Skip to main content
  • 42 Accesses

Zusammenfassung

Lebowitz et al. [1] haben 201Tl1973 in die klinische Anwendung eingeführt. 201Tl ist ein im Zyklotron hergestelltes Radionuklid. Bei der Herstellung kommt es durch Protonenbeschluß eines inaktiven Thallium-Targets zur Bildung von radioaktivem 201Blei (201Pb), vom dem 201Tl abgetrennt wird. Die physikalische Halbwertszeit (HWZ) von 201Tl beträgt 73,1 h, wobei es durch Elektroneneinfang in 201Quecksilber (201Hg) unter Aussendung von γ- und Röntgenstrahlung zerfällt. Die γ-Strahlung hat Energiebereiche von 135 und 167 keV, die Röntgenstrahlung liegt im 65- bis 85-keV-Bereich. Bei dieser Bestrahlung entstehen — durch Optimierung des Produktionsverfahrens auf ein Minimum reduzierte — “Verunreinigungen” in Form von 200Pb und 202mPb, die in200Tl (HWZ 26,l h) und 202Tl (HWZ 288 h) zerfallen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Lebowitz E, Greene MW, Bradley-Moore P et al. (1973) TI-201 for medical use. J Nucl Med 14: 421.

    Google Scholar 

  2. Gehring PJ, Hammond PB (1967) The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther 155:187.

    PubMed  CAS  Google Scholar 

  3. Zimmer L, McDali D, D’Addabbo L et al. (1979) Kinetics and characteristics of thallium exchange in cultured cells. Circulation 59 (11): 138.

    Google Scholar 

  4. Maublant JC, Gachón P, Moins N (1988) Hexakis (2-methoxy isobutylisonitrile) technetium-99m and thallium-201 chloride: uptake and release in cultured myocardial cells. J Nucl Med 29: 48–54.

    PubMed  CAS  Google Scholar 

  5. Melin JA, Becker LC (1986) Quantitative relationship between global left ventricular thallium uptake and blood flow: effects of propranolol, ouabain, dipyridamole, and coronary artery occlusion. J Nucl Med 27: 641–652.

    PubMed  CAS  Google Scholar 

  6. Pohost GM, Zir LM, Moor RH (1977) Differentiation of transiently ischemic from infarcted myocardium by serial imaging after single dose of TI-201. Circulation 55: 294–302.

    PubMed  CAS  Google Scholar 

  7. Strauss HW, Pitt B (1977) Noninvasive detection of subcriticai coronary arterial narrowings with a coronary vasodilator and myocardial perfusion imaging. Am J Cardiol 39: 403.

    Article  PubMed  CAS  Google Scholar 

  8. Gould KL (1978) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. Am J Cardiol 41: 267.

    Article  PubMed  CAS  Google Scholar 

  9. Beanlands B, Muzik O, Nguyen N, Schwaiger M (1991) Comparison of the myocardial retention of technetium-99m-teboroxime and thallium-201. J Am Coll Cardiol 17 (2): 252 A (Abstr).

    Google Scholar 

  10. Melin JA, Becker LC, Bulkley BH (1983) Differences in thallium-201 uptake in reperfused and nonreperfused myocardial infarction. Circ Res 53: 414–419.

    PubMed  CAS  Google Scholar 

  11. Angello DA, Wilson RA, Palme RT (1987) Effect of eating on Tl-201 myocardial redistribution after myocardial ischemia. Am J Cardiol 60: 528.

    Article  PubMed  CAS  Google Scholar 

  12. Maddahi J, Schelbert HR, Brunken R, Di Carli M (1994) Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med 35: 707–715.

    PubMed  CAS  Google Scholar 

  13. Weiss AT, Maddahi J, Lew AS et al. (1986) Reverse redistribution of thallium-201: a sign of non-transmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 7: 61–67.

    Article  PubMed  CAS  Google Scholar 

  14. Silberstein EB, De Vries DF (1985) Reverse redistribution phenomenon in thallium-201 stress tests: angiographic correlation and clinical significance. J Nucl Med 26: 707–710.

    PubMed  CAS  Google Scholar 

  15. Fields CL, Ossovio MA, Roy TM, Denny DM, Varga DW (1990) Thallium-201 scintigraphy in the diagnosis and management of myocardial sarcoidosis. South Med J 83: 339–842.

    Article  PubMed  CAS  Google Scholar 

  16. Gianrossi R, Detrano R, Mulvihill D et al. (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80: 87–98.

    CAS  Google Scholar 

  17. Kotler TS, Diamond GA (1990) Exercise thallium-201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Ann Intern Med 113: 684–702.

    PubMed  CAS  Google Scholar 

  18. Beller GA (1991) Current status of nuclear cardiology techniques. Curr Probi Cardiol 16:449–535.

    Google Scholar 

  19. Berger BC, Watson DD, Taylor GJ et al. (1981) Quantitative thallium-201 exercise scintigraphy for detection of coronary artery disease. J Nucl Med 22: 585–593.

    PubMed  CAS  Google Scholar 

  20. De Pasquale EE, Nody AC, De Puey EG et al. (1988) Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 77: 316–327.

    Article  Google Scholar 

  21. Mahmarian JJ, Boyce TM, Goldberg RK, Cocanougher MK, Roberts R, Verami MS (1990) Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol 15: 318–329.

    Article  PubMed  CAS  Google Scholar 

  22. Van Train RF, Maddahi J, Berman DS, Kiat H, Areeda J, Prignet F, Friedman J (1990) Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 31:1168–1179.

    PubMed  Google Scholar 

  23. Tamaki N, Yonekura Y, Mukai T et al. (1984) Stress thallium-201 transaxial emission computed tomography: quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol 4:1213–1221.

    Article  PubMed  CAS  Google Scholar 

  24. Iskandrian AS, Hakki AH, Kaul-Morsch S (1985) Prognostic implications of exercise thallium-201 scintigraphy in patients with suspected or known coronary artery disease. Am Heart J110:135–143.

    Article  Google Scholar 

  25. Mori T, Minamiji K, Kurongane H, Ogawa K, Yoshida J (1991) Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 23:1718–1724.

    Google Scholar 

  26. Alfieri O, La Canna G, Guibbini R, Pardini A, Zogno M, Fucci C (1993) Recovery of myocardial function. Eur J Cardio Thorac Surg 7: 325–330.

    Article  CAS  Google Scholar 

  27. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple W (1993) Quantitative planar rest-redistribution Tl-201 imaging in detection of myocardial viability and prediction of improvement in left ventricular function. Circulation 86:1630–1641.

    Google Scholar 

  28. Carrel T, Jenni R, Haubold-Reuter S, von Schulthess G, Pasic M, Turina M (1992) Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 6: 479–484.

    Article  PubMed  CAS  Google Scholar 

  29. Gropler RJ, Siegel B, Sampathkumaran K et al. (1992) Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19: 989–997.

    Article  PubMed  CAS  Google Scholar 

  30. Gropler RJ, Geltman EM, Sampathkumaran K et al. (1993) Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 22:1587–1597.

    Article  PubMed  CAS  Google Scholar 

  31. Lucignani G, Paolini G, Laudoni C, Zuccari M, Paganelli G, Galli L, Di Credico G, Vanoli G, Rosetti C, Mariani MA, Guardi MC, Colombo F, Grossi A, Fazio F (1992) Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxy isobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19: 874–881.

    Article  PubMed  CAS  Google Scholar 

  32. Tamaki N, Yonekura J, Yamashita K et al. (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  33. Tillisch JH, Brunken R, Marshall R et al. (1986) Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 314: 884–88.

    Article  PubMed  CAS  Google Scholar 

  34. Schiena H (1991) Kompendium der Nuklearmedizin. Schattauer, Stuttgart.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wieler, H.J. (1997). 201Thallium (201TI). In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Herzens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60621-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60621-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64479-5

  • Online ISBN: 978-3-642-60621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics