Advertisement

Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, II

  • Chi-Wang Shu
  • Stanley Osher

Abstract

In this paper we extend our earlier work on the efficient implementation of ENO (essentially non-oscillatory) shock-capturing schemes. We provide a new simplified expression for the ENO construction procedure based again on numerical fluxes rather than cell-averages. We also consider two improvements which we label ENO-LLF (local Lax—Friedrichs) and ENO-Roe, which yield sharper shock transitions, improved overall accuracy, for lower computational cost than previous implementation of the ENO schemes. Two methods of sharpening contact discontinuities—the subcell resolution idea of Harten and the artificial compression idea of Yang, which those authors originally used in the cell average framework—are applied to the current ENO schemes using numerical fluxes and TVD Runge—Kutta time discretizations. The implementation for nonlinear systems and multi-dimensions is given. Finally, many numerical examples, including a compressible shock turbulence interaction flow calculation, are presented.

Keywords

Riemann Problem Efficient Implementation Contact Discontinuity Numerical Flux Critical Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Crandall and A. Majda, Math. Comput. 34, 1 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Harten, “Preliminary Results on the Extension of ENO Schemes to Two-Dimensional Problems,” in Proceedings of the International Conference on Hyperbolic Problems, Saint-Etienne, January 1986.Google Scholar
  3. 3.
    A. Harten and S. Osher, SIAM J. Numer. Anal. 24, 279 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, J. Comput. Phys 71, 231 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Harten, S. Osher, B. Engquist, and S. Chakravarthy, J. Appi. Numer. Math. 2, 347 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Harten, ICASE Report 87–56, August 1987 (unpublished).Google Scholar
  7. 7.
    A. Harten, in preparation.Google Scholar
  8. 8.
    J. McKenzie and K. Westphal, Phys. Fluids 11, 2350 (1968).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Osher, SIAM J. Numer. Anal. 22, 947 (1985).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S. Osher and S. Chakravarthy, SIAM J. Numer. Anal. 21, 955 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Roe, J. Comput. Phys. 43, 357 (1981).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    C.-W. Shu and S. Osher, ICASE Report 87-33;J. Comput. Phys.77, 439 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    D. Wagner, SIAM J. Math. Anal. 14, 534 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Woodward and P. Colella, J. Comput. Phys. 54, 115 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    H. Yang, Ph. D. thesis, UCLA Math. Dept., 1988;J. Comput. Phys. (1990) to appear.Google Scholar
  16. 16.
    S. Zalesak, “A Preliminary Comparison of Modern Shock-Capturing Schemes: Linear Advection,” in Advances in Computer Methods for Partial Differential Equations, VI, edited by R. Vichnevetsky and R. Stepleman (IMACS, New Brunswick, NJ, 1987 ).Google Scholar
  17. 17.
    T. Zang, M. Hussaini, and D. Bushnell, AIAA J. 22, 13 (1984).ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    T. Zang, D. Kopriva, and M. Hussaini, “Pseudospectral Calculation of Shock Turbulence Interaction,” in Proceedings of Numerical Methods Conference, edited by C Taylor (Pineridge Press, Swansea, U.K., 1984 ), pp. 210 – 222.Google Scholar

Copyright information

© Academic Press, Inc. 1989

Authors and Affiliations

  • Chi-Wang Shu
    • 1
  • Stanley Osher
    • 2
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations