Inter-comparison of Ice Core δ(18O) and Precipitation Records from Sites in Canada and Greenland over the last 3500 years and over the last few Centuries in detail using EOF Techniques.

  • David A. Fisher
  • Roy M. Koerner
  • Karl Kuivinen
  • Henrik B. Clausen
  • Sigfus J. Johnsen
  • Jorgen-Peter Steffensen
  • Niels Gundestrup
  • Claus U. Hammer
Part of the NATO ASI Series book series (volume 41)


Oxygen -18 records for the Polar sites in Canada and Greenland are compared over the last 3500 years on a 50 yr average basis. The common spatial covariance is found using EOF (Empirical Orthogonal Functions) techniques that identify two main spatial modes that occur with nearly the same frequency. Together these two Eigenvectors explain 50% of the variance in the detrended O-18 records.

One year averages of absolutely dated O-18 and precipitation records for the most recent few centuries from Greenland and Canada are compared and stacked by region, to reduce noise levels. The stacked records are then compared to met-station temperature and precipitation data in Greenland, Iceland and Canada. When the ice core δ and met-station temperature series are normalized and their common Eigenvectors found, a remarkable 50 % of the variance is explained by the first vector with the δ and temperature sites being in phase. The second vector segregates the δ ice core sites from the met-stations.

The advantage of regional stacking of ice core δ records is discussed as a means of reducing noise. The stacked records and the first influence coefficient of their first Eigenvector contain a very strong temperature signal, but still 50% of the variance is not explained by temperature.


Empirical Orthogonal Function Camp Century Influence Coefficient Average Time Series Eigenvector Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alley RB, Anandakirshnan S. submitted. Variations in melt layer frequency in the GISP2 ice core: implications for Holocene summer temperature in Central Greenland. Animals of Glaciology. IGS Symposium Columbus Ohio Aug 1994Google Scholar
  2. 2.
    Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, JWC, Ram M, Waddington ED, Mayewski PA, G A Zielinski (1993) Abrupt increase in snow accumulation at the end of the Younger Dryas event. Nature. 362, 527–529CrossRefGoogle Scholar
  3. 3.
    Bard E, Hamelin B, Fairbanks RG, A Zindler (1990) Nature. 345, 405–410.CrossRefGoogle Scholar
  4. 4.
    Bromwich DH, Weaver CJ. (1983) Latitudinal displacement from main moisture source controls δ(18o) of snow in coastal Antarctica Nature 301, 145–147CrossRefGoogle Scholar
  5. 5.
    Briffa KR, Jones PD (1993) Global surface air temperature variations during the twentieth century:Part 2, implications for large-scale high-frequency palaeolclimatic studies. Holocene. 3, 77–88CrossRefGoogle Scholar
  6. 6.
    Charles CD, Rind D, Jouzel J, Koster RD, Fairbanks RG (1994) Glacial interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science. 263, 508–511CrossRefGoogle Scholar
  7. 7.
    Clausen HB, Gundestrup N, Johnsen SJ, Bindschadler R, Zwally J (1988) Glaciology investigation in the Crête area, Central Greenland: a search for a new deep-drilling site. Annals of Glaciology. 10, 10–15Google Scholar
  8. 8.
    Dansgaard W, Johnsen S J, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature. 364, 218–220CrossRefGoogle Scholar
  9. 9.
    Dansgaard W, Johnsen SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU (1975) Climatic change, Norsemen and modern man. Nature. 255, 24–28CrossRefGoogle Scholar
  10. 10.
    Dansgaard W, Johnsen SJ, Clausen HB, Gundestrup N (1973) Stable Isotope Glaciology. Meddelelser om Grönland. 197 (2)Google Scholar
  11. 11.
    Dansgaard W (1964) Stable isotopes in precipitation. Tellus. 16, 436–468CrossRefGoogle Scholar
  12. 12.
    Fisher DA, Koerner RM, Reeh N (1995) Holocene climate records from Agassiz Ice Cap, Ellesmere Island NWT. Canada. The Holocene (in press)Google Scholar
  13. 13.
    Fisher DA, Koerner RM. (1994) Signal and noise in four ice-core records from the Agassiz Ice Cap, Ellesmere Island Canada; details of the past millenium for stable isotopes melt and solid conductivity. The Holocene. 4, 113–120CrossRefGoogle Scholar
  14. 14.
    Fisher DA (1992a) Stable isotope simulations using a regional stable isotope model coupled to a zonally averaged global model. Cold Regions Science and Technology. 21, 61–77CrossRefGoogle Scholar
  15. 15.
    Fisher DA (1992b) Possible ice-core evidence for a fresh melt water cap over the Atlantic Ocean in the early Holocene NATO ASI. series 12. “The Last Deglaciation: Absolute and Radiocarbon Chronologies”, editors E Bard and WS Broecker. 267–293Google Scholar
  16. 16.
    Fisher DA (1990) A zonally-averaged stable-isotope model coupled to a regional variable-elevation stable-isotope model. Annals of Glaciology. 14. 65–71Google Scholar
  17. 17.
    Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Annals of Glaciology. 7, 76–86Google Scholar
  18. 18.
    Fisher DA, Koerner RM, Paterson WSB, Dansgaard W, Gundestrup N, Reeh N (1983) Effect of wind scour on climatic records from ice-core oxygen-isotope profiles. Nature. 301, 205–209CrossRefGoogle Scholar
  19. 19.
    Fisher DA (1976) Unpublished. A study of two δ(18O) records from Devon Ice Cap, Canada and comparison of them to the Camp Century δ record. [PhD thesis University of Copenhagen]Google Scholar
  20. 20.
    Goodison BE, Ferguson HL, McKay GA (1981) Measurement and data analysis, chapter 6 in “Handbook of Snow”, editors DM Gray and DH Male. Pergamon Press, Toronto, Oxford, New York, 776 pagesGoogle Scholar
  21. 21.
    Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from GISP2 and GRIP Greenland ice cores. Nature. 366, 552–554CrossRefGoogle Scholar
  22. 22.
    Hammer CU, Clausen HB, Tauber H (1986) Ice–core dating of Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon. 28, 284–291Google Scholar
  23. 23.
    Hammer CU, Clausen HB, Dansgaard W, Gundestrup N, Johnsen SJ, Reeh N (1978) Dating Greenland ice cores by flow models isotopes, volcanic debris, and continental dust. Journal of Glaciology. 20, 3–26Google Scholar
  24. 24.
    Johnsen SJ, Dansgaard W, White JW (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus. 41, 452–469Google Scholar
  25. 25.
    Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core Nature. 359, 311–313CrossRefGoogle Scholar
  26. 26.
    Jones PD, Marsh R, Wigley TML, Peel DA (1993) Decadal timescale links between Antarctic Peninsula icecore oxygen-18, deuterium and temperature. Holocene. 3, 14–26CrossRefGoogle Scholar
  27. 27.
    Joussaume S, Jouzel J (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions. 2. water isotopes. Journal of Geophysical Research. 98, 2807–2830CrossRefGoogle Scholar
  28. 28.
    Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modeling of isotopic effects during snow formation. Journal of Geophysical Research. 89, 11749–11757CrossRefGoogle Scholar
  29. 29.
    Kutzbach JE (1967) Empirical Eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America Journal of Applied Meteorology. 4, 791–802CrossRefGoogle Scholar
  30. 30.
    Neuman CJ, Cry GW, Caso EL, Jarvinen BR (1981) Tropical cyclones of the North Atlantic, 1871–1980 US. Department of Commerce, National Climatic Center, Asheville NC, US. Government Printing Office Washington DC., 174 ppGoogle Scholar
  31. 31.
    Ohmura A, Reeh N (1991) New precipitation and accumulation maps for Greenland. Journal of Glaciology. 37, 140–148Google Scholar
  32. 32.
    Paterson WSB, Koerner RM, Fisher DA, Johnsen SJ, Clausen HB, Dansgaard W, Bucher P, Oeschger H (1977) An oxygen-isotope climatic record from the Devon Island ice cap, Arctic Canada. Nature. 266, 508–511CrossRefGoogle Scholar
  33. 33.
    Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J. Geophys. Res. 96, 5113–5122CrossRefGoogle Scholar
  34. 34.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, London, New York, Cambridge, 818 ppGoogle Scholar
  35. 35.
    Reeh N, Oerter H, Letreguilly A, Miller H, Hubberter H–W (1991) A new detailed ice age oxygen record from the ice–sheet margin in Central West Greenland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 90, 373–383Google Scholar
  36. 36.
    Reeh N (1989) Dynamic and climate history of the Greenland Ice Sheet, chapter 14 in Quaternary Geology of Canada and Greenland, editor RJ Fulton. Geological Survey of Canada no. 1. and Geology of North America V. K-lGoogle Scholar
  37. 37.
    WCD (1992) World Climate Disc, Global Climate Change Data. CD ROM. Chadwyck-Healey Ltd. Cambridge UK. compilations by Climatic Research Unit University of East Anglia and The Hadley Centre for Climatic Prediction and Research, Meteorological Office, UKGoogle Scholar
  38. 38.
    Weidick A, Oerter H, Reeh N, Thomsen HH, Thorning L (1990) The recession of the inland ice margin during the Holocene climatic optimum in the Jacobshavn Isfjord area of West Greenland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 82, 389–399Google Scholar
  39. 39.
    Barlow LK (1994) Evaluation of Seasonal to Decadal Scale Deuterium and Deuterium Excess Signals, GISP2 Ice Core, Summit Greenland, AD 1270–1985. Phd thesis. Department of Geological Sciences and Institute for Arctic and Alpine Research. University of Colorado. 290 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • David A. Fisher
    • 1
  • Roy M. Koerner
    • 1
  • Karl Kuivinen
    • 2
  • Henrik B. Clausen
    • 3
  • Sigfus J. Johnsen
    • 3
  • Jorgen-Peter Steffensen
    • 3
  • Niels Gundestrup
    • 3
  • Claus U. Hammer
    • 3
  1. 1.Glaciology Section, Terrain Sciences DivisionGeological Survey of CanadaOttawaCanada
  2. 2.Snow and Ice Research GroupUniversity of NebraskaLincolnUSA
  3. 3.Glaciology Dept. Geophysics InstituteUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations