Irri Drain Pap No 24. UN FAO, Rome

    Google Scholar 

  • Dong A, Grattan SR, Carroll JJ, Prashar CRK (1992) Estimation of daytime net radiation overwell-watered grass. ASCE J Irrig Drain 118 (3):466–479

    Article  Google Scholar 

  • Dugas WA Jr, Arkin GF, Heuer ML (1984) A Texas weather advisory program. Texas Agric Exp Stn, MP-1562

    Google Scholar 

  • Field RT, Fritschen LJ, Kanemasu ET, Smith EA, Stewart JB, Verma SB, Kustas WP (1992) Calibration, comparison, and correction of net radiation instruments used during FIFE. J Geophys Res 97:18681–18695

    Google Scholar 

  • Fritschen LJ (1967) Net and solar radiation relations over irrigated fields. Agric Meteorol 4:55–62

    Article  Google Scholar 

  • Fritschen LJ, Gay LW (1979) Environmental instrumentation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fulton AE, Beede RH, Phene RC (1991) Implementing CIMIS at the farm level: a grower’s experience in walnuts. California Agric 45 (5):38–40

    Google Scholar 

  • Gandin LS (4970) The planning of meteorological station networks. WMO Tech Note 111, World Meteor Organ, Geneva

    Google Scholar 

  • Gill GC (1983) Comparison testing of selected naturally ventilated solar radiation shields. FinalRep Contract #NA-82–0A-A-266 NOAA, St Louis

    Google Scholar 

  • Goff J, Gratch S (1946) Low-pressure properties of water from -160 to 212F. Trans ASHVE 52:95- 122

    Google Scholar 

  • Hahn GL (1981) Use of weather data in the rational selection of livestock management practices. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc, Boston, pp 362–382

    Google Scholar 

  • Heerman DF (1981) Management of irrigation systems with water budgets. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc, Boston, pp 247–256

    Google Scholar 

  • Howell TA, Mack DW, Phene CJ, Davis KR, McCormick RL (1984) Automated weather datacollection for research in irrigation scheduling. Trans ASAE 27 (2):386–391

    Google Scholar 

  • Hubbard KG (1988) Collection, quality control and dissemination of weather data for irrigation and other operations in an automated setting. In: Hay D (ed) Planning now for irrigation and drainage in the 21st century. 18–21 July 1988 ASCE, New York, pp 732–739

    Google Scholar 

  • Hubbard KG (1994) Spatial variability of daily weather variables in the high plains of the USA.Agric For Meteorol 68:29–41

    Google Scholar 

  • Hubbard KG, Hines JR (1991) User guide for the automated weather data network system. High Plains Climate Center, Lincoln, Nebraska, 39 pp

    Google Scholar 

  • Hubbard KG, Wilhite DA, Meyer SJ, Booysen J, Sagar R, Schmidt JJ, Hines JR (1987) A demonstration and evaluation of the use of climate information to support irrigation scheduling and other agricultural operations. Ctr Agric Meteorol Climatol Prog Rep 87–4, Univ of Nebraska, Lincoln

    Google Scholar 

  • Hubbard KG, Rosenberg NJ, Nielsen DC (1983) Automated weather data network for agriculture. J Water Resour Plan Management ASCE 109:213–222

    Article  Google Scholar 

  • Jensen ME (1973) Consumptive use of water and irrigation requirements. ASCE, New York

    Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements.ASCE Manuals Rep on Eng Pract No 70. Am Soc Civ Eng, New York

    Google Scholar 

  • Jones AL, Fisher PD, Croft BA (1981) Implementing pest management models using real time weather data. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc, Boston, pp 266- 272

    Google Scholar 

  • Kincaid DC, Heermann DF (1974) Scheduling irrigations using a programmable calculator. USDep Agric, Agric Res Serv, ARS-NC-12, 55 pp

    Google Scholar 

  • Ley TW (1988) Washington public agricultural weather system. Wash St Univ Ext and Wash Energy Ext Serv. Wash Irrig 9:1–8

    Google Scholar 

  • Ley TW, Evans RG (1990) Washington public agricultural weather system. Pap OP-311 3rd NatlIrrig Symp, 28 Oct—1 Nov 1990, Phoenix

    Google Scholar 

  • Ley TW, Kroeger MW (1988) Washington public agricultural weather system. Paper PNR880–106, ASAE Annu Meet, 28–30 Sep 1988, Pendleton, pp 12

    Google Scholar 

  • List RJ (1963) Smithsonian meteorological tables. Smithsonian Inst, Washington, DC

    Google Scholar 

  • Lowe PR (1976) An approximating polynomial for the computation of saturation vapor pressure. J Appl Meteorol 16:100–103

    Article  Google Scholar 

  • MacCallum DH, Nestlebush MJ (1983) The geostationary operational environmental satellite data collection system. NOAA Tech Mem NESDIS 2. US Dep Commerce, Washington, DC Mahrt L (1986) Nocturnal topoclimatology. World Meteorological Organization, Geneva, WCD-117 WMO/TD No 132, 76 pp

    Google Scholar 

  • Merva G, Fernandez A (1985) Simplified application of Penman’s equation for humid regions. Trans ASAE 28:819–825

    Google Scholar 

  • Martsolf JD (1981) Satellite frost forecasting system for Florida. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc Boston, pp 143–163

    Google Scholar 

  • Meyer SJ, Hubbard KG (1992) Nonfederal automated weather stations and networks in the United States and Canada: a preliminary survey. Bull Am Meteorol Soc 73 (4):449- 457

    Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1991) A crop specific drought index for corn. I. Modeldevelopment and validation. Agron J 85:388–395

    Article  Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1989) Estimating potential evapotranspiration: the effect ofrandom and systematic error. Agric For Meteorol 46:285–296

    Article  Google Scholar 

  • Newman JE, Shaw RH, Suomi VE (1959) The agricultural weather station: its instruments, observations, and site requirements. Bull 537, Univ of Wisconsin Agric Exp Stn, Madison

    Google Scholar 

  • NOAA (1988) US CLICOM system program manual. NOAA NCDC, Asheville

    Google Scholar 

  • NOAA/NESDIS (1990) User interface manual for the data collection system automatic processing system. NOAA/NESDIS Contract No 50-DDNE-7–00037, US Dep Commerce, Washington, DC

    Google Scholar 

  • NESDIS (1985) Users guide for random reporting: an introduction to GOES random reporting services. Contract No 0–07-10-S0104, US Dep Commerce, Washington DC

    Google Scholar 

  • Park J (1981) The wind power book. Chelshire, Palo Alto

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A193:120–145

    Google Scholar 

  • Phene CJ, Campbell RB (1975) Automating pan evaporation measurements for irrigation control.Agric Meteorol 15:181–191

    Google Scholar 

  • Powers AR (1988) AgriMet - “ET” phones home - (adaptation of satellite telemetry for crop water use modeling in the Pacific Northwest). In: Hay D (ed) Conf proc planning now for irrigation and drainage in the 21st century. 18–21 July 1988, ASCE, New York, pp 359–367

    Google Scholar 

  • Powers AR, Lute D, Rigby R (1988) Regional water management and conservation in the Pacific Northwest - technical and institutional approaches. In: 11th Conf on Irrigation and drainage, 14–17 Sept 1988, US Comm Irrig Drain, San Diego

    Google Scholar 

  • Pride (1984) The changing direction in weather information. Farming with Pride 4 (l):4–7; 10–11

    Google Scholar 

  • Pruitt WO, Doorenbos J (1977) Empirical calibration a requisite for formulae based on daily or longer mean climatic data? Proc Int Round Table Conf on Evapotranspiration, Budapest, Int Comm Irrig and Drain, 20 pp

    Google Scholar 

  • Reicosky LJ, Windelman LJ, Baker JM, Baker DG (1989) Accuracy of hourly air temperaturescalculated from daily minima and maxima. Agric For Meteorol 46:193–209

    Article  Google Scholar 

  • Robbins KO, Titlow JK (1989) Louisiana agricclimatic information system annual climatic summary. Bull 801, Louisiana Agric Exp Stn

    Google Scholar 

  • Robinson JM, Hubbard KG (1990) Soil water assessment model for several crops in the HighPlains. Agron J 82:1141–1148

    Article  Google Scholar 

  • Running SW (1981) The influence of microclimate on forest productivity: a system to predict the biophysical site quality of forest land. In: Weiss A (ed) Computer techniques and meteorological data applied to problems of agriculture and forestry: a workshop. Am Meteorol Soc, Boston, pp 266–272

    Google Scholar 

  • Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate - the biological environment, 2nd edn.Wiley, New York, pp 210–211

    Google Scholar 

  • Sagar RM, Hubbard KG, Norman JM, Holtzer TO (1988) Estimation of corn canopy temperature and water budget using automated weather station data. Thesis, Univ of Nebraska-Lincoln, 143 pp

    Google Scholar 

  • Schwerdtfeger P (1976) Physical principles of micro-meteorological measurements. Elsevier, New York

    Google Scholar 

  • Skaar J, Hegg K, Moe T, Smedsrud K (1989) WMO international hygrometer intercomparison(Norway, 1987–1989). World Meteorol Org Geneva

    Google Scholar 

  • Slatyer RO, Mcllroy IC (1961) Practical microclimatology, CSIRO, Melbourne (UNESCO)

    Google Scholar 

  • Snyder RL, Pruitt WO (1992) Evapotranspiration data management in California. I Irrig Drain(ASCE) Proc Water forum ’92, Aug 2–6, 1992, Baltimore

    Google Scholar 

  • Snyder RL, Pruitt WO, Dong A (1985a) An automatic weather station network for estimation of evapotranspiration. In: Perrier A, Riou C (eds) Crop water requirements. Int Comm Irrig Drain, Versailles, pp 133–142

    Google Scholar 

  • Snyder R, Pruitt WO, Henderson DW, Dong A (1985b) California irrigation management information system final report, vol 1. Land air and water resources papers 10013 A. Univ California, Davis

    Google Scholar 

  • Snyder R, Pruit WO, Henderson DW, Dong A (1985c) California irrigation management information system final report, vol 3. Land air and water resources papers 10013C. Univ California, Davis

    Google Scholar 

  • Snyder R, Shaw R, Paw-U KT (1987) Humidity conversions using a computer program. Appl Agrie Res 2:183–192

    Google Scholar 

  • Spoden GJ, Seeley MW (1985) The Minnesota cooperative agriculture weather advisory program. Preprint Vol 17th Conf Agrie For Meteorol, 7th Conf Biometeorol Aerobiol, 21–24 May 1985, AMS Boston, pp 109–111

    Google Scholar 

  • Tanner BD (1990) Automated weather stations. In: Goel NS, Norman JM (eds) Remote SensingReviews, vol 5(1). Gordon and Breach, New York, pp 73–98

    Google Scholar 

  • Tanner CB, Pelton WL (1960) Potential ET estimates by the approximate energy balance method of Penman. J Geophys Res 65:3391–3413

    Article  Google Scholar 

  • Tetens VO (1930) Über einige meteorologische Begriffe. Z Geophys 6:297–309

    Google Scholar 

  • Thompson RC, Costello TA, McLaughlin JD (1984) Design of a permanent automated agroclimatic data acquisition station. ASAE Pap No 84–4540

    Google Scholar 

  • Titlow JK, Robbins KD (1988) Climate data: collection, quality control and management. Pap:1988 Winter Meet ASAE, 13–16 Dec 1988, Chicago

    Google Scholar 

  • Van Bavel CHM (1966) Potential evaporation: the combination concept and its experimentalverification. Water Resources Res 2:455–467

    Article  Google Scholar 

  • Wang JY, Felton CMM (1983) Instruments for physical environmental measurements with special emphasis on atmospheric instruments, vol I. Kendall/Hunt, Dubuque, Iowa

    Google Scholar 

  • Warren JR, Vance DL (1981) Remote automatic weather station for resource and fire management agencies. Gen Tech Rep INT-116. Intermountain For Range Exp Stn, USD A, Intermountain Res Stn, Ogden, Utah

    Google Scholar 

  • WMO (1983) Guide to meteorological instruments and methods of observation, 5th edn. WorldMeteorol Org No 8, Geneva

    Google Scholar 

  • Wright JL (1982) New evapotranspiration crop coefficients. J Irrig Drain 108 (IR2):57–74

    Google Scholar 

  • Wright MA, Ley TW (1989) PAWS: Washington public agricultural weather system user manual. EB 1547 Wash State Univ, Pullman

    Google Scholar 

  • Zalom FG, Goodell PB, Wilson LT, Bantley WJ (1983) Degree-days: the calculation and use of heat units in pest management. Univ California, Div Agrie and Nat Resour, Leaflet 21373, Oakland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Snyder, R.L., Brown, P.W., Hubbard, K.G., Meyer, S.J. (1996). A Guide to Automated Weather Station Networks in North America. In: Stanhill, G. (eds) Advances in Bioclimatology_4. Advances in Bioclimatology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61132-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61132-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64709-3

  • Online ISBN: 978-3-642-61132-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics